1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 2<html> 3 4<head> 5<META http-equiv="Content-Type" content="text/html; charset=windows-1252"> 6<META name="GENERATOR" content="IBM WebSphere Studio Homepage Builder Version 8.0.0.0 for Windows"> 7<META http-equiv="Content-Style-Type" content="text/css"> 8<title>MATH_FFT</title> 9<LINK rel="stylesheet" href="../../css/nitro.css" type="text/css"> 10</head> 11 12<body> 13 14<h1 align="left">MATH_FFT <img src="../../image/NTR.gif"align="middle"><img src="../../image/TWL.gif" align="middle"></H1> 15<H2>Syntax</H2> 16 17<dl> 18 <dd> 19 <PRE><CODE>#include <nitro/math/fft.h> 20 21void MATH_FFT( fx32* data, u32 nShift, const fx16* sinTable ); 22</CODE></PRE> 23 </dd> 24</dl><h2>Arguments</h2> 25 26<table border="1" width="100%"> 27 <TR> 28 <TD width="176"><em><strong><font face="Courier New">data</font></strong></em></TD> 29 <TD width="670">Pointer to the data to transform. Data after the transform is overwritten.</TD> 30 </TR> 31 <TR> 32 <TD width="176"><em><strong><font face="Courier New">nShift</font></strong></em></TD> 33 <TD width="670">The value obtained by taking the base-2 logarithm of the number of the input complex numbers.</TD> 34 </TR> 35 <TR> 36 <TD width="176"><em><strong><font face="Courier New">sinTable</font></strong></em></TD> 37 <TD width="670">Pointer to the table of sine values.</TD> 38 </TR> 39 </table> 40<h2>Return Values</h2> 41<p>None.</p> 42<H2>Description</H2> 43<P> 44This takes a complex number series as input and performs discrete Fourier transform that outputs complex number series using the fast Fourier transform algorithm. 45</P> 46<P> 47In the explanation below, the value 2<sup>nShift</sup> (2 to the nShift power) is represented as N. <I>data</I> is a type fx32 array of length 2*N. N number of complex numbers is passed to data in a format that stores real numbers and imaginary numbers alternately. Thus, if <i>i</i> is the unit for imaginary numbers, then the input data is the complex number sequence of N length <CODE>{data[0]+<i>i</i>*data[1], data[2]+<i>i</i>*data[3], ..., data[N*2-2]+<i>i</i>*data[N*2-1]}</CODE>. <I>sinTable</I> is the pointer to the array of N*3/4 length that has fx16 type sine values assigned that satisfy <CODE>sinTable[k] = <i>sin</i>( (2π/N) * k ) (k = 0, 1,..., N*3/4-1)</CODE>. This can be created using the <CODE><A href="MATH_MakeFFTSinTable.html">MATH_MakeFFTSinTable</A></CODE> function. The result of the discrete Fourier transform also becomes a complex number series, and is overwritten in <I>data</I> in the same format as the input and returned. 48</P> 49<P> 50The discrete Fourier transform is a calculation for obtaining <CODE><i>F</i><sub>m</sub> (m = 0, 1, ... N-1)</CODE> to satisfy the expression: <BR><CODE><i>f</i><sub>n</sub> = Σ<sub>k = 0</sub><sup>N-1</sup> <i>F</i><sub>k</sub><i>e</i><sup><i>i</i>2πkn/N</sup></CODE>, <BR>where the sampling value in complex numbers taken along the time axis expressed as <CODE><i>f</i><sub>n</sub> (n = 0, 1, ... N-1)</CODE>. When the input signals are decomposed into a superposition of sine waves,<CODE><i>F</i><sub>m</sub></CODE> can be viewed as a coefficient of each frequency. The fast Fourier transform is an algorithm that performs the discrete Fourier transform with the order of time complexity <CODE>N*log(N)</CODE>. 51</P> 52<P> 53The calculations are performed using fixed-decimal numbers, so if a large value is given as the input, there is a risk of overflow. When the input value is viewed as type s32, the absolute value should not be greater than or equal to <CODE>0x80000000/N</CODE>. Also note that the maximum error when performing both the forward transform and inverse transform is around several times <CODE>FX32_ONE</CODE>. 54</P> 55<h2>See Also</h2> 56<P><CODE><A href="MATH_MakeFFTSinTable.html">MATH_MakeFFTSinTable</A>, <A href="MATH_IFFT.html">MATH_IFFT</A>, <A href="MATH_FFTReal.html">MATH_FFTReal</A>, <A href="MATH_IFFTReal.html">MATH_IFFTReal</A></CODE></P> 57<H2>Revision History</H2> 58<P> 592005/07/21 Corrected the explanation for <CODE>sinTable</CODE>.<BR>2005/07/11 Corrected the explanation.<BR> 2005/05/13 Initial version. 60</P> 61<hr><p>CONFIDENTIAL</p></body> 62</html> 63