System Programming Guide
OS and Debug Libraries (os/dbg)

Version 0.2

The content of this document is highly confidential
and should be handled accordingly.

© 2010-2011 Nintendo CTR-06-0034-001-B
CONFIDENTIAL Released: March 28, 2011



OS and Debug Libraries (os/dbg) System Programming Guide

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

CTR-06-0034-001-B 2 © 2010-2011 Nintendo
Released: March 28, 2011 CONFIDENTIAL



System Programming Guide OS and Debug Libraries (os/dbg)

Table of Contents

A Vo o To 11 Tod T o PP UPUPRPPTN 4
22 1 =Y 111071 0o ] [ o SRS 5
3 Startup and INITANZATION .......coii ittt e e e e e st e e e e e e e e s bbb e e e e e e e e e snbanreeeaaeeaanne 7
3.1 Y =TT I AN o] o] [T 1o T PSR 7
3.1.1 LGS L1165 = 5 LU SRR 7
3.1.2 Default NNINIESTAITUP .....eiiiiie ettt e e et e e e e e e s bbbt e e e e e e e e e snneeaeeas 7
3.1.3 (@Y o T o I 11 T = 1 (10 o T SRR 8
3.2 (B) Ctt SEALIC INIHANZET ....eie et e ettt e e e e e s b e e e e e e e e e s nnbbeeeaaaeeas 8
3.3 (7) C SEALIC INILALIZET ......eeeeeee ettt e e e e s ettt e e e e e s e bbb be e e e e e e e e aannnrrneeaaaaeas 9
3.3.1 ) L1117 U PR 9
Y/ (=10 oo VLY F=Ta = To T<T 0 11T o | PP PPPPPPPPPTR R PPPPPIN 11
4.1 Memory-Management Systems Of the CTR-SDK.........cooiiiiiii e 11
4.2 [ [ST= Vo I= LaTo I B TV o1V =T o o] o S 11
4.2.1 Lo SN X o] - o2 RPN 11
4.2.2 Required Functions and ClasSES (LAYET 1) ....ccuiiiiiiiiiiiiieeee ettt e e e e e eibeee e e e e e e 11
4.2.3 Optional Functions and ClasSes (LAYET 2) .....cc.euviiieeeeeiiiiiiieee e e e e e ssseteeee e e e s s snsraeer e e e e e s e snnreeeeeaees 12
4.3 1010 [T o] = 1 oY PP PO TUPPRRPP 12
4.4 Default Memory-ManagemeEnt SYSTEIM .........eiiii it ee ettt e e e e e e e e s e sabbe e e e e e e e e s e snnnbeeeaaaeaas 13
I N 0] == (o £ TP TP 14
LT A U | (0 5] - Vo PSPPSR 14
5.1.1 DefaultAUtOSTACKMANAGET ... e ee et e e e e e s e e e e e e s s st e e e e e e s s snsrneeeeaeeeenannes 14
Code
Code 3-1 C Linkage IS ReqUIrEA iN CH ...ttt et e e et e e e e e e e s nbe e e e e e e e e e annneneeas 8
Code 3-2 Explicitly Declaring the C LINKAGE .......ccoiuiiiiiiiiieiiee et nnees 9
Code 3-3 Including the NN.N HEAAET ..........eeiiiieei e 10
Figures
Figure 4-1 Memory-Management APl STTUCIUIE .......uviiee it s e e e e e e e e s snrnaees 11
Figure 5-1 DefaultAULOSTACKIMBINAGET .......coiii ittt e e ettt e e e e e e s abbb e e e e e e e e e annbeneeas 14
© 2010-2011 Nintendo 3 CTR-06-0034-001-B

CONFIDENTIAL Released: March 28, 2011



OS and Debug Libraries (os/dbg) System Programming Guide

1 Introduction

This document explains the memory management required to create applications for CTR.

CTR-06-0034-001-B 4 © 2010-2011 Nintendo
Released: March 28, 2011 CONFIDENTIAL



System Programming Guide OS and Debug Libraries (os/dbg)

2 Terminology

This chapter defines the terminology used in the CTR-SDK. These definitions are specific to the CTR-
SDK and may differ from the standard usage of the terms.

e 0s Library

The portions of the API provided by the CTR-SDK that are included in the nn: : 0s namespace.
e fnd Library

The portions of the API provided by the CTR-SDK that are included in the nn: : fnd namespace.
e application

General term for software that runs on CTR.
e user application

An application that can be created using the CTR-SDK.
e system application

An application that makes up the environment in which applications run and that supplements the
operation of the applications.

e device

This term refers to all of the hardware included in the CTR system, with the exception of the CPU.
The GPU, DSP, microphone, accelerometer, and other such components are all considered to be
devices.

e heap

One of the two memory regions that programs can allocate dynamically. Memory used by system
applications must use this region.

e device memory

One of the two memory regions that programs can allocate dynamically. Memory used by devices
must use this region.

e fnd heap

Class for managing memory at the byte level. Included in the fnd library. This term also refers to
the memory regions that are managed by this class.

e weak function
A function that is marked with weak symbols.

Weakly defined functions are a compiler/linker mechanism for allowing function definitions to be
overridden during linking. The CTR-SDK defines certain functions with weak symbols in order to
allow them to be overridden by applications.

© 2010-2011 Nintendo 5 CTR-06-0034-001-B
CONFIDENTIAL Released: March 28, 2011



OS and Debug Libraries (os/dbg) System Programming Guide

A weakly defined function behaves like a normally defined function unless a non-weakly defined
function of the same name is linked into the same image. However, if both a normal (non-weakly
defined) function and a weakly defined function of the same name exist in the same image, all calls
to the function resolve to the non-weak function. (No linker errors will occur.)

If the default implementation of a function is defined with weak symbols, you can therefore override
the default implementation by defining a normal (non-weak) version of that function.

CTR-06-0034-001-B 6 © 2010-2011 Nintendo
Released: March 28, 2011 CONFIDENTIAL



System Programming Guide OS and Debug Libraries (os/dbg)

3 Startup and Initialization

3.1 Starting Applications

Application processes begin with the _ctr_start function.

The _ctr_start function is defined in sources/libraries/crt0/MPCore/crt0.cpp. User
applications cannot change this operation. The implementation provided by the CTR-SDK must not
be modified.

The _ctr_start function performs the following operations in the following order.
1. Clear the .bss section to zero.

2. Initialize the C-language floating-point runtime library.

3. Initialize the C-language locale.

4. Initialize the os library.

5. Call the nninitStartUp function.

6. Call the C++ static initializer.

7. Call the C static initializer.

8. Initialize the user application environment.

9. Call nnMain.

Of these operations, user applications can customize the implementations of steps (5), (6), (7), and
(9). The following sections explain how to customize these steps and what types of operations are
required.

In the text below, the term "static initializers" is used to refer collectively to the C++ static initializer
and the C static initializer.

3.1.1 (5 nninitStartUp

The nninitStartUp function is provided to initialize any user-application-specific memory-
management systems before the static initializer is run.

The nninitStartUp function is not intended to be called from user applications. Rather, user
applications can define their own specific nninitStartUp function to run any proprietary code
before the static initializer is run.

3.1.2 Default nninitStartUp

The CTR-SDK defines the default nninitStartUp as a weakly defined function. You can therefore
use the language's standard memory-allocation functions (like mal loc and new) within the default
static initializers without doing anything special. That said, the memory-management system provided

© 2010-2011 Nintendo 7 CTR-06-0034-001-B
CONFIDENTIAL Released: March 28, 2011



OS and Debug Libraries (os/dbg) System Programming Guide

3.1.3

by the default nnitStartUp function is only intended for use in the initial application development
phase. It will not stand up to the rigors of use by a fully developed application.

Note: Nintendo strongly recommends that application developers override the default
implementation with one that is customized for the requirements of the application.

The default nninitStartUp function performs the following operations.

e Allocates 32 MB of device memory.

o Allocates all of the remaining memory that can be used by the user application as a heap.

e Enables use of the MemoryBlock class.

e Configures the default AutoStackManager.

¢ Allocates an 8MB MemoryBlock, and creates an instance of fnd: : ExpHeap that is made thread-
safe through the use of the CriticalSection class.

e Configures the malloc, free, new, and free subroutines to use the aforementioned fnd heap.

Overriding nninitStartUp

The default nninitStartUp function is defined with weak symbols. If you define a non-weakly
defined function of the same name in your application, your custom implementation will automatically
be called instead of the default nnitStartUp function.

Note that when coded in C++, the nnitStartUp function must be declared with C linkage (Code
3-1). Also note that this code will run before the static initializer is called. Keep in mind that
constructors for static objects will not run until after nninitStartUp has run. To avoid risk, no
operations other than the initialization of the memory-management system should be run within your
nninitStartUp implementation.

Code 3-1 C Linkage Is Required in C++

extern "C" void nninitStartUp()
{
// Application-specific operations

}

If you override the default nninitStartUp function, you must also override the mal loc, free, new,
and free subroutines. (You don't need to override these functions if your application doesn't use
them.)

In the same way, you will not be able to use Thread: : StartUsingAutoStack member function if
you override the default nninitStartUp implementation. See section 5.1 AutoStack for details.

3.2 (6) C++ Static Initializer
The C++ static initializer is part of the C++ language specification. By writing C++ code to run the
static initializer, the operations within the initializer will run automatically. One example of a usage
case is a static object that has a user-defined constructor. For details, refer to textbooks or other
resources about C++.
CTR-06-0034-001-B 8 © 2010-2011 Nintendo

Released: March 28, 2011 CONFIDENTIAL



System Programming Guide OS and Debug Libraries (os/dbg)

When using a C++ static initializer with the CTR-SDK, pay special attention to the initialization of your
memory-management system. Although some C++ static initializers make explicit calls to subroutines
like new to allocate memory, others may allocate memory implicitly. Your application's memory-
management system must therefore be enabled for use before the C++ static initializer is called.

The nninitStartUp function is provided to initialize your application's memory-management
system before the C++ static initializer is called. See section 3.1.1 (5) nninitStartUp for details.

3.3 (7) C Static Initializer

The C static initializer is a proprietary specification of the CTR-SDK that allows static initializers to be
used with the C language. This feature is similar to the one that was provided with the TWL-SDK.

You can define the C static initializer for each source code file, as shown in the sample below. The C
static initializer will be called automatically after the C++ static initializer but before nnMain.

Although a variety of operations can be performed in the C static initializer, some of the operations
will be delayed because step (8)—initialization of the user application environment—has not yet
occurred. Nintendo recommends limiting the operations that are performed within the static initializer
to the bare minimum required.

#include <nn/sinit.h>

static void nninitStaticlnit(void)

{

// User-application-specific operations

3.3.1  (9) nnMain

The nnMain function is the main program for CTR applications.

As it is the main function, this function must be present and contains application-specific code. If your
application does not define the nnMain function, a linker error will occur.

When coding in C++, you must declare the nnMain function with C linkage. To accomplish this, you
can either specify the C linkage explicitly (as shown inCode 3-2) or include nn_h (as shown in Code
3-3). Including nn . h will cause the nnMain function to be declared with C linkage.

Code 3-2 Explicitly Declaring the C Linkage

extern "C" void nnMain()

{
}

© 2010-2011 Nintendo 9 CTR-06-0034-001-B
CONFIDENTIAL Released: March 28, 2011



OS and Debug Libraries (os/dbg) System Programming Guide

Code 3-3 Including the nn.h Header

#include <nn.h>

void nnMain()

{
}
When control returns from nnMain, the user application will exit, and the system will return to the
HOME Menu.
CTR-06-0034-001-B 10 © 2010-2011 Nintendo

Released: March 28, 2011 CONFIDENTIAL



System Programming Guide OS and Debug Libraries (os/dbg)

4 Memory Management

4.1

Memory-Management Systems of the CTR-SDK

4.2

Figure 4-1 shows the overall structure of the CTR-SDK's memory-management APIs.

The os library has a two-layer structure, and the ¥nd library sits on top of the os library's layers.
Everything but the first layer of the os library allows application-specific code to be used exclusively,
without using the APIs provided by the CTR-SDK.

Figure 4-1 Memory-Management API Structure

Application
[ ] fnd Library
Stack [ ] os Library (Layer 2)
Memory Stack )
fnd Heap Block Vemory [ os Library (Layer 1)
‘ MemoryBlock
SetDeviceMemorySize l SetHeapSize

Heap and Device Memory

42.1

User applications must divide their memory into two separate regions that can be allocated
dynamically: the heap and the device memory.

The main difference between the heap memory and the device memory lies in their accessibility from
outside of the application. If you are using these regions solely for application-specific code, there is
no significant difference between the heap and the device memory.

Use of the heap is required if memory for a system application must be allocated from within your
user application.

Use of the device memory is required if memory for a device must be allocated from within your user
application.

os Library

4.2.2

The memory-management system of the os library is implemented as a two-layer hierarchy.

Required Functions and Classes (Layer 1)

The first layer consists of functions and classes that must always be used. (There are no such
classes at the moment.)

The main functions and classes in layer 1 are listed below.

e SetHeapSize
e SetDeviceMemorySize

© 2010-2011 Nintendo 11 CTR-06-0034-001-B
CONFIDENTIAL Released: March 28, 2011



OS and Debug Libraries (os/dbg) System Programming Guide

The SetHeapSize and SetDeviceMemorySize functions form the core of the first layer. These
functions are essential if your application allocates memory dynamically at runtime.

The SetHeapSize and SetDeviceMemorySize functions both assign contiguous blocks of
memory to user applications.

4.2.3 Optional Functions and Classes (Layer 2)

The second layer consists of functions and classes whose use is not required. They allow you to
manage the heap directly within your user application's own memory-management code. The heap
can also be managed directly in the same way using the nd library described later in this document.

The main functions and classes in layer 2 are listed below.

e InitializeMemoryBlock

MemoryBlock
StackMemoryBlock
StackMemory

The MemoryBlock class provides the ability to split up a heap allocated using SetHeapSize into
4KB chunks for use. Before using the MemoryBlock class, you must first call
InitializeMemoryBlock and specify the heap region that the MemoryBlock instance will control.

The StackMemoryBlock class is a specialized version of the MemoryBlock class for use with
stacks. It can be passed directly to the Thead: : Start member function as a stack. Before using the
StackMemoryBlock class, you must first call Initial izeMemoryBlock, just as you must with the
MemoryBlock class. The MemoryBlock and StackMemoryBlock classes are used to divide a
single region of memory in the heap into smaller parts for later use.

Use of the MemoryBlock and StackMemoryBlock classes is not recommended.

The StackMemory class isolates the region specified within the heap to a different address. It
intentionally uses memory as a stack and makes it possible to detect stack underflows and overflows
as data-abort exceptions.

4.3 fnd Library

The nd library provides several classes for managing memory at the byte level. These classes allow

you to provide the starting address and size of the desired memory region. Because the os library
does not provide a byte-level memory management feature, you must use the fnd library to
implement memory-management systems that can be used in the same way as standard memory-
allocation subroutines like mal loc and new.

These classes can be used to manage the device memory and heap directly. They can also be used
to manage memory regions that were allocated using the MemoryBlock class.

CTR-06-0034-001-B 12 © 2010-2011 Nintendo
Released: March 28, 2011 CONFIDENTIAL



System Programming Guide OS and Debug Libraries (os/dbg)

4.4 Default Memory-Management System

If your user application does not override the default nninitStartUp function, the default memory-
management system will be set up.

See section 3.1.1 (5) nninitStartUp for more information about the memory-management system that
is set up by default.

Nintendo strongly recommends that application developers create their own user-application-specific
memory-management system instead of using the default one.

© 2010-2011 Nintendo 13 CTR-06-0034-001-B
CONFIDENTIAL Released: March 28, 2011



OS and Debug Libraries (os/dbg) System Programming Guide

5 Threads

51 AutoStack

The Thread: : StartUsingAutoStack member function uses the stack manager specified to the

Thread: : SetAutoStackManager member function to allocate and free the stack automatically
behind the scenes. This is done in lieu of specifying the stack explicitly using arguments to the
function.

5.1.1 DefaultAutoStackManager

If you use the default nninitStartUp function, SetDefaultAutoStackManager is called, and
the Defaul tAutoStackManager will be configured for use as the AutoStackManager.

The DefaultAutoStackManager uses StackMemoryBlock to allocate the stack, so you must be
able to use StackMemoryBlock. Adding Defaul tAutoStackManager to Figure 4-1 results in
Figure 5-1.

Figure 5-1 Defaul tAutoStackManager

Application

Default
AutoStack
Manager

Stack
Memory

fnd Library Block Stack

Memory

MemoryBlock

SetDeviceMemorySize SetHeapSize

If you override the default nninitStartUp function, SetDefaul tAutoStackManager is no longer
called, so you will be unable to use StartUsingAutoStack. When using StartUsingAutoStack
while overriding the default nninitStartUp function, you must either call
SetDefaul tAutoStackManager or set your own AutoStackManager.

The use of DefaultAutoStackManager is not recommended.

CTR-06-0034-001-B 14 © 2010-2011 Nintendo
Released: March 28, 2011 CONFIDENTIAL



System Programming Guide

OS and Debug Libraries (os/dbg)

Revision History

Version Revision Date | Category Description
0.2 2010/09/27 Revision | Section 3.1 Starting Applications.
0.1 2010/08/19 - Initial version.
© 2010-2011 Nintendo 15 CTR-06-0034-001-B

CONFIDENTIAL

Released: March 28, 2011




OS and Debug Libraries (os/dbg) System Programming Guide

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

© 2010-2011 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

CTR-06-0034-001-B 16 © 2010-2011 Nintendo
Released: March 28, 2011 CONFIDENTIAL



	1 Introduction
	2 Terminology
	3 Startup and Initialization
	3.1 Starting Applications
	3.1.1 (5) nninitStartUp
	3.1.2 Default nninitStartUp
	3.1.3 Overriding nninitStartUp

	3.2 (6) C++ Static Initializer
	3.3 (7) C Static Initializer
	3.3.1 (9) nnMain


	4 Memory Management
	4.1 Memory-Management Systems of the CTR-SDK
	4.2 Heap and Device Memory
	4.2.1 os Library
	4.2.2 Required Functions and Classes (Layer 1)
	4.2.3 Optional Functions and Classes (Layer 2)

	4.3 fnd Library
	4.4 Default Memory-Management System

	5 Threads
	5.1 AutoStack


