Vertex Shader Reference Manual

Version 3.0

Digital Media Professionals Inc.

The content of this document is highly confidential

and should be handled accordingly.

© 2009-2011 Nintendo CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

CTR-06-0007-001-C 2 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Table of Contents

AN o Lo UL I L3 B o Lo 0 41T o | TSP RO PPRPT 12
2 © = oV T PRSP 13
N @ o 1T - il (ol =t 1Y/ T o T 10 1= oL PP 14
4 Main Objects and ReferenCe ODJECESuuiiiiiiiiiiiiiiiie s e e e r e e e e s s e e e e e e e e snrnneees 15
5 How to Use the ASSEMDBIET TOOISueiiiiiiiiiee et e e e e r e e e e e e e nabbeeeaaaeaas 16
5.1 ctr_VertexShaderAssembler32 (ASSEMDIET)ooi i 16

LS 0 R O o 1o £ PP RPOPPRRN 16

LT I b - T 4 o] [P P TP PPRPRT 17

5.2 ctr_VertexShaderLiNKEr32 (LINKEI) ...euiiiii it e e e st e e e e e e e st e e e e e e e e snnneneees 17
L7205 A |] o 0L A 11 SRR 17
LI © o] 11 1< TP PPRPRT 18
Lo T b 1141 o] PR 18

Y (T ¢ (=) @S] g F= (o (=T g RS 01U [{ ol PP UT TP 19
6.1 Program RAM. ...ttt ettt e e e e e e et et e e e s e h b b e e e e e e e e e e et e e e e e e e e e e e e e e aanne 19
6.2 =0 153 =1 £ PSS 19
6.2.1 Per-ReEQISIEr RESOUICESccciiiiiieiieeie e e i e ettt e et e e e s s s e e e e e s sa bt e et e e e s s st baaeeeaeeesansssanneeeeeesannssnneees 19
6.2.2 Precision of FIoating-Point REGISIEISuuiiiiiie it 20
070G O [o1 o101 =T 1S3 (T RS S 20
6.2.4 TEMPOIArY REQISEIS .. .eeieiiiiiei ittt ettt e ettt e e e e e s et e bt e et e e e e e anbbe et e e aeeesaaabbbeeeeaaeesannbnneeas 20
6.2.5 Floating-Point CONStaANt REQISTEIScccciiiiiiiiiieie i ir e e e s e e e e e s s e e e e e e s s rben e e e e e e s snraaeees 20
2 I Vo [0 [£ TSI BT 11 L= RO PRTPRUR 21
2 N = Vo o] 1= = g I LT 11 (= SRS 21
N2 B 101 (=T o T g B (T o] (=T £ R TP TR 21
2 I Mo T o R 0101 g (=T gl =T 11 (=] RS 21
6.2.10 OULPUL REGISTEIS ...ttt ettt e e e e e ettt ettt e e e e e s e ab e be e et e e e e e e nbebeeeeaaeeesannbeaeaaaeesaanne 21
6.2.11 = U S R LT 1) (= £ SRR 21

7 Assembly Language Grammar REFEIENCEuuuiiiiiiiiiiiiiice st s s e e e e s e e e e e e s eeeaaees 22
7.1 Entering ASSEMDIY INSIIUCHIONS ..ottt e et e e e e e e s sabbere e e e e e e e e nanes 22
725 0 R ©] = - 11T o SRS 22
A A ©] o= - T o To RPN 22
4% R T O] 1010 1= 1 | S 22

7.2 Masking OULPUL COMPONENTS.cceiiiciirieiiee e e e ittt e e e e et s st eeeeae e e s s saareeereeeesaasstnteereeeessannssnneneaeessannes 22
7.3 Rearranging Input Components (SWIZZIING)uuueiiiiiiiiiiiieee et e e e e e 23
© 2009-2011 Nintendo 3 CTR-06-0007-001-C

CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

7.4 Adding a Negative Sign to INput COMPONENTS........coiiiiiiiiiiiee ettt e e e e e 23
7.5 Using Register Index Offsets for INput OPerands...........uuueieiiiiiiiiiiiiie e 24
7.6 (= o1 TSP PEPTT PO 24
T7.6. 1 The MAIN LADEI ...ttt ettt et e e e s e e e e e e e e e e nbbe e e e e e e e e e e nnneees 24
7.6.2 Label NamMe COllISIONSocuveiiiiiiiiie ettt s et e e sttt e e s enbbe e e s snbbeeesaneee 25
7.7 RESEIVEA WOITS ...ttt ettt e ettt e e e oo e ettt et e e e e e s bbb be e e e e e e e e sanbbebeeeaeeeaannenees 25
A R = =T o 11 (=] g N F= o 1= ST UPRTO 25
7.7.2 Assembly Language INSITUCHIONS.........coiiiiiiiieiie et e e e e e e e s e r e e e e e e e e nnnneees 25
S T (=] o (01Tt o P 25

8 Preprocessor PSEUAO-INSIIUCTIONScuuiiiiiiiiieiiiiii ettt st e e s st e e s snbbe e e e ennes 26
8.1 T 0T [N o = PO PRTRT PP 26
8.2 20 (<) 11 01 TP PRTRT PP 26
8 T Lo [PP RPPUPPPTPRN 26
8.4 #ifdef, #ifndef, #if, #else, #Helif, HENAIf ... 26
8.5 T o] SO P TP PPPTPP PP 27
8.6 0 7= 1o | . = U 27
8.6.1 bind_symbol (symbol_name , start_index [, end_indeX])c.uuueeereiiiiiiiiiiiieeee e 27
8.6.2 output_map (data_name , MappPed_TrEISLEI)cciccureiiieee e e icitirre e e e e s s e e e e e s e e e e e e e e s eaneees 29
8.7 2 11T PP PUPPPRRPRTN 31
9 Assembly Language INStruction REFEIENCEoooiiiiiiiiiiiii e a e 32
9.1 DEfINE INSIIUCTIONS ..ttt ettt ettt e sttt e e st e e e sttt e e e sabte e e e snbee e e s snbeeaeennneeeas 32
9.1.1 def: Define Floating-PoiNt CONSIANTScuiiiiiiiiiiiiiiiee e s e e e s e e e e e e s e 32
9.1.2 defb : Define BOOIEAN CONSLANTcoiiiiiiiiiiii ettt e e e e e s et e e e e e e e e saneeees 32
9.1.3 defi : Define INteger CONSIANTScccciiiiiiiiiiie e e e et e e e e s s s e e e e e s s s e e e e e e s e sanreeeeeeeeeaeannnrnes 33
9.2 AFTNMELIC INSITUCTIONSeeeieeie ettt e e e ettt e e e e e s e s a bbb e e e e e e e s e sanbbeaeeaaeeeaannenens 33
1225 R Vo (o Yo o O PSSP 33
9.2.2 dp3: Three-Component DOt ProdUCTuuuiiiiiee et e e e e e snrree e e e e e e s 34
9.2.3 dp4: Four-Component DOt ProQUCTuuiiiiiieiiiiiiie et e e 35

(S IZ2% o [o] o W s FoTgaToTo [T a = o 10 E-J Do) Al = oo LU od SRR 35
0.2.5 ST DISTANCE VECLOKeeeiiiiiiiiitite ittt ettt et e e e e e o bbbt e e e e e e e s s bbb et e e ae e e s e annbbeeeaeaeeeaanneeees 36
0.2.6 eXP: EXPONENLIAI BASE 2 ...ttt e e e a e e e e annaees 36
L A i N A i (o To T S PRSP 37
9.2.8 BHEP: Light COBTIICIENES...cciiiiieee e e e e e e e eneeeee 37

L IZ28 S B Ko To R Mo T - 11 o g TN 2 7= TS SRR 38
9.2.10 [10F=To WY U 14 o] VA= Vg o IV AN [o I PSP UPPPP 38
9.2.11 10F D Y = 0] 0 £ 11T o PR 39
9.2.12 00 A T T 410 o PSP EPPP 40
9.2.13 MOV IMOVE ...ttt ettt e e o4 e s b ettt a2 o4 ek R e e et e e e e e e s b b e b e et e e e e e e annbr e e e e e e e e e annnnnees 40
9.2.14 mova: MOVE t0 AAArESS REQISTENc.cii ittt e e e e e 41
CTR-06-0007-001-C 4 © 2009-2011 Nintendo

Released: April 26, 2011

CONFIDENTIAL

Vertex Shader Reference Manual

9.2.15 0TI I U] 0 Y78 SRR 41
9.2.16 (o] o 2 N (o J @ 01T =i o] [P T T OUPPTTR TR 42
9.2.17 g od o B = =T o] (o o= R 42
9.2.18 rsq: Reciprocal SQUAre ROOL ...t a e 42
9.2.19 sge: Set on Greater Than OF EQUAL.........cccuuuiiiiee i e e s e e e e e s s e e e e e e s e e nnnes 43
9.2.20 SIt: Seton LesSS ThaN. ... 44
9.3 Tl o T [1Y 1 U T 1 T0] o O PPPPPRPPNt 44
LS B0 R U] o TS 1 U o1 = T PR RP PRI 44
9.3.2 @BS I ADSOIULE .o 45
LS e R o = T @3 (o S oo To {1 ot PRSP OPPRP 45
LR S i ol = Vo 1o o IR PRPOPPRP 46
9.3.5 Irp: LINEAr INTEIPOIALIONceiiiiiiiee ettt e e ettt e e e e e e e e annbeaeeeae e e e annes 47

LS TR T G T 111 @2 o720 Y/ [o PR 48
9.3.7 M3XB: BX MUY ettt et e e e e ekttt et e e e e e e s bbb be e e e e e e e e snnbbnbeeaaeeeaannes 49

LS TR TR S B 115 > B V[o] PR 50
9.3.9 MAXS: AX3 MUY« ettt ettt et e e e s e bbbttt e e e e e e s s b b be e e e e e e s e snnbbnaeeaaeeeaannes 51
9.3.10 10T S |V T 1o SRR 52
9.3.11 NEM: NOIMAIIZE ... 53
9.3.12 0101 01 54
9.3.13 ESTo | 0 RS (o o PP TR PTPUPRPPT 54
9.3.14 SHENCOS: SINE AN COSINE ...eiiiiiiiiie ittt et et et e e e st e e s st e e e s srbe e e e s sabeeeessabeeeesasbeeeenaes 55
9.4 FIOW CONEIOI INSTIUCLIONSuuuiitiitiiitiiieitiettteteteterererere e ees eeseeeeesesseesesessssssssssssssssssssssssssnsnsssssnsssnsnnnnes 56
9.4.1 call: Call SUDBIOULINEcooiiieiieeeeee 57
9.4.2 CallD: BOOIEAN Call......ooiiiiiiiiie ettt st e e st e e s e e e st ee e e 57
9.4.3 callc: Condition Call..........oooiiiiiiiiiii 58

Lo 0 N o o N = o To [T U I 1 o] o PR 59

L I ST 1 o T 0o o T [1 4o o 10 L o ¢ o PR 60
9.4.6 ret: Return from SUBrOULINEooooiiiiiii 62
9.4.7 1Tbh: Start if BIOCK DY BOOIEANeeeiiiiiiiee ettt e e e e e e e e e e s e ae e e e e e e e nnnnes 62
9.4.8 1Tc: Start if BIOCK DY CONItION.........ueiiiiiiiieiee e e e e e e e e e s anes 63
9.4.9 €1SE: StArt €1SE BIOCK......ciiiiiiiiiiiiiiie ittt e e ee e e 64
9.4.10 endiT: EN if BIOCK..........ooo 65
9.4.11 [KoTo] oS3 -Vt oo o IR -1 (=1 1 1= o FO SR 66
9.4.12 endlo0p: ENd LOOP StAtEMENTcoiiiiiiiiiiiiie ettt e e e e e sib e e e e e e e e eanes 67
9.4.13 breakc: Break from Loop Statement by Conditionccccvviiereeiiiiiiiiiece e 67
9.4.14 CMP: COMPAIE ... 69
9.4.15 =T T B =t o [o o o= 2] PP PTPPPRTPPRP 70
10 [D7=] o0 Lo = 1011 (o F TP PEPTR RO 72
11 Y= VoI T[S PR PEPT RO 73
O R @ Y= V= PP PRSP RPPPRP 73
© 2009-2011 Nintendo 5 CTR-06-0007-001-C

CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

2 W o - To [ol @ o] [=Tex S @ 1o [T U PUTT R TTUPUPPPRPT 73
e B 10 =T =TS 4O TP TUPUPPRTPT 73
11.4 Program Code INFOMMEALIONooiiiiiiiiiiii ettt e e e e e st e e e e e e e e s nbbbeeeeaaeeaaans 73
11.5 ODBJECE INFOMMALION ..eeiiiiiiiiiitie ettt e ettt e e e e e s b b et e e e e e e e s e aanbbeeeeaaeesaannbbeeeaaaeeaanns 73
N S N A [o= 1 (=T g = - NSRS 73
12 Precautions and RESICHONSiii it e e et e e s et e e s snbae e e e aneee 74
12.1 Starting and ENAING @ SNAUET......c.coi ittt e e e et e e e e e e e s abnbeeeaaaeeeaans 74
D 1 (=T o 0 U] o | S P PP PP PP PP PP PPPPPPPPN 74
12.3 Pattern Counts for Swizzling and MasKiNguueeiiiiiiiiiiee e e e 74
12.4 Control INStruCtioN LIMITALIONSccoiiiiiiiiiiiiie ittt ettt e e st e e e enbe e e e eneee 75
12.5 Instructions That Cannot Be Called CONSECULIVEIYcoocveiiiiiieeie e e e 75
125.1 Consecutive Calls of else/endif/ret/endloopcceveiiiiiiiiiiie e 76
12.5.2 ConsecuUtiVe CallS Of MOVAuiiiiiiiiiiii et e e e e e e 76
12.5.3 Calls of jpc/jpb Immediately Before else/endif/ret/endloop.......ccccovviiiiieeieeciiiicieeee e 76
1254 Calling breakc Before ENAIOOPccoiiiiiiiiiiiae ettt ae e e e e 76
12.6 Registers That Cannot Be Used SIMUItANEOUSIYccooiiiiiiiiiiie e sieen e e e e e e e e e 77
2 A 1§ 1 1 0T i o T I =T oY SR PRESRR 77
12.7.1 Arithmetic and cmp INSIrUCLION LAENCYc.uuviiiiiiiie it 78
12.7.2 Branch INSTIUCHION LAEINCYcooiiiiiiiiiiiiiiee ettt ettt ettt e e e e e et e e e e e e e e snnbeaeeeeeas 78
12.7.3 Output Order of Calculation RESUILSuuiiiiieeii i 78
12.7.4 Stalls Due to Conflicts When Outputting Calculation RESUILScoooiiiiiiiiiiiiiiiiiiiieeeee 79
12.7.5 Stalls Due to Conflicts Among Arithmetic UNItSoovveiiiiiiiiiiiiiee e 79
12.7.6 Stalls Due to INStruction DEPENAENCIES.......cciiiiiiiiiiiiiei ettt 79
12.8 Results of EXCEPLional OPErationsccueieiiiiieeiiiiiee ettt et et e e s bbe e s abbe e e e eneee 80
12.9 Limitations Related to Invalid Data OULPULc.euviiiieeeeiiiiiiie e e s e e e e e e e e e e e e e 80
12.10 Shader Implementations That Cause Invalid Operations..........ccccccovevvviiiree e iccieee e 80
12.10.1 Invalid Operation Due t0 @ MOVa INSIIUCION.........ueiiieiiiiiiiiieee e e e e e 80
12.10.2 Invalid Operation Due to a Specific Order of INSTIUCLIONSccoiiiiiiiiiiiiiiiee e 83

13 Error Messages for the Assembler and LINKETocoiiiiiiiiiiiie i e e e e e 85
T R @ 1Y V1 TR RUPT T TOTPUPPRRPT 85
13.2 ASSEMDIET EITOr MESSAUES ...eeeiiiiieiiiiitiiit et e e e i ettt e e e e e ettt et e e e e e s b bee e e e e e e e e e aanbbeeeeaaeeeaannbbneeaaaaeaanns 85

R TR T I = g g o 1Y 1= ST Vo [SRS 102
14 FIlE FOMMAL. .. ettt ettt e e s et e e e s h bt e e e e sb b et e e s abbe e e e e abbe e e e ebbeeeeabbeeeeabbeeeean 107
14.1 Intermediate ODJECE FlES e et e e e e e e e e s e be e e e e e e e eaaas 107
14.1.1 OVEBIVIBW ...ttt ettt ettt e e e oottt e et e e e 44 ok h bttt e et e 244 a s bbb e e e e e e e e e e e nbbbeeeeaaeesaannbbbneeaaaaaaanns 107
14.1.2 (S == To = PSPPSR 107
14.1.3 SEtUP INFOPMALION ...ttt e e e e e e s abb et e e e e e e e s anbbbeeeeaaeeaaans 110
CTR-06-0007-001-C 6 © 2009-2011 Nintendo

Released: April 26, 2011

CONFIDENTIAL

Vertex Shader Reference Manual

14.1.4 Label INfOrMEALION.......eiiiiiiiie et e e st e e e st e e s sbbe e e e s srbeeeeane 110
14.1.5 Program Code INfOrMAatIONoiiii i e e e ae e e e e e e e anes 111
14.1.6 Swizzle Data INfOrMEALIONcoiiiiiiiiii e snree s 111
14.1.7 LiNe INFOPMALION. ... e et e et e et e e e e e st e e e e e e e e e sanbbeaeeeaeeeaannnes 112
14.1.8 Relocation INFOrMALIONoiiiiiii et e e s e e s e e e e 112
14.1.9 OUtMAP INFOIMALION ...t e e e e e e s e e e e e e e e e e annnbeeeaaaeeas 113
14.1.10 Bind Symbol INFOrMEALIONuiiiiiii e e e e e 114
I R S 1 11T [T - PSR TPPR 114
14.2 EXECULabIe BINArY FIlES.. ..o ittt ettt e e e e e et et e e e e e e e s e nnrbeeeeaaaeas 114
14.2.1 OVEBIVIBW ...ttt ettt ettt ettt sttt e e ettt e e e s bttt e o2t ettt e aa bttt e e aa bt e e e e amb bt e e e ambte e e e enbe e e e e anbteeesnnneeee s 114
14.2.2 2T = VA 1 L= o 1T Uo [PSSR 115
14.2.3 Package INFOMMALIONooi et e et e e e e s et e e e e e e e e aaanes 115
14.2.4 Executable Image INfOrMationooiiiiiiiieiee e e e e e s ae e e e e e e e e nnnes 117
15 Shader CheCKiNg FEALUIE ... et e ettt e e e e et e e e e e e e e e e anbbeaeaaae s 120
15.1 CoNSIStENCY ChECKEN FEAIUIE ... ceiiieii ittt e e e e e ettt e e e e e s st e e e e s e et e e e e e e s e santeae e e e e e e eennnnannneeaeeas 120
15.1.1 end INStruction EXECULION CRECK..........ciiiiiiiii it 120
15.1.2 Input Register REad ChECK ..o 121
15.1.3 Output Register Wrte CheCKovviiiiii e 121
15.2 Performance ChECKEr FEATUIEcii ettt e e e e et e e e e e e s nnbbeeeaaaeeas 121
15.2.1 Detectable Causes Of SHAllSeeiiii e 122
15.2.2 When There Are MUltiple Stall CAUSESccceiiiiciiiiiiiee e e e e a e e nnen e 123
15.2.3 OULPULEING the RESUILSeeeiiiieiee et e e e e e e beeeaeaeeas 124
Code
Code 5-1 ctr_VertexShaderAssembler EXAmMPIEuuiiiiiiiiiiiiie e e e e e e e e s enraaees 17
Code 5-2 ctr_VertexShaderLinker EXampPle ... 18
Code 7-1 Assembly INStrUCTION EXAMPIE ...uueiiieeiiiiiiiieee e ir e e e e e s s s e e e e e e s e e e e e e e e s snnrnneees 22
Code 7-2 Component Masking EXAMPIEcooi ittt e e e e e e e e e e e e e e sanraaeeas 22
Code 7-3 SWIZZIING EXAMPIE L ...eeeiiiiiiiiiiiiiie e e tee e e s st e e e e e e st e e e e e e e e st eeeaeeesannssbaneeeeeesannrnnnees 23
Code 7-4 SWIZZIING EXAMPIE 2 ..ottt ettt bttt e e e e s e e e e e e e e e s abbbe e e e e e e e e annrnneeas 23
Code 7-5 Negative SignN EXAMPIE........cccciiiiiiie et e e e s e e e e s e s e e e e e e s s e abene e e e e e s snnrnnees 23
Code 7-6 INdeX OffSEt EXAMPIE.....coci et e e e e e et e e e e e e e e eanbaeeeas 24
(000 (I A IR Lo 1= I e o] o] = RS 24
Code 8-1 HNCIUAE EXAIMPIE ...ttt ettt e e e e et e e e e e e e e e e ab b et e e e e e e e sanbbbeeeeaaeesannnrnneeas 26
Code 8-2 #AEFINE EXAMPIEeeeiieeeee ettt s s e e e e e s e e e e e e s e st eeeae e e e nnnrr e e e e e e e s anrrareees 26
(@00 [cIR S TR I U [[o = = 11 1] o] [S 26
Code 8-4 #ifdef, endif EXAMPIEcooo it e e 26
Code 8-5 #if, #ENAIf EXAMPIEveeiiiii i e e a e 27
COdE 8-6 HEITOI EXAIMPIE ... ittt e e e e ettt ettt e e e e e s ab b e et e e e e e e sanbbbeeeeaaeesannnreneeas 27
© 2009-2011 Nintendo 7 CTR-06-0007-001-C

CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

Code 8-7 bind_symbol Example, in Assembly Code and Application Code..........ccccceevvviivvieeeeee s ciiieeen. 28
Code 8-8 Running an Instruction After Writing to the Output RegiSters..........oocuviiiiiiiiiiiiiiie e, 29
Code 8-9 Writing to All SPECIfied REQISIEIS.cii e et e e e e e e e s s s rree e e e e e e e e nnnneees 30
Code 8-10 Running Instructions lllegally After Writing to the Output RegiSters.........cccovivviieeiiee i, 30
Code 8-11 Writing to a Register MUIIPIE TiMESuviiiiiiie e e e e e e e e e e e 30
Code 8-12 Packing Multiple Attributes into a Single Output REQISIEcccooiiiiiiiiiiiiee e 31
Code 8-13 #lINE EXAIMPIE ... ettt et e e e e et e e e e e e e e s nb b e et e e e e e e eaaanbbeeeaaaeeeaannreees 31
Code 12-1 Pattern Count EXAMPIE Lvuiiiieeeiiiiiiiiie e e s sttt e e e e s s st e e e e e e s s st ae e e e e e e s e snnnteneeeeeeeannnnnenns 74
Code 12-2 Pattern Count EXAMPIE 2ueiiiiiiiiiiiiieiit ettt et e e e e e e e e e sanbb e e e e e e e e e e e nneeees 75
Code 12-3 Instructions That Cannot Be Called CONSECULIVEIYcovvviiiiiieeii e 76
Code 12-4 Registers That Cannot Be Used Simultan@ouSIYooouiiiiiiiiiiiiiiieee e 77
Code 12-5 Output Order of Calculation RESUILS.........cuiiiiiiiiiiieiie e 78
Code 12-6 Simultaneous INStruction COMPIETIONcoiiiiiiiiiiiii e 79
Code 12-7 Register Use Causing @ Stall..........ccoiiiuiiiiiieeii e e e e s e e e e s s snrnee e e e e e e s nnnnnees 79
Code 12-8 Using Different Register Components Avoids a Stalleeeeiiiiiiiiiieeeee e 79
Code 12-9 Vertex Shader Causing Invalid Operationsc.c.ueevveeiiiiiiiiiiieee s e e e e s sireee e e e e e 81
Code 12-10 Vertex Shader Not Causing Invalid OPerations...........coouiiuiiiiiiaeiniiiieeee e 81
Code 12-11 Geometry Shader Causing Invalid OPErationsccouivciiiiriieeein i eee e e e sirere e e e e s enneees 81
Code 12-12 else-endi T Clause Causing Invalid Operationsccccueereeeiniiiiiiieeiee e csireeee e e e e s s 81
Code 12-13 cal l-ret Clause Causing Invalid Operations...........coouuiuiiiiiiaeiniiiieeee e 82
Code 12-14 1oop-endloop Clause Causing Invalid Operations.........cccueeveeeiriiciiiieereeesesnireeeeeee e s s senees 82
Code 12-15 mova Followed by a Branch Instruction Causing Invalid Operationscccccceeeeeiiiiiinneen. 83
Code 12-16 Instruction Ordering That Causes Invalid Operationsccccceeeviviiiiieeiee e 83
Code 13-1 Example for Error 80060040ccuuiiuuuurieeiee ettt e e e e e aritbeeee e e e e s anbsbeeeaaasassanbeaeeeaeessannnneens 100
Code 14-1 File HEAUEN SITUCIUIEcveeeiieeiieeesire ettt ettt e e nn e s e e nnn e nnreeenes 108
Code 14-2 Setup INfOrmation STFUCLUIE.......coii ittt e e e e e e e e e e e e aneeees 110
Code 14-3 Label INfOrmation SITUCIUIEeviiriiiiiie et eneas 110
Code 14-4 Swizzle Data INformation STIUCLUIEcoiiiiiiiiiiiii e 111
Code 14-5 Line INfOrmMation STIUCUIEccviiiiiiiieie et 112
Code 14-6 Relocation INfOrmation SrUCTUIEuueiiiiii it e e e e 112
Code 14-7 Outmap INfOrmation STFUCLUIEcoiiiiiiiiiiie et e e e e e 113
Code 14-8 Bind Symbol Information StIUCLUIE..........uvviieiiiiiiiiie e e e e e e e e e e e e e e 114
Code 14-9 Binary File HEAder SITUCIUIEcccooi ittt e e e e e e 115
Code 14-10 Package Information Header StrUCIUIEcc.uviiiiiiee it 116
Code 14-11 Executable Image Information Header StruCtUreccuueiiiiiiiiiiiiiiieeee e 118
Code 15-1 Dependency Stall EXAMPIEeeiie i c e e e e e e e e s s e e e e e e s s snnreae e e e e e e e e nnnneees 122
Code 15-2 Multiple Dependency Stall EXampPle L........cooooiiiiiiiiiiiiei e 123
Code 15-3 Multiple Dependency Stall EXamMPIE 2.........ccoiiiiiiiiiiieee et e e 123
Code 15-4 Performance CheCKEr OULPUL.........iiiuuiiiiiiie ettt ettt e e et e e e e e e e sanbe e e e e e e e s e nneeees 124
CTR-06-0007-001-C 8 © 2009-2011 Nintendo

Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Tables
Table 3-1 Operating Environment SPeCifiCatioNS..........ooueuiiiiiiiiiii e 14
LI Lo Lo G I =T 11 (= 1Y/ 01T PR 19
Table 12-1 INSLUCHION LALENCYcoieiiiiiieiee ettt ettt e e e e ettt e e e e e e s e sanb b e e e e e e e e e s nnaneeeaaaeeas 77
Table 14-1 File Header FIIUSuiiiiiiiii ettt bbb e et e e s enens 108
Table 14-2 Setup INfOrMation FIEIASooo e e e e 110
Table 14-3 Label INformation FIElAS..........coouuiiiiiiiie et 111
Table 14-4 Swizzle Data Information FIelAS ... 111
Table 14-5 Line INfOrmation FIEIUS.coi i s et 112
Table 14-6 Relocation INformation FIEIUSeeiiiii i e e 112
Table 14-7 Outmap INfOrmMation FIEIAS..........ccveriiiiee e e e e e s e rreeeeee s 113
Table 14-8 Bind Symbol INformation FIEIASccoveeiiiiiiiiiec e e e 114
Table 14-9 Binary File Header FIElUS..........ooi ittt e e e eea e e 115
Table 14-10 Package Information Header Fieldscc.vuviiieei i 116
Table 14-11 Executable Image Information Header FieldS.........ooouuuiiiiiiiiiiiiie e 118

Figures
Figure 2-1 VerteX Shader OVEIVIEW.uuuiiieeiiiiieiieeeeeesssstieeeeeeeesssssataeeeeeesssasssteeeeeaesssnnnssseneeeeesssnsssnneees 13
Figure 6-1 Floating-Point NUMDETuiiie et e e e e e e e e e e e e e e e sanbaeeeas 20
Figure 14-1 Intermediate ObJeCt File SIrUCIUIEcoviieiiiiiiiiiiee e e e e 107
Figure 14-2 Executable Binary File SITUCIUIEooiiiiiiiiiie e 115
Figure 14-3 Package INformation StrUCTUIE...........uuiiiiie e e e e e e e e e r e e e e e e enrnreees 116
Figure 14-4 Executable Image INformation StrUCIUIEuuiiiiiiiiiii e 117

© 2009-2011 Nintendo 9 CTR-06-0007-001-C

CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

Revision History

Version Revision Date Description
Added description of the -preprocess execution option.
Added supplementary information about Table 6-1 Register Types.

30 2011-03/17 Revised descriptions oprb, JIOC., and bregkc mstructfons. . N
Added supplementary information about integer registers in the description
of the loop instruction.

Partially revised and added to error messages.

2.9 2011/03/07 Added restrictions for breakc, ifc, and ifb instructions.

Made corrections in the code sample for loop instructions (section 7.3).
Revised the maximum number of swizzling and masking patterns for mad
instructions from 64 to 32.

Made corrections in section 12.5 Instructions That Cannot Be Called

2.8 2011/01/31 Consecutively.

Added section 12.10 Shader Implementations That Cause Invalid
Operations.

Added descriptions about swizzling.

Added text about the performance checker feature

2.7 2010/11/17 . . i
Revised invalid error codes

2.6 2010/11/05 Added Chapter 15 Shader Checking Feature.

2.5 2010/09/30 Revised the reserved words for integer registers.

Revised information on the preprocessor pseudo-instruction #pragma
output_map.
Added supplementary information to section 12.7.3 Output Order of

2.4 2010/09/14 Calculation Results.

Added supplementary information to section 12.7.5 Stalls Due To Arithmetic
Unit Race Conditions.
Added section 12.7.6 Stalls Due To Instruction Dependencies.

23 2010/08/20 %Added support for UTF8 with a byte order mark as an assembler source
ormat.

2.2 2010/07/07 Deleted the TEG2 Limitations section.

Added Chapter 14 File Format.
Added preprocessor support for evaluating #if and #elif.

21 2010/06/04 Added the preprocessor statement #line.

(English version only) Fixed typos, standardized terminology, and revised
throughout for readability.
Added section 12.8 Results of Exceptional Operations.
20 2010/05/11 Moved conditions for generating NaN output from section 12.9 Limitations
' Related to Invalid Data Output to section 12.8 Results of Exceptional
Operations.
Added section 12.9 TEG2 Limitations.

19 2010/04/23 Revised the format of the definition in section 8.5.1 bind_symbol 3
('symbol_name , start_index [, end_index]) to support an unspecified
end_index.

CTR-06-0007-001-C

Released: April 26, 2011

10 © 2009-2011 Nintendo
CONFIDENTIAL

Vertex Shader Reference Manual

Version Revision Date Description
e Added information to Chapter 11 Map Files.
e Added section 12.8 Limitations Related to Invalid Data Output.
e Added description of limitations on writing to output registers to sections
1.8 2010/04/02 8.6.2 output_map (data_name , mapped_register) and 12.1 Starting and
Ending a Shader.
e Revised descriptions of the range of values for the address register.
e Added section 12.7.3 Output Order for Calculation Results.
e Added section 12.7.4 Stalls Due To Race Conditions When Outputting
Calculation Results.
17 2010/03/12 e Added section 12.7.5 Stalls Due To Arithmetic Unit Race Conditions.
e Added a specification that prohibits output registers from being overwritten.
¢ Revised the description of the end instruction.
e Added a restriction that requires input registers to be loaded.
e Added support for #el i ¥ and #if defined.
1 i * *
16 2010/02/15 e Added §upport Tor commenlt.s delllmlted by / . an(.j /. .
e Added information on specifications concerning file paths during debug
builds.
15 2009/12/25 e Fixed typos.
e Revised bind_symbol specifications for input registers.
o Removed texture3 from the output_map settings.
14 2009/11/30 .
o Revised error messages.
e Renamed tools.
e Explained a limitation that prohibits consecutive calls to the mova instruction.
e Added a note on jump limitations to the ret instruction from jp-related
1.3 2009/10/30 instructions.
e Revised an error in the description of the abs instruction.
e Explained limitations on the number of registers with #pragma
output_map.
e Explained limitations of cal I-related instructions and control instructions.
1.2 2009/09/10 . o . .
e Explained limitations of the 1oop instruction.
¢ Removed output registers from the valid dest operands for the crs
instruction.
1.1 2009/06/25 e Added a note on the end instruction for vertex shaders.
1.0 2009/04/30 e [Initial version.
© 2009-2011 Nintendo 11 CTR-06-0007-001-C

CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

1 About This Document

This documentation describes vertex shaders that run on the CTR-SDK.

CTR-06-0007-001-C 12 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

2 Overview

Vertex shaders are the only programmable shaders implemented by the CTR-SDK. Vertex shaders
are written in PICA-specific assembly language. To generate executable files, the
ctr_VertexShaderAssembler32.exe and ctr_VertexShaderLinker32.exe programs

assemble and link vertex shaders written in this assembly language.

The OpenGL ES 2.0 API loads the executable files and then runs the shaders. The OpenGL ES 2.0
API can load only executable files that have been assembled and linked in this way. You cannot load

shader files written in GLSL.

Figure 2-1 Vertex Shader Overview

Assemble with
ctr_VertexShaderAssembler32

Assembly
code file

main.asm

ctr_VertexShaderLinker32

Object file
main.obj

Executable file
shader.bin

OpenGL ES 2.0 API loads to the actual hardware

© 2009-2011 Nintendo
CONFIDENTIAL

13

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

3 Operating Environment

The ctr_VertexShaderAssembler32._exe and ctr_VertexShaderLinker32.exe programs
have been confirmed to run in the following operating environment.

Table 3-1 Operating Environment Specifications

Component System Requirements
CPU Pentium 4 3.06 GHz
Memory 1GB
os Windows XP
Development Environment Microsoft Visual Studio .NET 2003
CTR-06-0007-001-C 14 © 2009-2011 Nintendo

Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

4 Main Objects and Reference Objects

Vertex shaders are run from the main function. A main object is an object file that can be assembled
from an assembly code file that has a main function. A reference object is an object file that can be
assembled from an assembly code file that does not have a main function.

To put a main function in an assembly code file, set the main label at the location where shader
execution starts and set the endmain label after the last instruction at the end of the main function
(this is the last instruction in the main function, not the last instruction in the assembly code file).

Areference object only has subroutines and is referenced by a main object to resolve unresolved
labels. When the objects are linked to create an executable file, the executable file will not include
reference objects that are not referenced by any main objects.

If multiple main and reference objects are linked, a single executable file is generated that includes
more than one main object. Specify the executable file with the glShaderBinary function to load it.
The number of shader objects you specify to the glShaderBinary function at that time specifies the
number of main objects to load.

Main objects do not reference each other for unresolved labels when they are linked. Also note that if
multiple reference objects with the same label name are specified as link targets, an error will occur
while linking.

You cannot link only reference objects to create an executable file; you must link at least one main
object.

© 2009-2011 Nintendo 15 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

5 How to Use the Assembler Tools

5.1 ctr_VertexShaderAssembler32 (Assembler)

ctr_VertexShaderAssembler32.exe assembles assembly code files written in a PICA-specific
assembly language and outputs object files.

The assembler is run from the command prompt as follows.
ctr_VertexShaderAssembler32 <input filename> [options]

Specify the input assembly code file in <input filename>. You can specify the options in section
5.1.1 for [options].

This command has the following characteristics and requirements.

e An input file must be specified.

e The options can be omitted.

e Help is displayed when no arguments are given.

e The Shift-JIS and UTF-8 (with a byte order mark) file encodings are supported.

e The CR+LF newline code is supported.

¢ Use afilename that does not contain any spaces, is composed of no more than 128 single-byte
alphanumeric characters, and does not use the symbols\ / = * ? “ < > |.

5.1.1 Options

e -0 <filename>
Specifies the output filename (this is <input Filename>.obj if it is left unspecified).
e -1 <File path>

Specifies the input file path. You can use this option to specify the path to both the assembly code file
and the files that it includes. First the current directory and then the directory specified by this option
are searched for the input file and include files.

e -D <key> [= <value>]

Defines a macro. Specify the macro name with <key> and its value with <value>.The <value> can
be omitted.

e -debug

Generates an object file with debugging information. When this option is not specified, the output
object file does not include the full input file path.

e -—nowarning
Suppresses warning message output.

e —preprocess

CTR-06-0007-001-C 16 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Runs preprocessing only. Runs preprocessing on the input assembler file, and outputs the result after
deleting characters that have no effect (such as spaces and comments) to standard output. File
information is added to the output results in the format “# line-number filename”. Expands assembler
macro instructions, and replaces the instructions with the expansions. However, if there is a syntax
error in the macro instruction, then the instruction will not be replaced by the expansion.

e -?o0r -help

Displays Help.

5.1.2 Example

Code 5-1 ctr_VertexShaderAssembler Example

ctr_VertexShaderAssembler32 mainO.asm —I1C:/sample/src —IC:/sample/inc —DDEBUG=1

In this example, main0.asm is the name of the input file; C:/sample/src and C:/sample/inc
configure the input file paths. The DEBUG macro is also defined with a value of 1.

When this input file is successfully assembled, the file main0.obj is generated.

5.2 ctr_VertexShaderLinker32 (Linker)

ctr_VertexShaderLinker32.exe links object files output by
ctr_VertexShaderAssembler32.exe and then outputs an executable file.

The linker is run from the command prompt as follows.
ctr_VertexShaderLinker32 <input files> [options]

Specify the input object files in <input files>. The input files must be object files that together
include at least one main function. You can specify (or omit) the options in section 5.2.2 for
[options]. Help is displayed if no arguments are given. Use filenames that do not contain any
spaces, are composed of no more than 128 single-byte alphanumeric characters, and do not use the
symbols\ /7 * ? “ < > |].

If there is more than one main object in the input files, the application must specify the same number
of shader objects to the glShaderBinary function. At that time, each shader object references a
main object in the order the main objects were specified in the argument to
ctr_VertexShaderLinker32.exe.

5.2.1 Input files

e <input Filenames> [input Files]

The input files must be object files that together include at least one main function.

© 2009-2011 Nintendo 17 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

5.2.2 Options

e -1 <File path>

Specifies the input file path. First the current directory and then the directory specified by this option
are searched for the input files.

e -0 <Filename>
Specifies the name of the output file. This is shader .bin by default.
e -M

Outputs a map file. This file has the same name as the executable file, but uses the .map extension.
For details on map files, see Chapter 11 Map Files.

e -debug

Links all linked object files with debugging information.

e -nodebug

Links all linked object files without debugging information.
e -check_consistency

Performs a consistency check of all linked main objects. See section 15.1 Consistency Checker
Feature for details on the consistency check.

e - check_performance

Conducts a performance check on all linked main objects. For details, see section 15.2 Performance
Checker Feature.

e -?o0r -help

Displays Help.

5.2.3 Example

Code 5-2 ctr_VertexShaderLinker Example
ctr_VertexShaderLinker32 mainO.obj mainl.obj subrO.obj subrl.obj —OshaderO.bin —M

This example links the main objects mainO.obj and mainl.obj, and the reference objects
subrO.obj and subrl.obj.

CTR-06-0007-001-C 18 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

6 Vertex Shader Resources

Vertex shaders have the following resources.

6.1 Program RAM

Program RAM is the region that stores assembly language instruction codes. It can store 512

instructions. If an assembly code file uses more than 512 assembly instructions, it will cause an error

when it is assembled or linked.

6.2 Registers

6.2.1 Per-Register Resources

The following register types are used for calculations and flow control.

Table 6-1 Register Types

Name ID Components | Number R/W Index Bit Width
Input registers VH#H 4 12 R - 24
Temporary registers r# 4 16 RW - 24
Floating-point constant registers c# 4 96 R a0/aL 24
Address register a0 2 1 RW - 8
Boolean registers b# 1 16* R - 1
Integer registers i# 1 4 R - 24
Loop-counter register aL 1 1 R - 8
Output registers o# 4 16 W - 24
Status registers - 1 2 RW - 1

Note: Boolean register 15 (b15) is reserved for the geometry shader.

e ID

This identifier is used when entering assembly instructions. "#" indicates the register number.

Specify a number from 0 to (number of registers - 1).

¢ Name

This is the name of the register.

e Number

This is the number of registers.

e Components

This is the amount of data in a single register. When there are four components, a single register

© 2009-2011 Nintendo
CONFIDENTIAL

19

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

contains the x, y, z, and w components.

e R/W
This indicates whether reads and writes are allowed. "R" indicates that a register can be specified
only as an input operand. "W" indicates that a register can be specified only as an output operand.
"RW" indicates that a register can be specified as either an input or output operand.

e Index

It is possible to specify the register numbers of these registers using the content of other registers
in Table 6-1. See section 7.5 Using Register Index Offsets for Input Operands.

e Bit Width
This indicates the bit width of each register.

6.2.2 Precision of Floating-Point Registers

The input registers, temporary registers, and floating-point constant registers are all floating-point
number registers. Floating-point numbers use 1 sign bit, 7 exponent bits, and 16 significand bits for a
total of 24 hits. A sign bit of 0 is positive and 1 is negative. The exponent bits are in base 2 and have
a bias of 63. The significand bits represent a value that is one less than the actual significand.

The actual value of a floating-point number is:

(—1)Gien) x p(exponment=63) » (1 4 sjgnificand)

Figure 6-1 Floating-Point Number

1-bit sign

r 7-bit exponent —l | 16-bit significand

6.2.3 Input Registers

Input registers are floating-point registers that store vertex attribute data ("attributes” in OpenGL ES
2.0 applications).

6.2.4 Temporary Registers

Temporary registers are floating-point registers that temporarily maintain calculation results to be
reused later. Their values are preserved until they are overwritten.

6.2.5 Floating-Point Constant Registers

Floating-point constant registers are floating-point registers that store constants to use for
calculations. Uniforms for OpenGL ES 2.0 applications are stored here.

CTR-06-0007-001-C 20 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

6.2.6 Address Register

An address register is an integer register that accepts values in the range [-95, 95]. If you assign the
value from a floating-point register to the address register, only the integer part is assigned. Behavior
is undefined if you assign values that are not in the range [-95, 95].

You can use this register's value to specify another register's number. See section 7.5 Using Register
Index Offsets for Input Operands.

6.2.7 Boolean Registers

Boolean registers hold Boolean values. They are used for branches and jumps.

Uniforms for OpenGL ES 2.0 applications are also stored here. Boolean register 15 (b15) is reserved
for geometry shaders.

6.2.8 Integer Registers

Integer registers hold integer values and are used to control loop instructions.

These registers store loop counts, the initial values for the loop-counter register, and the amounts by
which to increment the loop-counter register. They are 24 bits wide: bits 0-7 specify the loop count;
bits 8-15 specify the initial value for the loop-counter register; and bits 16-23 specify the amount by
which to increment the loop-counter register.

When control enters a loop instruction, the loop-counter register is first initialized with its initial value
from one of the integer registers. Then the assembly code instructions from the loop to the endloop
instructions are run repeatedly. The number of loop iterations is the loop count plus one (meaning that
the instructions are run only once when the loop count in this register is 0). At each iteration of the
loop, the loop-counter register is incremented by the amount given by this register.

Uniforms for OpenGL ES 2.0 applications are also stored here.

6.2.9 Loop-Counter Register

This register stores the counter value for loop instructions. Its value is in the range [0, 255].

You can use the value of this register to specify another register's number, just as you can with the
address register. See section 7.5 Using Register Index Offsets for Input Operands.

6.2.10 Output Registers

These registers output data that has been processed by vertex shaders into a later stage of the
graphics pipeline.

6.2.11 Status Registers

These registers have their values set by comparison instructions and are used for branch conditions.

© 2009-2011 Nintendo 21 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

7 Assembly Language Grammar Reference

7.1 Entering Assembly Instructions

Assembly instructions are entered in the following format. The comment can be omitted.

<Operation> [Operand] [Comment]

Code 7-1 Assembly Instruction Example
add ro, rl, r2 // rO = rl1 + r2
mul r3, co, vO // r3 = cO0 * vO

Assembly instructions are entered using ASCII characters, in compliance with the following rules.

7.1.1 Operation

For the operation, denote the assembly instruction to run. You can only code one operation per line.

7.1.2 Operand

Operand name[, Operand]

Denote the name of the operand, such as the register or the direct value targeted by the operation.
The operation is followed by at least one space or tab before the operand name. Use commas to
delimit multiple operands. You can denote one or more spaces or tabs between operands.

7.1.3 Comment

Denoting two forward-slashes ("//") causes the rest of the line to be treated as a comment. Text
between the delimiters /* and */ is also treated as a comment.

7.2 Masking Output Components

When you output calculation results to registers that have more than one component, you can specify
which components to output. Values are updated only for the specified components. If nothing is
specified, all components are updated. Specify the components in X, y, z, w order (you cannot, for
example, denote "wzyx").

Code 7-2 Component Masking Example
add ro.x, rl, r2 // The x component is updated.

// The y, z, and w components are not updated.
mov ro.yz, rl // The y and z components are updated.

// The x and w components are not updated.

dp3 ro, r1, r2 // The x, y, z, and w components are all updated.

CTR-06-0007-001-C 22 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

7.3 Rearranging Input Components (Swizzling)

When using registers with multiple components as input operands, you can rearrange (swizzle) the
components that are used by calculations. If nothing is specified, components are used in x, y, z, w
order. If you do not specify all four components, the component specified last is repeated.

Code 7-3 Swizzling Example 1

add rO, rl.xzyy, r2 // rO.Xx = rl.x + r2.x
// rO.y =rl.z + r2.y
// rO.z = rly + r2.z
// rO.w =rl.y + r2.w

mov ro, rl.ywz // rO.x = rl.y
// rO.y = rl.w
// r0.z = rl.z
// rO.w = rl.z ; The z-component, specified last,
// is repeated

add rO, rl.zw, r2.xy // rO.Xx =rl.z + r2.x
// rO.y = rl.w + r2.y
// r0.z = rl.w + r2.y
// rO.w =rl.w + r2.y

Note that input component swizzling and output component masking are interpreted differently when
you do not specify all four components. The first, second, third, and fourth input components after
swizzling are applied respectively to the x, y, z, and w components specified for output component
masking.

Code 7-4 Swizzling Example 2

mov ro.x, rl.xy // rO.x = rl.x ; (rl.xyyy)

mov ro.y, rl_xy // rO.y = rl.y ; (rl.xyyy)

mov ro.z, rl.xy // rO0.z = rl.y ; (rl.xyyy)

mov ro.w, rl_xy // rO.w = rl.y ; (rl.xyyy)

add rOo.zw, rl.yx, r2.wz // rO0.z = rl.x + r2.z;(rl.yxxx + r2.wzzz)
// rO.w = rl.x + r2.z;(rl.yxxx + r2.wzzz)

As shown above, the input component marked in red is used for each output component.

7.4 Adding a Negative Sign to Input Components

You can prefix input operands with a negative sign.

Code 7-5 Negative Signh Example

add ro, rl, -r2 // rO =rl — r2
mul ro, -rl, r2 // rO = (-rl) * r2
© 2009-2011 Nintendo 23 CTR-06-0007-001-C

CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

7.5 Using Register Index Offsets for Input Operands

You can offset the register number of an input operand by entering it in brackets ([]"). You can enter
the sum of multiple integers in the brackets. If this integer sum (indicating the offset) exceeds the
number of registers, an error occurs during assembly.

The floating-point constant registers, and only these registers, can also be offset by the values of the
address register and/or the loop-counter register. If you use the address register, you must specify
either its x or y component. Behavior is undefined when the total index offset, including the address
register and loop-counter register, is not within the range [0, 95]

Code 7-6 Index Offset Example

c2 // The index is 2

v[5 + 2] // The index is 5 + 2

r8[1 + 2 + 4] // The index is 8 + 1 + 2 + 4

c[3 + a0.x] // The index is 3 + a0.x

c4[11 + alL] // The index is 4 + 11 + alL
7.6 Labels

Labels are specified as jump targets for the cal I and jpb instructions.

To encode a label, add a colon (":") after a name that is a combination of single-byte alphanumeric
characters and underscores ("_"). A decimal or hexadecimal number (such as 123 or 0xT), a register

name (such as r0 or c0), or any other reserved word cannot be used as a label. Aline encoding a
label cannot have any other notation except a comment.

Code 7-7 Label Example

functionO:
mov ro, rl
ret

main:

call functionO

7.6.1 The main Label

A vertex shader always begins executing at the main label. A shader without a main label is
referenced as a subroutine. When vertex shader assembly code files are assembled and linked, at
least one of the linked objects must be a main object that contains at least one main label. In the
same way, main objects must also set at least one endmain label. Set the endmain label
immediately after the last instruction to be run (this is the instruction that does the final write to the
output registers).

CTR-06-0007-001-C 24 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

7.6.2 Label Name Collisions

You cannot use the same label name more than once in a single object file. Likewise, when linking
multiple object files, you cannot use the same label name more than once in object files used for
multiple subroutines. Main objects do not reference each other, so the same label name can be used
within more than one main object.

7.7 Reserved Words

The assembler defines the following strings to be reserved words. Do not use reserved words for
labels, symbols, or other names.

7.7.1 Register Names

v0-v15, rO-ri15, c0-c95, a0, bO-b15, 10-i13, aL, 00-015

7.7.2 Assembly Language Instructions

def, defb, defi, add, dp3, dp4, dph, dst, exp, flr, Litp, log, mad, max, min, mov, mova, mul,
nop, rcp, rsq, sge, slt, sub, abs, crs, frc, Irp, m3x2, m3x3, m3x4, m4x3, m4x4, nrm, pow, sgn
sincos, call, callc, callb, jpb, jpc, ret, ifb, ifc, else, endif, loop, endloop, breakc,
cmp, end

7.7.3 Preprocessor

include, define, undef, ifdef, ifndef, if, defined, else, elif, endif, error, pragma,
bind_symbol, output_map

© 2009-2011 Nintendo 25 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

8 Preprocessor Pseudo-Instructions

8.1 #include

Use this to insert a file. Place the file in double quotes.

Code 8-1 #include Example

#include “defs.asm”

8.2 #define

This defines a macro. A macro is denoted using no more than 128 single-byte alphanumeric
characters and underscores ("_") and cannot begin with a number. Behavior is undefined if more than
128 characters are used.

Code 8-2 #define Example
#define MAX_COUNT 100

8.3 #undef

This deletes a macro defined by #define.

Code 8-3 #undef Example
#undef MAX_COUNT

8.4 #ifdef, #ifndef, #if, #else, #elif, #endif

These are used for conditional compilation with macros.

Code 8-4 #ifdef, endif Example
#define USE_FUNCTION_A
#ifdef USE_FUNCTION_A
FunctionA:

#endif
Evaluation of the following #iF and #el i T expressions is also supported.

e Literal values (that can be expressed as signed 32-bit integers; behavior is undefined for all other
values)

e Minus signs on literal values (addition and subtraction are not supported)
e defined(macro)
e ldefined(macro)

CTR-06-0007-001-C 26 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Equality signs (==, 1=)

Inequality signs (<, <=, >, >=)
Bitwise AND (&&) and OR (])
Any combination of the above

Code 8-5 #if, #endif Example
#if (defined(AAA) && (BBB == 1))

#endif
Note: An error is generated when an expression uses an undefined macro.

8.5 #error

This outputs an error.

Code 8-6 #error Example

#error error message'

8.6 #pragma

The pragma instruction configures extended information for the assembler.

8.6.1 bind_symbol (symbol_name, start_index [, end_index])

This binds a symbol name to a register. Specify any symbol name in symbol_name and specify the
starting and ending positions of registers to bind in start_index and end_index, respectively. You
can bind to input registers, floating-point constant registers, integer registers, or Boolean registers.

If you use a #pragma bind_symbol (symbol name, start_index) definition without specifying
end_index, start_index specifies both the starting and ending positions of the registers to bind
and thereby specifies a single register.

When an application loads the executable file for the shader assembly code that defines
bind_symbol, it can use the defined symbol hames as arguments to glGetAttriblLocation,
glBindAttribLocation, and other functions, and thereby configure the input registers. In the
same way, these can also be used as arguments to glGetUniformLocation and other functions to
configure the floating-point constant registers, integer registers, and Boolean registers.

The def, defb, and defi instructions cannot be used to define a constant value for any registers
already specified by bind_symbol, either within the same shader assembly code file or within any
objects referenced at link time.

You can specify and configure individual components of floating-point constant registers when
configuring those registers. To do so, specify the components in the format ".xyzw" after the name in
symbol _name. Specify only consecutive components in xyzw order (although you can configure

© 2009-2011 Nintendo 27 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

subsets of components such as "xy",

such as "xz", "yw", or "xyw").

yzw", and "zw", you cannot configure nonconsecutive subsets

With input registers, you cannot set more than one symbol name for a single input register. Also, the
same value must be used for start_index and end_index.

Note: The input register settings determine which vertex attributes are used as inputs to the
graphics pipeline. In other words, an input register that does not have a symbol bound to it by
these settings is not recognized as an input vertex attribute and thus stores undefined values.

When you specify individual components of an input register, the number of components only affects
the value of type that is obtained by the glGetActiveAttrib function. If you set size equal to 1,
2, or 3 in the glVertexAttribPointer function, vertex attribute data is loaded respectively into
either the X, Xy, or xyz components of the corresponding register. The default value is loaded into
any component into which vertex attribute data is not loaded. By default, the value fory is 0, z is O,
and w is 1.

Note: The hardware does not operate properly when the vertex shaders have not read any input
registers. Reading even a single component of any input register during a single cycle of
vertex processing is enough to fulfill this requirement. It is acceptable for this input register to
have undefined content.

Code 8-7 bind_symbol Example, in Assembly Code and Application Code

// Assembly language source code

#pragma bind_symbol (ModelViewMatrix , cO , c3)

#pragma bind_symbol (Position , vO)

#pragma bind_symbol (LoopCounterO , i1 , il)

#pragma bind_symbol (bFirst , b2 , b2)

#pragma bind_symbol (Scalar.x , c4, c4) // c4.x is assigned to the Scalar
symbol

// Application source code
glBindAttribLocation (program , 0 , ”Position”);
glEnableVertexAttribArray (0);

uniform_location = glGetUniformLocation (program , “ModelViewMatrix”);
GLFfloat matrix[4][4];
glUniformdfv (uniform_location , 4 , matrix);

GLFfloat scalar_value;
uniform_location = glGetUniformLocation (program , “Scalar”);

glUniformlf (uniform_location , scalar_value);

uniform_location = glGetUniformLocation (program , “bFirst”);
glUniformli (uniform_location , GL_TRUE);

CTR-06-0007-001-C 28 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

GLint loop_setting[3] = {4, 0, 1} ; // loop_count—1 , i
uniform_location = glGetUniformLocation (program , “LoopCounter0”);

nit , step

glUniform3iv (uniform_location , loop_setting);

8.6.2 output_map (data_name , mapped_register)

This configures the attributes of the data output by the vertex shaders. These settings determine
which data to output to the fragment pipeline.

You can specify any of the following for data_name.

e position Vertex coordinates (X y z w)

e color Vertex color (R G BA)

e texturel Texture coordinate 0 (u v)

o textureOw The third component (w) of texture coordinate 0

e texturel Texture coordinate 1 (u v)

o texture2 Texture coordinate 2 (u v)

e quaternion Quaternion (x y z w)

o view View vector (X y 2)

e generic General-purpose attribute (freely definable components)

Specify the corresponding output register in mapped_register. Because you can specify individual

components of the output register, you can pack multiple attributes into a single register. The
generic attribute is used with geometry shaders.

Note: Once a vertex shader has written to all of the output registers specified by these settings, that

vertex shader is forced to end its processing and control moves to the next vertex data
operation. (The end instruction must be called after all the output registers have been written
to.) As a result, instructions might not be run if they come after the last attribute data has been
written to the output registers.

Code 8-8 Running an Instruction After Writing to the Output Registers

mov
mov
end
nop

nop

00, roO

ol, rl // Execution ends here if only o0 and ol are specified
// The end instruction is required
// This instruction might not run

// This instruction might not run

Note: Vertex shaders are required to write to the entirety of all of the registers specified by this

setting. (All components—x, y, z, and w—of the specified registers must be written. Even if
output_map has not set all of the components, they must all be written. Dummy values can
be written to components that have not been set.)

© 2009-2011 Nintendo 29 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

Code 8-9 Writing to All Specified Registers
#pragma output _map (position , 00)
#pragma output _map (color , ol)
#pragma output _map (texture0 , 02.xy)
#pragma output _map (texturel , o03.xy)
#pragma output _map (texture2 , o4.xy)

mov o0, rO

mov ol, rl

mov 02, r2 // Although only “xy” is specified for 02, 03, and o4,
mov 03, r3 // some value must be written to the zw components
mov o4, rd //

Note: After a vertex shader has written to all of the output registers specified by these settings, you
must not use any instructions that read or write the various registers. We do not guarantee
behavior if you attempt to use register read-write instructions after the last write to an output
register.

Code 8-10 Running Instructions lllegally After Writing to the Output Registers

mov o0, rO

mov ol, rl // Execution ends here if only o0 and ol were specified
mov rO, cO // Instructions that access registers here are prohibited
end // The end instruction is required

mov rl, cl // Instructions that access registers here are prohibited

Note: Vertex shaders cannot write to the same output register more than once. Perform only one
write operation on all of an output register's components per processing of each single vector.
You cannot use multiple writes to write data one component at a time. We do not guarantee
behavior if you use multiple write operations.

Code 8-11 Writing to a Register Multiple Times

// Example of valid processing

mov 00.xy, cO

mov 00.zw, cl.w // Each component has only been written once

// Example of invalid processing
mov 00.xy, cO

mov 00, cl.w // 00.x and o00.y have been written twice

CTR-06-0007-001-C 30 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Note: You can use output_map to specify attributes other than generic in up to 7 output registers.
To set 8 or more attributes other than generic in the output registers, you must pack multiple
attributes into a single output register. When attributes other than generic are setin 8 or
more output registers, an INVALID_OPERATION error will be generated when the
glShaderBinary function loads the code.

Code 8-12 Packing Multiple Attributes into a Single Output Register

#pragma output_map (position , o0)

#pragma output_map (color , ol)

#pragma output_map (textureO , 02.xy)

#pragma output_map (texturel , o2.zw) // Pack multiple attributes into o2

mov o0, roO

mov ol, rl

mov 02.Xy, r2.xy

mov 02.zw, r3.Xxy
8.7 #line

This changes the line number and the filename using the following syntax.

#line line_number [“filename™]

There must be a space between the line number and filename. Use double quotes around the
filename and specify a line number that can be represented as a 32-bit integer (int) greater than or
equal to 1. Behavior is undefined for any other value. Use a filename that does not contain any
spaces, is composed of no more than 128 single-byte alphanumeric characters, and does not use the
following symbols:

\/ :*?27 <>

Code 8-13 #line Example

#line 100 ““newname.vsh”

© 2009-2011 Nintendo 31 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

9 Assembly Language Instruction Reference

9.1 Define Instructions

A define instruction sets a constant register value. The value does not change while the shader is
running. Regardless of where it is declared in shader assembly code, it is valid throughout the entire
linked object. You cannot set more than one value for the same register within the same set of linked
objects. You also cannot use define instructions on registers already specified with #pragma
bind_symbol within the same set of linked objects.

9.1.1 def: Define Floating-Point Constants

9.1.1.1 Calling Format

def dest , valueO , valuel , value2 , value3

9.1.1.2 Operands
e dest: Floating-point constant register
e valueO-4: Floating-point values

9.1.1.3 Overview
Sets the value of a floating-point constant register. You can set the value in decimal notation (using a
decimal point) or integer notation (base 10 or base 16). When you specify values in hexadecimal
notation, the hexadecimal bitmap specifies a 24-bit floating-point value (1 sign bit, 7 exponent bits, 16

significand bits). If a value larger than 24 bits is specified, the lower 24 bits are used and the rest is
thrown away.

9.1.1.4 Example

def cO, 1,15, -0.5, 0.25
def cl , Ox3F0000 , 0x3f8000 , 0xbeOOOO , 0x3d0000 // This sets the same

// values as above

9.1.2 defb : Define Boolean Constant
9.1.2.1 Calling Format

defb dest , value

9.1.2.2 Operands

e dest: Boolean register
e value: true or false

9.1.2.3 Overview

Sets the value of a Boolean register.

CTR-06-0007-001-C 32 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.1.2.4 Example

defb b0 , true
defb bl , false

9.1.3 defi : Define Integer Constants

9.1.3.1 Calling Format

defi dest , count , init , step

9.1.3.2 Operands

e dest: Integer register
e count: Integer value
e Init: Integervalue
e step: Integervalue

9.1.3.3 Overview

Sets the value of an integer register. Integer registers are used by the loop instruction. The count
operand specifies a value that is one less than the number of times to run the group of instructions
between the 1oop and endloop instructions. The init operand specifies the initial value of the
loop-counter register. The step operand specifies the amount by which to increment the loop-counter
register during each loop iteration. Specify a value in the range [0, 255] for both count and init.
Specify a value in the range [-128, 127] for step. When its integer value is given in hexadecimal,
step is specified as a two's complement number.

9.1.3.4 Example

defi i0 , 8, 0,1 // Loops 9 times. aL has an initial value of 0 and is
// incremented by one during each loop iteration.
defi il , 10 , 4 , 2// Loops 11 times. aL has an initial value of 4 and is

// incremented by two during each loop iteration.

9.2 Arithmetic Instructions

Arithmetic instructions run arithmetic computations. In all these instructions, the components x, vy, z,
and w in the src operand(s) are swizzled before the instruction operation.

9.2.1 add: Add
9.2.1.1 Calling Format

add dest , srcO , srcl

9.2.1.2 Operands

e dest: Output register or temporary register
e src0: Temporary register, input register, or floating-point constant register

© 2009-2011 Nintendo 33 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

e srcl: Temporary register, input register, or floating-point constant register
9.2.1.3 Overview
Stores the sum of src0 and srcl in dest. You cannot specify a floating-point constant register for

both src0 and srcl. Nor can you specify input registers with different indices in src0 and srcl at
the same time.

9.2.1.4 Operation

dest.x = src0.x + srcl.x

dest.y = srcO.y + srcl.y

dest.z = src0.z + srcl.z

dest.w = srcO.w + srcl.w
9.2.1.5 Example

add ro , cli1, v2

add o0.xy , r7.yz , c4.xx

9.2.2 dp3: Three-Component Dot Product
9.2.2.1 Calling Format

dp3 dest , srcO , srcl

9.2.2.2 Operands

e dest: Output register or temporary register
e src0O: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.2.2.3 Overview

Stores the dot product of three components of src0 and srcl in dest. You cannot specify a floating-
point constant register for both src0 and srcl. Nor can you specify input registers with different
indices in srcO and srcl at the same time.

9.2.2.4 Operation

dot = (srcO.x x srcl.x) + (srcO.y x srcl.y) + (srcO.z x srcl.z)
dest.x = dot
dest.y = dot
dest.z = dot
dest.w = dot

9.2.2.5 Example

dp3 ro , cl1 , v2
dp3 o0 , r7.yzw , c4.xxy
CTR-06-0007-001-C 34 © 2009-2011 Nintendo

Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.2.3 dp4: Four-Component Dot Product
9.2.3.1 Calling Format

dp4 dest , srcO , srcil

9.2.3.2 Operands

e dest: Output register or temporary register
e src0: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.2.3.3 Overview

Stores the dot product of four components of src0 and srcl in dest. You cannot specify a floating-

point constant register for both src0 and srcl. Nor can you specify input registers with different
indices in src0 and srcl at the same time.

9.2.3.4 Operation

dot = (srcO.x x srcl.x) + (srcO.y x srcl.y) + (src0O.z x srcl.z) +
(srcO.w x srcl.w)

dest.x = dot
dest.y = dot

dest.z = dot
dest.w = dot
9.2.3.5 Example
dp4 ro , cl , v2
dp4 00 , r7.yzwx , C4._.XXyw

9.2.4 dph: Homogeneous Dot Product
9.2.4.1 Calling Format

dph dest , srcO , srcl

9.2.4.2 Operands

e dest: Output register or temporary register
e src0: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register
9.2.4.3 Overview
Stores in dest the result of adding the w component of srcl to the dot product of three components

of srcO and srcl. You cannot specify a floating-point constant register for both srcO and srcl1. Nor
can you specify input registers with different indices in src0 and srcl at the same time.

© 2009-2011 Nintendo 35 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

9.2.4.4 Operation

dot = (srcO.x x srcl.x) + (srcO.y x srcl.y) + (srcO.z x srcl.z) +

srcl.w

dest.x = dot
dest.y = dot
dest.z = dot

dest.w = dot

9.2.4.5 Example

dph ro , ci1 , v2
dph 00 , r7.yzwx , C4.XXyw

9.2.5 dst: Distance Vector

9.2.5.1 Calling Format

dst dest , srcO , srcl

9.2.5.2 Operands

e dest: Output register or temporary register

e srcO: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.2.5.3 Overview

Calculates the vector distance. Sets the y and z components of srcO to the squared distance, and
the y and w components of srcl to the reciprocal of the distance. The components of dest
respectively store 1, the distance, the squared distance, and the reciprocal of the distance. You
cannot specify a floating-point constant register for both src0 and srcl. Nor can you specify input

registers with different indices in srcO and srcl at the same time.

9.2.5.4 Operation

dest.x = 1

dest.y = srcO.y x srcl.y
dest.z = src0.z

dest.w = srcl.w

9.25.5 Example

dst ro , cli , v2

9.2.6 exp: Exponential Base 2

9.2.6.1 Calling Format

exp dest , src{ x| -y | -z | -w}

CTR-06-0007-001-C 36
Released: April 26, 2011

© 2009-2011 Nintendo
CONFIDENTIAL

Vertex Shader Reference Manual

9.2.6.2 Operands

e dest: Output register or temporary register

e Src: Temporary register, input register, or floating-point constant register

9.2.6.3 Overview

Calculates a power of 2. Because this instruction can only calculate a single component, you must

specify only one component in src.
9.2.6.4 Operation

tmp=src{ x| .yl -z] -w}
dest.x = 2 ™ tmp

dest.y = 2 ™ tmp

dest.z = 2 ™ tmp

dest.w = 2 ™ tmp

exp ro , cl.x

9.2.7 flIr: Floor

9.2.7.1 Calling Format

fir dest , src

9.2.7.2 Operands

e dest: Output register or temporary register

e Src: Temporary register, input register, or floating-point constant register

9.2.7.3 Overview

Stores the largest integer less than or equal to src in dest.

9.2.7.4 Operation

dest_x = Ffloor (src.x)
dest.y = floor (src.y)
dest.z floor (src.z)
dest.w = floor (src.w)

9.2.7.5 Example
filr ro, ril

9.2.8 li1tp: Light Coefficients

9.2.8.1 Calling Format

litp dest , src

9.2.8.2 Operands

e dest: Output register or temporary register

© 2009-2011 Nintendo 37
CONFIDENTIAL

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

e Src: Temporary register, input register, o

9.2.8.3 Overview

r floating-point constant register

Partially calculates lighting. This instruction also changes the status registers at the same time.

9.2.8.4 Operation

dest.x = (src.x<0) ? 0 : src.x
dest.y = (src.y < -128) ? -128 :
dest.z = 0

dest.w = (src.w <0) ?0 : src.w

status reg0 = (src.x>0)?1:0

status regl = (src.w>0)?1:0
9.2.8.5 Example
litp ro cl

9.2.9 log: Logarithm Base 2

(src.y > 128 ? 128 : src.y)

9.2.9.1 Calling Format

log dest , src{ -x | -z | -w

-y

9.2.9.2 Operands

e dest:
e SIc:

9.2.9.3 Overview

}

Output register or temporary register
Temporary register, input register, or floating-point constant register

Calculates the base-2 logarithm. Because this instruction can only calculate a single component, you

must specify only one component in src.
9.2.9.4 Operation

tmp = src { x| -y |

dest.x log2 (tmp)
log2 (tmp)
log2 (tmp)
log2 (tmp)

-z |

-w }

dest.y
dest.z

dest.w

9.2.9.5 Example

log ro cl.x

9.2.10 mad: Multiply and Add

9.2.10.1 Calling Format

mad dest , srcO , srcl , src2

CTR-06-0007-001-C
Released: April 26, 2011

38

© 2009-2011 Nintendo
CONFIDENTIAL

Vertex Shader Reference Manual

9.2.10.2 Operands

e dest: Output register or temporary register

e src0: Temporary register or input register

e srcl: Temporary register, input register, or floating-point constant register
e src2: Temporary register, input register, or floating-point constant register

9.2.10.3 Overview

Stores in dest the result of adding src2 to the product of src0 and srcl. You cannot specify a
floating-point constant register for both srcl1 and src2. Nor can you specify input registers with
different indices in srcO, srcl, and src2 at the same time.

9.2.10.4 Operation

dest.Xx = srcO.x x srcl.x + src2.x
dest.y = srcO.y x srcl.y + src2.y
dest.z = src0.z x srcl.z + src2.z
dest.w = srcO.w x srcl.w + src2.w
9.2.10.5 Example
mad rO , rl1, ci1 , v2
9.2.11 max: Maximum
9.2.11.1 Calling Format
max dest , srcO , srcil

9.2.11.2 Operands

e dest: Output register or temporary register

e src0: Temporary register, input register, or floating-point constant register

e srcl: Temporary register, input register, or floating-point constant register
9.2.11.3 Overview

Compares src0 and srcl and stores the larger value in dest. You cannot specify a floating-point
constant register for both src0 and srcl. Nor can you specify input registers with different indices in
srcO and srcl at the same time.

9.2.11.4 Operation

dest.x = (srcO.x > srcl.x) ? srcO.x : srcl.x
dest.y = (srcO.y > srcl.y) ? srcO.y : srcl.y
dest.z = (src0.z > srcl.z) ? srcO.z - srcl.z
dest.w = (srcO.w > srcl.w) ? srcO.w : srcl.w
9.2.11.5 Example
max ro , r1 , ci
© 2009-2011 Nintendo 39 CTR-06-0007-001-C

CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

9.2.12min: Minimum

9.2.12.1 Calling Format

min dest , srcO , srcl

9.2.12.2 Operands

e dest: Output register or temporary register
e src0O: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.2.12.3 Overview

Compares src0 and srcl and stores the smaller value in dest. You cannot specify a floating-point
constant register for both src0 and srcl. Nor can you specify input registers with different indices in
srcO0 and srcl at the same time.

9.2.12.4 Operation

dest.x = (srcO.x > srcl.x) ? srcl.x : src0.x

dest.y = (srcO.y > srcl.y) ? srcl.y = srcO.y

dest.z = (src0.z > srcl.z) ? srcl.z : src0.z

dest.w = (srcO.w > srcl.w) ? srcl.w - srcO.w
9.2.12.5 Example

min ro , r1 , ci

9.2.13 mov: Move

9.2.13.1 Calling Format

mov dest , src

9.2.13.2 Operands

e dest: Output register or temporary register
e Src: Temporary register, input register, or floating-point constant register

9.2.13.3 Overview

Copies the content of src into dest.
9.2.13.4 Operation

dest = src
9.2.13.5 Example

mov ro , cil

CTR-06-0007-001-C 40 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.2.14 mova: Move to Address Register

9.2.14.1 Calling Format

mova dest{ x| -y | -xy } , src

9.2.14.2 Operands

e dest: Address register
e Src: Temporary register, input register, or floating-point constant register

9.2.14.3 Overview

Copies the content of src into dest. The fractional part of src (everything below the decimal point)
is truncated. Behavior is undefined if you assign a value that does not lie in the range [-95, 95].
The address register must use a mask of . X, .y, or .xy. Consecutive calls to this instruction will
result in an error.

9.2.14.4 Operation

dest = src

9.2.14.5 Example

mova a0.x , cl

9.2.15mul: Multiply
9.2.15.1 Calling Format

mul dest , srcO , srcl

9.2.15.2 Operands

e dest: Output register or temporary register
e src0: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.2.15.3 Overview

Stores the product of srcO and srcl in dest. You cannot specify a floating-point constant register
for both src0 and srcl. Nor can you specify input registers with different indices in srcO and srcl
at the same time.

9.2.15.4 Operation

dest.x = src0.x x srcl.x
dest.y = srcO.y x srcl.y
dest.z = src0.z x srcl.z
dest.w = srcO.w x srcl.w
9.2.15.5 Example
mul ro , ci1 , v2
mul 00.xy , r7.yzww , Cc4.XXyz
© 2009-2011 Nintendo 41 CTR-06-0007-001-C

CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

9.2.16 nop: No Operation

9.2.16.1 Calling Format

nop

9.2.16.2 Operands
None
9.2.16.3 Overview
This instruction does nothing.
9.2.16.4 Operation
None
9.2.16.5 Example

nop

9.2.17 rcp: Reciprocal

9.2.17.1 Calling Format

rcp dest , src{ x| .y | -z | -w}

9.2.17.2 Operands

e dest: Output register or temporary register

e Src: Temporary register, input register, or floating-point constant register
9.2.17.3 Overview

Calculates the reciprocal. Because this instruction can only calculate a single component, you must
specify only one component in src.

9.2.17.4 Operation

ttp=src{ x| -yl -z | -w}
dest.x = 1 / tmp
dest.y = 1 / tmp
dest.z = 1 / tmp

dest.w = 1 / tmp
9.2.17.5 Example
rcp ro , cl.x

9.2.18 rsq: Reciprocal Square Root

9.2.18.1 Calling Format

rsqg dest , src{ x| .y | -z | -w}

CTR-06-0007-001-C 42 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.2.18.2 Operands

e dest: Output register or temporary register
e Src: Temporary register, input register, or floating-point constant register

9.2.18.3 Overview

Calculates the square root of the reciprocal. Because this instruction can only calculate a single

component, you must specify only one component in src.
9.2.18.4 Operation

tmp=src{ x| .yl -z|] -w}
dest.x =1 / sqrt (tmp)

dest.y =1 / sqrt (tmp)
dest.z =1 / sqrt (tmp)
dest.w =1 / sqrt (tmp)

9.2.18.5 Example

rsq ro , cl.x

9.2.19 sge: Set on Greater Than or Equal

9.2.19.1 Calling Format

sge dest , srcO , srcil

9.2.19.2 Operands

e dest: Output register or temporary register
e src0: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.2.19.3 Overview

Stores 1 in dest when srcO is greater than or equal to srcl; otherwise, stores O in dest. You

cannot specify a floating-point constant register for both src0 and srcl. Nor can you specify input

registers with different indices in srcO and src1l at the same time.

9.2.19.4 Operation

dest.x = (srcO.x >= srcl.x) ? 1 0
dest.y = (srcO.y >=srcl.y) ?21:0
dest.z = (src0.z >=srcl.z) ? 1 0
dest.w = (srcO.w >= srcl.w) 21 :0
9.2.19.5 Example
sge ro , cl1 , v2
sge 00.xy , r7.yzww , Cc4.XXyz
© 2009-2011 Nintendo 43 CTR-06-0007-001-C

CONFIDENTIAL

Released: April 26, 2011

Vertex Shader Reference Manual

9.2.20 slt: Set on Less Than
9.2.20.1 Calling Format

sit dest , srcO , srcl

9.2.20.2 Operands

e dest: Output register or temporary register

e src0O: Temporary register, input register, or floating-point constant register

e srcl: Temporary register, input register, or floating-point constant register
9.2.20.3 Overview

Stores 1 in dest when srcO is smaller than srcl; otherwise, stores 0 in dest. You cannot specify a
floating-point constant register for both src0 and srcl. Nor can you specify input registers with
different indices in src0 and srcl at the same time.

9.2.20.4 Operation

dest.x = (srcO.x <srcl.x) 21 :0

dest.y = (srcO.y <srcl.y) 21 :0

dest.z = (src0.z <srcl.z) ?1:0

dest.w = (srcO.w <srcl.w) ?1:0
9.2.20.5 Example

slt ro , cl , v2

sit 00.xy , r7.yzww , C4.xXXyz

9.3 Macro Instructions

Macro instructions expand into a combination of arithmetic instructions.

9.3.1 sub: Subtract
9.3.1.1 Calling Format

sub dest , srcO , srcl

9.3.1.2 Operands

e dest: Output register or temporary register
e srcO: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.3.1.3 Overview
Stores the difference of src0 and srcl in dest. You cannot specify a floating-point constant register

for both src0 and srcl. Nor can you specify input registers with different indices in src0 and srcl
at the same time.

CTR-06-0007-001-C 44 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.3.1.4 Operation

dest.x
dest.y
dest.z
dest.w

srcO.x -
srcO.y -
srcO0.z -
srcO.w -

srcl.x
srcl.y
srcl.z
srcl.w

9.3.1.5 Post-Macro Expansion

add

9.3.1.6 Example

sub

sub

dest , src

ro , cl ,

0 , -Sr

cl

00.xy , r7.yzww , C4.XXyz

9.3.2 abs: Absolute

9.3.2.1 Calling Format

abs

dest , src

9.3.2.2 Operands

e dest:
e SIC:

Output register or temporary register
Temporary register or input register

9.3.2.3 Overview

Stores the absolute value of src in dest.

9.3.2.4 Operation

dest.x
dest.y
dest.z
dest.w

abs (srcO0.x)
abs (srcO0.y)
abs (src0.z)
abs (srcO.w)

9.3.2.5 Post-Macro Expansion

max

9.3.2.6 Example

abs

abs

dest , src

ro, ril

, —Src

o0 , r7.yzww

9.3.3 crs: Cross Product

9.3.3.1 Calling Format

Ccrs

dest{ -x |

-y

-z |

-xy |

-xz |

-yz |

.xyz } , srcO , srcl

© 2009-2011 Nintendo

CONFIDENTIAL

45

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

9.3.3.2 Operands

e dest: Temporary register

e src0O: Temporary register, input register, or floating-point constant register

e srcl: Temporary register, input register, or floating-point constant register
9.3.3.3 Overview

Stores the cross product of three components of srcO and srcl in dest. Neither srcO nor srcl
can be swizzled. You must use one of the following masks for the dest
operand: .X, .Y, -Z, -XY, -XZ, -YZ, Of .XyZ.

You cannot specify any of the following:

e the same register for src0 and dest

e the same register for srcl and dest

a mask other than the default (. xyzw) for either srcO or srcl

a floating-point constant register for both src0 and srcl

input registers with different indices for srcO and srcl at the same time

9.3.3.4 Operation

dest.x = srcO.y x srcl.z - srcO.z x srcl.y
dest.y
dest.z

srcO.z x srcl.x - srcO.x x srcl.z

srcO.x x srcl.y - srcO.y x srcl.x
9.3.3.5 Post-Macro Expansion

mul dest.xyz , src0.yzx , srcl.zxy

mad dest.xyz , -srcl.yzx , srcO.zxy , dest

9.3.3.6 Example

crs rO.xyz , cl , v2

9.3.4 frc: Fraction
9.3.4.1 Calling Format

frc dest , src

9.3.4.2 Operands

e dest: Temporary register
e Src: Temporary register, input register, or floating-point constant register
9.3.4.3 Overview

Stores in dest the difference between the value of src and the largest integer less than or equal to
src. You cannot specify the same register for src and dest.

CTR-06-0007-001-C 46 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.3.4.4 Operation

dest.x = src.x - floor (src.x)
floor (src.y)
floor (src.z)

floor (src.w)

dest.y = src.y

dest.z src.z

dest.w src.w

9.3.4.5 Post-Macro Expansion

flr dest , src

add dest , src , —dest

9.3.4.6 Example
frc ro , vi

9.3.5 Irp: Linear Interpolation

9.3.5.1 Calling Format

Irp dest , srcO , srcl , src2

9.3.5.2 Operands

e dest: Temporary register

e src0: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register
e src2: Temporary register, input register, or floating-point constant register

9.3.5.3 Overview

Stores in dest the result of using srcO to linearly interpolate between srcl and src2. You can

specify only one floating-point constant register among the three operands srcO, srcl, and src2.

However, there is one exception: you can specify two floating-point constant registers at the same

time if you specify them for srcO and srcl.

You cannot do any of the following:

o specify the same register for dest and srcO

e use the same register for dest and src2

o specify input registers with different indices in any combination of src0, srcl, and src2 at the same

time

9.3.5.4 Operation

dest.x = srcO.x x srcl.x + (1 —
dest.y = srcO.y x srcl.y + (1 —
dest.z = srcO0.z x srcl.z + (1 —
dest.w = srcO.w x srcl.w + (1 —

srcO0.x)xsrc2.x
srcO0.y)xsrc2.y
src0.z)xsrc2.z
srcO.w)xsrc2.w

© 2009-2011 Nintendo
CONFIDENTIAL

47

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

9.3.5.5 Post-Macro Expansion

add dest , srcl , —src2

mad dest , dest , srcO , src2

9.3.5.6 Example
Irp rO , vi , c2, r3

9.3.6 m3x2: 3x2 Multiply
9.3.6.1 Calling Format

m3x2 dest.xy , srcO , srcl

9.3.6.2 Operands

e dest: Temporary register or output register
e srcO: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.3.6.3 Overview
Stores the result of multiplying a 3x2 matrix and a 3-component vector in dest. Specify the first

register of the 3x2 matrix in srcl (in other words, when srcl is rO, that means the 3x2 matrix is
stored in rO and rl).

You cannot specify any of the following:

¢ a floating-point constant register for both src0 and srcl
e an input register for both src0 and srcl
e the same register for dest and srcO

You must use the mask .xy for dest.

Note: If you set dest to the register that consecutively follows srcl (this is src2 in the expanded
macro below), the content of that register is updated after macro expansion when the
instruction executes, causing unexpected results.

9.3.6.4 Operation

src2 = Next_Index OF (srcl)
dest.x = (srcO.x x srcl.x) + (srcO.y x srcl.y) + (srcO.z x srcl.z)
dest.y = (srcO.x x src2.x) + (srcO.y x src2.y) + (src0O.z x src2.z)

9.3.6.5 Post-Macro Expansion

dp3 dest.x , srcO , srcl

dp3 dest.y , srcO , src2 // src2 = next index after srcl

9.3.6.6 Example

m3x2 ro.xy , r1 , cO

CTR-06-0007-001-C 48 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

// This is expanded as follows
// dp3
// dp3

ro.x , rl1 , cO

ro.y , r1 , ci

9.3.7 m3x3: 3x3 Multiply

9.3.7.1 Calling Format
m3x3

9.3.7.2 Operands

e dest:
e srcO:
e srcl:

9.3.7.3 Overview

dest.xyz , srcO , srcl

Temporary register or output register
Temporary register, input register, or floating-point constant register
Temporary register, input register, or floating-point constant register

Stores the result of multiplying a 3x3 matrix and a 3-component vector in dest. Specify the first
register of the 3x3 matrix in srcl (in other words, when srcl is r0, that means the 3x3 matrix is

stored in r0, ri, and r2).

You cannot specify any of the following:

¢ a floating-point constant register for both src0 and srcl

e an input register for both src0 and srcl
o the same register for dest and srcO

You must use the mask .xyz for dest.

Note: If you set dest to a register that consecutively follows srcl (these registers are src2 and
src3 in the expanded macro below), the content of that register is updated after macro
expansion when the instruction executes, causing unexpected results.

9.3.7.4 Operation

src2 = Next_Index Of (srcl)
src3 = Next_Index Of (src2)
(srcO.x x srcl.x) + (srcO.y x srcl.y) + (srcO.z x srcl.z)
(srcO.x x src2.x) + (srcO.y x src2.y) + (srcO.z x src2.z)
(srcO.x x src3.x) + (srcO.y x src3.y) + (srcO.z x src3.z)

dest.x =

dest.y
dest.z

9.3.7.5 Post-Macro Expansion

dp3 dest.x , srcO , srcl
dp3 dest.y , srcO , src2
dp3 dest.z , srcO , src3

9.3.7.6 Example
m3x3

// This is expanded as follows

ro.xyz , rl1 , cO

// src2
// src3

next index after srcl

next index after src2

© 2009-2011 Nintendo
CONFIDENTIAL

49

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

// dp3 ro.x , rl , cO
// dp3 ro,y , r1 , cl
// dp3 rO.z , rl1 , c2

9.3.8 m3x4: 3x4 Multiply
9.3.8.1 Calling Format

m3x4 dest , srcO , srcl

9.3.8.2 Operands

e dest: Temporary register or output register
e srcO: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.3.8.3 Overview

Stores the result of multiplying a 3x4 matrix and a 3-component vector in dest. Specify the first
register of the 3x4 matrix in srcl (in other words, when srcl is r0, that means the 3x4 matrix is
stored in rO, rl, r2, and r3).

You cannot specify any of the following:

¢ a floating-point constant register for both src0 and srcl
e an input register for both src0 and srcl

e a mask other than the default (. xyzw) for dest

e the same register for dest and srcO

Note: If you set dest to a register that consecutively follows srcl (these registers are src2,
src3 and src4 in the expanded macro below), the content of that register is updated after
macro expansion when the instruction executes, causing unexpected results.

9.3.8.4 Operation

src2 = Next _Index OF (srcl)
src3 = Next_Index OF (src2)
src4 = Next _Index OF (src3)

dest.x = (srcO.x x srcl.x) + (srcO.y x srcl.y) + (srcO.z x srcl.z)

dest.y = (srcO.x x src2.x) + (srcO.y x src2.y) + (src0O.z x src2.z)

dest.z = (srcO.x x src3.x) + (srcO.y x src3.y) + (srcO.z x src3.z)

dest.w = (srcO.x x srcd4.x) + (srcO.y x srcd.y) + (src0O.z x src4.z)
9.3.8.5 Post-Macro Expansion

dp3 dest.x , srcO , srcl

dp3 dest.y , srcO , src2 // src2 = next index after srcl

dp3 dest.z , srcO , src3 // src3 = next index after src2

dp3 dest.w , srcO , src4 // src4 = next index after src3
CTR-06-0007-001-C 50 © 2009-2011 Nintendo

Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.3.8.6 Example
m3x4 ro , r1 , co

// This is expanded as follows
// dp3 ro.x , rl1 , cO
// dp3 ro.y , r1 , cl
// dp3 ro.z , rl , c2
// dp3 ro.w , rl , c3

9.3.9 m4x3: 4x3 Multiply
9.3.9.1 Calling Format

m4x3 dest.xyz , srcO , srcl

9.3.9.2 Operands

e dest: Temporary register or output register
e src0: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.3.9.3 Overview

Stores the result of multiplying a 4x3 matrix and a 4-component vector in dest. Specify the first
register of the 4x3 matrix in srcl (in other words, when srcl is r0, that means the 4x3 matrix is
stored in rO, r1, and r2).

You cannot specify any of the following:

¢ a floating-point constant register for both src0 and srcl
e an input register for both src0 and srcl
o the same register for dest and srcO

You must use the mask .xyz for dest.

Note: If you set dest equal to a register that consecutively follows srcl (these registers are src2
and src3 in the expanded macro below), the content of that register is updated after macro
expansion when the instruction executes, causing unexpected results.

9.3.9.4 Operation

src2 = Next_Index Of (srcl)
src3 = Next_Index OfF (src2)
dest.x = (srcO.x x srcl.x) + (srcO.y x srcl.y) + (srcO.z x srcl.z) +

(srcO.w x srcl.w)
dest.y = (srcO.x x src2.x) + (srcO.y x src2.y) + (src0O.z x src2.z) +
(srcO.w x src2.w)
dest.z = (srcO.x x src3.x) + (srcO.y x src3.y) + (src0O.z x src3.z) +
(srcO.w x src3.w)
© 2009-2011 Nintendo 51 CTR-06-0007-001-C

CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

9.3.9.5 Post-Macro Expansion

dp4 dest.x , srcO , srcl
dp4 dest.y , srcO , src2 // src2 = next index after srcl
dp4 dest.z , srcO , src3 // src3 = next index after src2

9.3.9.6 Example

m4x3 rO.xyz , rl1 , cO

// This is expanded as follows
// dp4 ro.x , rl1 , cO

// dp4 ro.y , r1 , ci

// dp4 ro.z , rl , c2

9.3.10 m4x4: 4x4 Multiply
9.3.10.1 Calling Format

m4x4 dest , srcO , srcl

9.3.10.2 Operands

e dest: Temporary register or output register
e src0O: Temporary register, input register, or floating-point constant register
e srcl: Temporary register, input register, or floating-point constant register

9.3.10.3 Overview

Stores the result of multiplying a 4x4 matrix and a 4-component vector in dest. Specify the first
register of the 4x4 matrix in srcl (in other words, when srcl is r0, that means the 4x4 matrix is
stored in rO, r1, r2, and r3).

You cannot specify any of the following:

¢ a floating-point constant register for both src0 and srcl
e an input register for both src0 and srcl
e the same register for dest and srcO

You cannot use a mask other than the default (. xyzw) for dest.

Note: If you set dest equal to a register that consecutively follows srcl (these registers are src2,
src3, and src4 in the expanded macro below), the content of that register is updated after
macro expansion when the instruction executes, causing unexpected results.

9.3.10.4 Operation

Next_Index_ OF (srcl)

src3 Next Index OF (src2)

src4 = Next_Index_ OF (src3)

dest.x = (srcO.x x srcl.x) + (srcO.y x srcl.y) + (srcO.z x srcl.z) +
(srcO.w x srcl.w)

src2

CTR-06-0007-001-C 52 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

dest.y = (src0.x
(srcO.w x src2.w)
dest.z = (src0.x
(srcO.w x src3.w)
dest.w = (src0.x
(srcO.w x srcd.w)

9.3.10.5 Post-Macro Expansion

dp4 dest.x , srcO , srcl

dp4 dest.y , srcO , src2 // src2

dp4 dest.z , srcO , src3 // src3

dp4 dest.w , srcO , src4 // src4
9.3.10.6 Example

m4x3 ro , r1 , cO

// This is expanded as follows

// dp4 ro.x , rl1 , cO

// dp4 ro.y , r1 , cl

// dp4 ro.z , rl1 , c2

// dp4 roow , rl1 , c3

9.3.11 nrm: Normalize

x src2.x) + (srcO.y x src2.y) + (src0.z x src2.z) +

x src3.x) + (srcO.y x src3.y) + (src0.z x src3.z) +

x src4d.x) + (srcO.y x srcd.y) + (src0.z x src4.z) +

next index after srcl
next index after src2
next index after src3

9.3.11.1 Calling Format

nrm dest , src

9.3.11.2 Operands

e dest:
e SIC:

Temporary register
Temporary register or input register

9.3.11.3 Overview

Stores the result of normalizing src in dest. You cannot specify the same register for src and dest.

9.3.11.4 Operation

tmp = sqrt (Src.x X Src.x + Src.y X Src.y + Src.z X Src.Z + Src.w X

src.w)

dest.x = src.xx (1 7/ tmp)
dest.y = src.yx (1 / tmp)
dest.z = src.zx (1 / tmp)
dest.w = src.wx (1 7/ tmp)

© 2009-2011 Nintendo
CONFIDENTIAL

53

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

9.3.11.5 Post-Macro Expansion

dp4 dest.x , src , src
rsqg dest.x , dest.x
mul dest , src , dest.x

9.3.11.6 Example

nrm ro , vo

9.3.12 pow : Power

9.3.12.1 Calling Format
pow dest , srcO{ x| -y | -z | -w} , srci{ x| -y | -z | -w}

9.3.12.2 Operands

e dest: Temporary register

e src0O: Temporary register, input register, or floating-point constant register

e srcl: Temporary register, input register, or floating-point constant register
9.3.12.3 Overview

Stores the result of raising srcO to the srcl power in dest. You must specify one of the four
components (.X, .y, -z, or .w) for src0 and srcl. You cannot specify the same register for srcl
and dest.

9.3.12.4 Operation

tmp =srcO{ x| -y | -z | w}~rsrci{ x| -y | -z | -w}
dest.x = tmp

dest.y = tmp
dest.z = tmp
dest.w = tmp

9.3.12.5 Post-Macro Expansion

log dest.z , srcO{ x| -y | -z | -w}
mul dest.z , dest.z , srcl{ .x | .y | -z | -w}
exp dest , dest.z

9.3.12.6 Example
pow roO , rl.y , r2.x

9.3.13 sgn: Sign

9.3.13.1 Calling Format

sgn dest , srcO , srcl , src2

CTR-06-0007-001-C 54 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.3.13.2 Operands

e dest: Temporary register or output register
e src0: Temporary register or input register
e srcl: Temporary register

e src2: Temporary register

9.3.13.3 Overview
Stores 1, 0, or -1 in dest when srcO is positive, zero, or negative, respectively. srcl and src2 are

used to perform the calculations. You cannot use swizzling or specify negative signs with src1 and

src2. You cannot specify the same register for srcl and src2. You cannot specify the same register
for srcO and srcl.

9.3.13.4 Operation

for (each component)

{
if (srcO.component < 0)
dest.component = -1
else if (srcO.component == 0)
dest.component = 0
else
dest.component = 1
}
9.3.13.5 Post-Macro Expansion
slt srcl , srcO , -srcO
sit src2 , -srcO , srcO
add dest , src2 , -srcl

9.3.13.6 Example

sgn ro , vl

9.3.14 sincos: Sine and Cosine

9.3.14.1 Calling Format

sincos dest{ x| -y | xy}, srcO{ x| -y | -z | -w} , srcl , src2

9.3.14.2 Operands

e dest: Temporary register
e src0: Temporary register or input register
e srcl: Temporary register
e src2: Temporary register

© 2009-2011 Nintendo 55 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

9.3.14.3 Overview

Calculates the sine and cosine of the component value specified by src0 and stores the result in
dest. Values are given in radians. The cosine and sine values are output to the x and y components,
respectively, in dest. You must specify one of the following masks for dest: .x, .y, or .xy. The
content of the z component in dest is not preserved because it is used during calculations. You must
specify one of the four components (. X, .y, -z, or .w) for srcO0. srcl and src2 are used to perform
the calculations. You cannot use swizzling or specify negative signs with srcl and src2. A different
register must be specified for each operand. The component specified by srcO must have a value
between —m and . This macro calculates an approximate value using a Taylor expansion. Because
a Taylor expansion requires several coefficients, the floating-point constant registers c93, c94, and
c95 are automatically defined. You cannot use this instruction and define either c93, c94, or c95
with the def instruction.

9.3.14.4 Operation

tmp = srcOo{ x| -y | -z | -w}

dest.x = cos (tmp)

dest.y = sin (tmp)

dest.z = undefined // This is used during calculations

9.3.14.5 Post-Macro Expansion

def c93 , 0xbe0000, Oxbc5555, 0x3f0000, 0x3f0000 // -0.5, -1/3', 1.0, 1.0
def c94 , Oxb56cl6, 0xb2al0la, O0x3a5555, 0x381111 // -1/6', -1/7', 1/4', 1/5!
def c95 , 0xa927e4, Oxabae64, 0x2faOla, 0x2c71de // -1/10', -1/11t', 1/8', 1/9!

mov srcl , c95

mov src2 , c94

mul dest.z , srcO{ - x| .y | -z | w} ,srcO{ x| -y | -z]| -w}
mad dest.xy , dest.z , srcl.xy , srcl.zw

mad dest.xy , dest.z , dest.xy , src2.xy

mad dest.xy , dest.z , dest.xy , src2.zw

mov srcl , c93

mad dest.xy , dest.z , dest.xy , srcl.xy

mad dest.xy , dest.z , dest.xy , srcl.zw

mul dest.y , dest.y , srcO{ x| -y | -z | -w}

9.3.14.6 Example

sincos rO.xy , vi.x , r2 , r3

9.4 Flow Control Instructions

The flow control instructions control the flow of execution.

CTR-06-0007-001-C 56 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.4.1 call: Call Subroutine

9.4.1.1 Calling Format

call label

9.4.1.2 Operands
e label: Label name

9.4.1.3 Overview

Causes control to jump to the address of the specified label name. Processing will return to the
address immediately following this instruction when the subroutine processing has finished (i.e., when
the ret instruction is encountered after the label address). You cannot call a label if a ret instruction
has not been set for it. You can nest up to four call instructions (cal l, cal lc, and cal Ib). Behavior
is undefined for five or more nested calls. When call instructions are nested, behavior is undefined if a

call instruction is invoked immediately before a ret instruction.

9.4.1.4 Operation
retaddr = pc + 1
pc = get_label _address (label)
while (1)
{

execute_current_instruction ()

if (current_instruction () == ret)

{
pc = retaddr

break

}
}

9.4.1.5 Example

call subfunctionO

subfunctionO:

ret

9.4.2 callb: Boolean Call

9.4.2.1 Calling Format

callb src, label

9.4.2.2 Operands

e Src: Boolean register

© 2009-2011 Nintendo 57
CONFIDENTIAL

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

e label: Label name

9.4.2.3 Overview

Causes control to jump to the address of the specified label name when the content of the specified
Boolean register is true. If processing ends before reaching a ret instruction after the label address,
it will return to the address immediately after this instruction. You cannot call a label if a ret
instruction has not been set for it. You can nest up to four call instructions (call, callc, and cal lb).
Behavior is undefined for five or more nested calls. When call instructions are nested, behavior is
undefined if a call instruction is invoked immediately before a ret instruction.

9.4.2.4 Operation
if (src)
call label

9.4.2.5 Example

callb b0 , subfunctionO
subfunctionO:
ret

9.4.3 callc: Condition Call

9.4.3.1 Calling Format

callc statusO , statusl , mode , label

9.4.3.2 Operands

e statusO: Value (either 0 or 1) of status register 0
e statusl: Value (either O or 1) of status register 1
e mode: Conditional mode

0: OR

1: AND

2: Only status register 0

3: Only status register 1

e label: Label name
9.4.3.3 Overview

Calls a function conditionally based on the status register values.

The equality of the values specified by statusO (or statusl) and status register 0 (or 1) is taken to
be the condition. This condition is true when either status register 0 or 1 match when mode is O;
when both status registers match when mode is 1; when status register 0 matches when mode is 2;

and when status register 1 matches when mode is 3.

CTR-06-0007-001-C 58
Released: April 26, 2011

© 2009-2011 Nintendo
CONFIDENTIAL

Vertex Shader Reference Manual

This instruction causes control to jump to the address of the specified label when the condition is
true. If processing ends before reaching a ret instruction after the label address, it will return to the
address immediately after this instruction. You cannot call a label if a ret instruction has not been set
for it. You can nest up to four call instructions (call, cal lc, and cal Ib). Behavior is undefined for
five or more nested calls. When call instructions are nested, behavior is undefined if a call instruction

is invoked immediately before a ret instruction.

9.4.3.4 Operation
switch (mode)

{
case O :
if (statusO == Status_register0O || statusl
call label
break;
case 1 :
if (statusO == Status_register0O && statusl
call label
break;
case 2 :
if (statusO == Status_register0)
call label
break;
case 3 :
if (statusl == Status_registerl)
call label
break;
}

9.4.3.5 Example

Status_registerl)

Status_registerl)

Callc 1,1, 0, subfunctionO // Calls subfunction0 when status register 0O

// or status register 1 is equal to 1

subfunctionO:

ret

9.4.4 jpb: Boolean Jump

9.4.4.1 Calling Format

Jpb src, value , label

9.4.4.2 Operands

e Src: Boolean register

© 2009-2011 Nintendo 59
CONFIDENTIAL

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

e value: true or false
e label: Label name

9.4.4.3 Overview

Causes control to jump to the address of the specified label name when the content of the Boolean
register specified by src matches the value specified by value. Unlike the call instruction, control
does not return at a ret instruction and you can also specify labels without setting a ret instruction.
Jumping to an external location from within an i or loop block, or jumping from an external location
into within an i ¥ or loop block will cause an error. Calling this instruction immediately prior to an
else, endif, endloop, or ret instruction will also cause an error. Jumping to an external location
from between the main and endmain labels and from within subroutines results in undefined
behavior. In the same way, jumping to a ret instruction within a subroutine also results in undefined
behavior. Jumping to an else, endif, or endloop instruction has the same effect as jumping to the
instruction immediately following that instruction.

9.4.4.4 Operation
if (src == value)
jump to label
9.4.4.5 Example

Jpb b0 , true , subfunctionO
jpb bl , false , subfunctionO
subfunctionO:

9.45 jpc: Condition Jump

9.4.5.1 Calling Format

Jpc statusO , statusl , mode , label

9.4.5.2 Operands

e statusO: Value (either O or 1) of status register O
e statusl: Value (either 0 or 1) of status register 1
e mode: Conditional mode

0: OR

1: AND

2: Only status register 0

3: Only status register 1

e label: Label name
9.4.5.3 Overview

Causes control to jump conditionally based on the status register values.

CTR-06-0007-001-C 60 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

The equality of the values specified by statusO (or statusl) and status register 0 (or 1) is taken to
be the condition. This condition is true when either status register 0 or 1 match when mode is O;
when both status registers match when mode is 1; when status register 0 matches when mode is 2;
and when status register 1 matches when mode is 3.

This instruction causes control to jump to the address of the specified label when the condition is
true. Unlike the cal l instruction, control does not return at a ret instruction and you can also
specify labels without setting a ret instruction. Jumping to an external location from within an if or
loop block, or jumping from an external location into within an i ¥ or loop block will cause an error.
Calling this instruction immediately prior to an else, endif, endloop, or ret instruction will also
cause an error. Jumping to an external location from between the main and endmain labels and
from within subroutines results in undefined behavior. In the same way, jumping to a ret instruction
within a subroutine also results in undefined behavior. Jumping to an else, endi T, or endloop,
instruction has the same effect as jumping to the instruction immediately following that instruction.

9.4.5.4 Operation
switch (mode)

{
case O :
if (statusO == Status_register0 || statusl == Status_registerl)
Jjump to label
break;
case 1 :
if (statusO == Status_register0 && statusl == Status_registerl)
Jump to label
break;
case 2 :
if (statusO == Status_register0)
Jump to label
break;
case 3 :
if (statusl == Status_registerl)
Jjump to label
break;
}

9.4.5.5 Example

Jpc 1,1, 0 , subfunctionO // Calls subfunction0 when status register 0 or

// status register 1 is equal to 1

subfunctionO:

© 2009-2011 Nintendo 61 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

9.4.6 ret: Return from Subroutine

9.4.6.1 Calling Format

ret

9.4.6.2 Operands
None

9.4.6.3 Overview

Jumps to the caller of a call instruction. This instruction does nothing if control is not in the middle of a
jump from a call instruction (however, unlike nop, no processing occurs). To call a label as a
subroutine from a call instruction, this instruction must be called after the label is set.

9.4.6.4 Operation

if (retaddr)
pc = retaddr

9.4.6.5 Example

callb b0 , subfunctionO
subfunctionO:
ret

9.4.7 ifb: Start if Block by Boolean

9.4.7.1 Calling Format

ifb src

9.4.7.2 Operands
e Src: Boolean register

9.4.7.3 Overview

Executes conditional processing based on the content of the Boolean register specified by src.
When it is true, the instructions between i fb and endi T are executed. If there is an else
instruction between 1fb and endi f, the instructions between i1fb and else are executed. When it is
false, the instructions between 1fb and endif are skipped and control moves to the instruction
immediately after endif. If there is an el se instruction between i fb and endiF, the instructions
between else and endi T are executed. This instruction must be followed by an endi f instruction.
You can nest up to eight ifb and ifc instructions. You must denote at least one instruction between
itb and endif as well as between 1fb and else.

CTR-06-0007-001-C
Released: April 26, 2011

62 © 2009-2011 Nintendo
CONFIDENTIAL

Vertex Shader Reference Manual

9.4.7.4 Operation

if (src == true)

9.4.7.5 Example
ifb b0

endif

9.4.8 ifc: Start if Block by Condition

9.4.8.1 Calling Format

ifc statusO , statusl , mode

9.4.8.2 Operands

e statusO: Value (either 0 or 1) of status register 0
e statusl: Value (either O or 1) of status register 1
e mode: Conditional mode

0: OR

1: AND

2: Only status register 0

3: Only status register 1

9.4.8.3 Overview

Runs conditional processing based on the status register values.

The equality of the values specified by statusO (or statusl) and status register 0 (or 1) is taken to
be the condition. This condition is true when either status register 0 or 1 match when mode is O;
when both status registers match when mode is 1; when status register 0 matches when mode is 2;
and when status register 1 matches when mode is 3.

When the condition is true, the instructions between ifc and endi T are executed. If there is an
else instruction between ifc and endiF, the instructions between 1 fc and else are executed.
When the condition is false, the instructions between ifc and endif are skipped and control
moves to the instruction immediately after endi F. If there is an el se instruction between 1fc and
endi T, the instructions between else and endif are executed. This instruction must be followed by
an endif instruction. You can nest up to eight ifb and ifc instructions.You must denote at least
one instruction between ifc and endif as well as between ifc and else.

9.4.8.4 Operation

switch (mode)
{

© 2009-2011 Nintendo 63 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

case 0
if (statusO == Status_register0 || statusl == Status_registerl)
condition = true
break;
case 1
if (statusO == Status_register0 && statusl == Status_registerl)
condition = true
break;
case 2
if (statusO == Status_register0)
condition = true
break;
case 3
if (statusl == Status_registerl)
condition = true

break;
}
if (condition == true)
{
}

9.4.8.5 Example

ifc 1,1,0 // Runs the instructions between ifc and else when
// status register 0 or status register 1 is equal to 1

else

endif

9.4.9 else: Start else Block

9.4.9.1 Calling Format

else

9.4.9.2 Operands
None
9.4.9.3 Overview

This is used in combination with 1Fc or i fb. When the if statement is true, processing runs until
this instruction and then skips all instructions until the next endif. When the if statement is false,
processing skips from the 1 ¥ instruction to this one and then runs all instructions between this and

CTR-06-0007-001-C 64 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

endif. You must denote at least one instruction between ifb and el se, between ifc and else,

and between else and endi f.

9.4.9.4 Operation

if (src == true)

endif

9.4.9.5 Example
ifb b0

else

endif

9.4.10endif: End if Block

9.4.10.1 Calling Format
endif

9.4.10.2 Operands
None.

9.4.10.3 Overview

Ends a control block started by i fc or ifb. You must denote at least one instruction between ifb

and endi f, between i1 fc and endif, and between else and endif.

9.4.10.4 Operation

if (src == true)

© 2009-2011 Nintendo
CONFIDENTIAL

65

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

9.4.10.5 Example
ifb bo

else
endif

9.4.11 loop: Start Loop Statement

9.4.11.1 Calling Format

loop src

9.4.11.2 Operands
e Src: Integer register
9.4.11.3 Overview

This is used together with endloop. It repeatedly runs the instructions between loop and endloop
according to the content of the integer register specified by src. The integer register comprises a
loop count, an initial value for the loop-counter register, and an amount by which to increment the
loop-counter register, stored in the count, init, and step components, respectively. (The integer
register is configured via a defi instruction, or as uniform. See “defi: Define integer constants” and
“bind_symbol (symbol_name, start_index [, end_index])" for details.).

The loop-counter register (alL) is initialized when the Toop instruction is executed. When control
reaches endloop, the loop-counter register is incremented by the increment amount and control
returns to the Toop instruction. After this process repeats one time more than the loop count in the
integer register, the 1oop instruction ends and the next instruction after endloop is executed. Up to
four loop instructions can be nested. If the loop-counter register is incremented by a negative
number, its value could become 0 or less but will actually be set to 255 by an underflow. Behavior is
undefined if a floating-point constant register is offset by a value of 96 or greater. You must denote at
least one instruction between loop and endloop.

9.4.11.4 Operation

for (int i =0, aL = src.init ; i < src.count+l ; i++, aL += src.step)

9.4.11.5 Example
defi i0 , 10 , 0, 1

loop i0
add rO , rO , cO[aL] // Adds the total value of c0-c10 to rO
endloop

CTR-06-0007-001-C 66 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

9.4.12 endloop: End Loop Statement

9.4.12.1 Calling Format

endloop

9.4.12.2 Operands
None
9.4.12.3 Overview

Specifies the location to end a loop controlled by the 1oop instruction. You must denote at least one
instruction between loop and endloop.

9.4.12.4 Operation

for Cint i = 0, aL = src.init ; 1 < src.count+l ; i++, aL += src.step)

9.4.12.5 Example
defi i0c, 10, 0, 1

loop i0

add ro , rO , cO[aL] // Adds the total value of c0-c9 to rO
endloop

9.4.13 breakc: Break from Loop Statement by Condition

9.4.13.1 Calling Format

breakc statusO , statusl , mode

9.4.13.2 Operands

e statusO: Value (either 0 or 1) of status register O
e statusl: Value (either 0 or 1) of status register 1
e mode: Conditional mode

OR

AND

Only status register 0

Only status register 1

9.4.13.3 Overview
Forcibly exits a loop control block based on the status register values.

The equality of the values specified by statusO (or statusl) and status register 0 (or 1) is taken to
be the condition. This condition is true when either status register 0 or 1 match when mode is 0;

© 2009-2011 Nintendo 67 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

when both status registers match when mode is 1; when status register 0 matches when mode is 2;
and when status register 1 matches when mode is 3.

When the condition is true, control is forced to exit a loop started by a loop instruction and then
jumps to the next instruction following endloop.

The breakc instruction cannot be called between an i fb(ifc)-endif that is between a loop-
endloop. The breakc instruction also cannot be called immediately prior to an endloop instruction.

9.4.13.4 Operation

for (int i = 0, aL = src.init ; i < src.count+l ; i++, aL += src.step)

{

switch (mode)
{
case 0 :
if (statusO == Status_registerQ
|l statusl == Status_registerl)
condition = true;
break;
case 1 :
if (statusO == Status_registerQ
&& statusl == Status_registerl)
condition = true;
break;
case 2 :
if (statusO == Status_register0)
condition = true;
break;
case 3 :
if (statusl == Status_registerl)
condition = true;
break;
}
if (condition == true)

break;

9.4.13.5 Example

defi i0, 10 , 0, 1

loop i0

add rO , rO , cO[aL] // Adds the total value of c0-c9 to rO
CTR-06-0007-001-C 68 © 2009-2011 Nintendo

Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

breakc 1, 0, 2
nop

endloop

9.4.14 cmp: Compare

// Break if status register 0 is equal to 1

// Cannot issue breakc right before endloop

9.4.14.1 Calling Format

cmp modeO ,

9.4.14.2 Operands

model , srcO , srcl

e modeO: Comparison mode 0

a s wn e o

e model: Comparison mode 1

a MR o

e srcO: Temporary register,
e srcl: Temporary register, input register, or floating-point constant register

9.4.14.3 Overview

input register, or floating-point constant register

Compares the content of registers src0 and srcl and stores the result in the status registers.

Only the x and y components (after swizzling) of src0 and srcl are compared. Status register 0

stores the result of comparing the x components with the condition specified by modeO. Status

register 1 stores the result of comparing the y components with the condition specified by model.

A status register is set to 1 if the following comparison results are true and 0 if they are false.

e srcO == srcl
e srcO != srcil
e srcO < srcl
e srcO <= srcl
e srcO > srcl
e srcO >= srcl

when modeO (or model) is 0
when modeO (or model) is 1
when modeO (or model) is 2
when modeO (or model) is 3
when modeO (or model) is 4
when modeO (or model) is 5

Both status register 0 and 1 are always updated. You cannot update only one of them.

© 2009-2011 Nintendo
CONFIDENTIAL

69

CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

You cannot specify a floating-point constant register for both src0 and srcl. You cannot specify

input registers with different indices in srcO and srcl at the same time.

9.4.14.4 Operation

switch (modeO)
{
case 0: status_register0O (src0.x
case 1: status_registerO (src0.x
case 2: status_register0O (src0.x
case 3: status_register0 (src0.x
case 4: status_registerO (src0.x
case 5: status_registerO (src0.x
}
switch (model)
{
case 0: status_registerl (srcO.y
case 1: status_registerl (srcO.y
case 2: status_registerl (srcO.y
case 3: status_registerl (srcO.y
case 4: status registerl (srcO.y
case 5: status_registerl (srcO.y
}

9.4.14.5 Example
def cO, 0,1, 2, 3
mov ro, cO
cmp 0O, 0, ro, co
ifc 1,1, 2

// This is executed when rO.x ==

endif

9.4.15 end: End Process

== srcl.x) ? 1
I= srcl.x) 21
<srcl.x) ?1
<=srcl.x) ?1
>srcl.x) ? 1
>=srcl.x) ? 1

== srcl.y) ? 1
I=srcl.y) 21

<srcl.y) ? 1 :
<=srcl.y) ? 1:
-0
-0

>srcl.y) ?1
>=srcl.y) ? 1

-0
-0
-0
-0
-0
-0

-0
-0
0

0

break ;
break ;
break ;
break ;
break ;
break ;

break ;
break ;
break ;
break ;
break ;
break ;

9.4.15.1 Calling Format

end

9.4.15.2 Operands

None

CTR-06-0007-001-C
Released: April 26, 2011

70

© 2009-2011 Nintendo
CONFIDENTIAL

Vertex Shader Reference Manual

9.4.15.3 Overview

Ends vertex shader processing. This instruction must be called after a vertex shader has finished
writing all output data. If this instruction is called before all output data has finished being written, the
output data will be undefined. This instruction uses two instructions' worth of the program size.

© 2009-2011 Nintendo 71 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

10 Debug Build

Specifying the -debug option to ctr_VertexShaderAssembler32.exe will result in a debug build.
Although you can use the shader debugger to debug assembler objects created by a debug build, the
objects may run more slowly in POD. If the —~debug option is specified to
ctr_VertexShaderLinker32.exe, all linked assembler objects will be forced to use a debug
build. If the —-nodebug option is specified to ctr_VertexShaderLinker32._exe, all linked
assembler objects will be forced to not use a debug build.

When you link assembler objects created by a debug build with ones that are not, each of the main
objects will use a debug build when it references at least one assembler object that does.

When you do not specify the -debug option to ctr_VertexShaderAssembler32._exe, the input
file path is removed from the object file. Without the full input file path, the shader debugger is
sometimes unable to find the source file.

CTR-06-0007-001-C 72 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

11 Map Files

11.10verview

Specifying the -M option to ctr_VertexShaderLinker32.exe when linking executable files will
cause files to be output with information on the executable files. These are called map files. A map file
is created with the same name as its executable file but uses the extension _map.

The following information is generated: loading objects order, image sizes, and object information.
The following sections provide more details.

11.2Loading Objects Order

This item shows the order in which the main objects were linked, which is the same as the order
specified as an argument to ctr_VertexShaderLinker32._exe. The object order indicated here is
the same as the individual reference points for shader objects specified with the glShaderBinary
function. This also shows which main objects use a debug build.

11.3Image Sizes

This item shows the data size of the linked object files. Instruction indicates the number of
assembly code instructions and Swizzle indicates the number of swizzling and masking patterns
(for details, see section 12.3 Pattern Counts for Swizzling and Masking). Total indicates the entire
size after linking.

11.4Program Code Information

This item shows the location used to store the program code in the executable file. Program code
offset is the offset (in bytes) from the start of the executable file to the address at which the
program code’s data is stored. Program code size is the number of bytes of program code’s data.

11.50Dbject Information

This item shows individual symbol information, output data attribute information, and the starting
program address for the linked main objects. These settings are specified using #pragma
bind_symbol and #pragma output_map, and the program address is set by the main label,
respectively.

11.6Swizzle Pattern Data

This item shows the swizzle pattern data in the executable file.

© 2009-2011 Nintendo 73 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

12 Precautions and Restrictions

Vertex shaders have the following limitations due to characteristics of the hardware.

12.1Starting and Ending a Shader

A shader starts processing from the main label. If all components (X, y, z, and w) are written to the
output registers specified by #pragma output map and the end instruction is called, processing
ends and then restarts for the next vertex. The shader does not run properly if values are not written
to the registers specified by #pragma output map. You must explicitly call the end instruction at
the end of processing.

Once data has been written to every output register, all required processing is recognized to be
complete. It is therefore uncertain whether instructions will run after the last instruction that writes to
the output registers. Normal operations might not result when calling an instruction to read or write
registers after the last instruction to write to the output registers. Do not call any instructions other
than nop between the instruction for the last write to output registers and the end instruction.

You can only write to an output register once. Behavior is not guaranteed if you write to an output
register more than once. This also applies to writing to each component.

If you don't read an input register at least once during processing of a single vertex, the shader might
not behave normally. Be sure to execute at least one read instruction on at least one component of
any input register.

12.2 Step Count

Programs have a maximum step count of 512.

The def, defi, defb, ret, else, endif, and endloop instructions are not calculated as step
counts.

12.3Pattern Counts for Swizzling and Masking

There is a maximum number of patterns for the combination of masking, replacing (swizzling), and
adding signs to input components. This upper limit is 128, of which no more than 32 patterns are
usable with the mad instruction, as well.

Code 12-1 Pattern Count Example 1

add rO , rl.xy , -r2.zw
add r2 , rO.x, r3
mul r3 , r2.xy , -r3.zw
add rd, r2_xxxx, r5.xyzw
CTR-06-0007-001-C 74 © 2009-2011 Nintendo

Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

The first and third instructions used here have the same pattern. The second and fourth instructions
also have the same pattern, so the combined pattern count is 2.

Code 12-2 Pattern Count Example 2

add ro , rl.xy , -r2.zw
mul r2.xy , rO.x , c2.y
mad r3 , r2.xy , -r3.zw , rl.w
cmp 0,1, rl.x, cO.y

The first and third instructions used here are considered to have the same pattern because the
combination for the third instruction (mad) is the same as the combination for the first instruction (add)
except for the src2 operand. This pattern is treated as being usable by the mad instruction, as well.

The combination of src0 and srcl in the fourth instruction (cmp) is the same as the combination of

srcO and srcl in the second instruction (mul), so the second and fourth instructions are considered
to have the same pattern.

12.4Control Instruction Limitations

You must call an ending control instruction after a starting control instruction. Specifically, you must
use the following combinations.

ifb (-else)-endif
ifc (-else)-endif
call-ret
callb-ret
callc-ret
loop-endloop

It is illegal to jump outside of these control blocks using the jpc or jpb jump instructions. You also

cannot call ret from within an i ¥ or loop block.

When cal l instructions are nested, behavior is undefined when another cal l instruction is called

immediately before a ret instruction within a subroutine.

You cannot use the jpc or jpb instruction between the main and endmain labels to jump to an

external location. You also cannot call the instructions from a subroutine to jump to an external
location. You cannot jump to a ret instruction within a subroutine. Behavior is undefined for all of

these controls.

12.5Instructions That Cannot Be Called Consecutively

Some instructions cannot be called consecutively. There are also certain combinations of instructions

that cannot be called consecutively.

© 2009-2011 Nintendo 75 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

12.5.1 Consecutive Calls of else/endif/ret/endloop

The else, endi T, ret, and endloop instructions cannot be called consecutively.

Code 12-3 Instructions That Cannot Be Called Consecutively

ifb b0
nop
nop
ifb bl
nop
else
nop
nop
endif // Error
else
nop
nop
call subroutine // This causes an error because ret is called at the end

// of the call destination
endif

12.5.2 Consecutive Calls of mova

The mova instruction also cannot be called consecutively.

12.5.3 Calls of jpc/jpb Immediately Before else/endif/ret/endloop

Jpc and jpb cannot be called immediately before else, endiF, ret, or endloop.

Code 12-4 jpc and jpb Cannot Be Called Immediately Before else, endif, ret, or endloop

ifb b0

nop

nop
Jumplabel:

nop

nop

Jpb bl, true, jumplabel // Prohibit to call right before endif
endif

12.5.4 Calling breakc Before Endloop

breakc cannot be called immediately before endloop.

CTR-06-0007-001-C 76 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Code 12-5 breakc Cannot Be Called Immediately Before endloop

loop

nop
breakc 1, 1, 1

i0

endloop

// 1t’s prohibited to call breakc right before endloop

12.6Registers That Cannot Be Used Simultaneously

In general, you cannot specify two or more floating-point constant registers for assembly code
instructions that specify two or more src operands. You also cannot specify two or more input

registers. However, you can specify any number of input registers if they have the same index.

Code 12-4 Registers That Cannot Be Used Simultaneously

add
add
add
add

ro ,
ro ,
ro ,
ro ,

cO , cO
cO , cl
vO , vO
vO ,vl

// Error
// Error
// This is not an error.
// Error

Macro instructions are checked for errors after they have been expanded.

12.7Instruction Latency

The following table shows the latency of running each instruction.

Table 12-1 Instruction Latency

Instruction Latency (in clock cycles)
add 3
dp3 5
dp4 5
dph 5
dst 3
exp 4
flr 2
litp 2
log 4
mad 4
max 2
min 2

© 2009-2011 Nintendo
CONFIDENTIAL

77 CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

Instruction Latency (in clock cycles)
mov 2
mova 4
mul 3
nop 1
rcp 4
rsq 4
sge 2
slt 2
cmp 4

Other branch instructions 3orl

12.7.1 Arithmetic and cmp Instruction Latency

Although the previous table gives the approximate number of clock cycles for the latency of arithmetic
instructions and the cmp instruction, these values may change depending on the preceding and
following instructions. Latency may be reduced by queueing up instructions that use unrelated
registers for their calculations.

12.7.2 Branch Instruction Latency

The previous table gives a latency of 3 or 1 for branch instructions. The latency is 1 when a branch
increments the program counter by one and is 3 in all other cases.

12.7.3 Output Order of Calculation Results

Instruction results are never written to a register before the results of an earlier instruction. This is
guaranteed even when low-latency instructions are executed after high-latency instructions.

Code 12-5 Output Order of Calculation Results

exp rO , rl.x

mov rl , cO

When this code is run, exp takes four clock cycles and mov takes two clock cycles. However, the mov
result is never written to rl1 before exp finishes. In this case, mov stalls while reading from the
register and thus delays execution. This is not unique to mov: other instructions stall while reading
from a register in similar situations.

CTR-06-0007-001-C 78 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

12.7.4 Stalls Due to Conflicts When Outputting Calculation Results

If a low-latency instruction is executed after a high-latency instruction and they both complete
simultaneously, the results of the low-latency instruction are output after one clock cycle. Multiple
registers are never written simultaneously.

Code 12-6 Simultaneous Instruction Completion

exp rO , rl.x
mul r2 , c3 , r4

When this code is run, exp takes four clock cycles and mul takes three clock cycles, such that the
results of both rO and r2 would be output simultaneously. However, to avoid multiple register writes
at once, the output of r2 is delayed by one clock cycle.

12.7.5 Stalls Due to Conflicts Among Arithmetic Units

The mad, dp3, dp4, dph, and add instructions all require use of the adder. If these instructions are
executed in sequence, the adder pipeline may get backed up, with instructions executed later waiting
for previously executed instructions to finish, causing higher latency.

The adder is used during the first cycle of the add instruction, the second cycle of the mad instruction,
and the second and third cycles of the dp3, dp4, and dph instructions.

12.7.6 Stalls Due to Instruction Dependencies

Dependencies between issued instructions may cause stalls. This phenomenon occurs when an
instruction stores its calculated results in a register that is used as a source register by the next
instruction, as shown in the following code.

Code 12-7 Register Use Causing a Stall

add rO, r1, r2
mul r4, rO, r3

When run, the preceding code stalls because the results output to rO are used by the next instruction.
This code would not stall, however, if the register is the same but the components are different.

Code 12-8 Using Different Register Components Avoids a Stall

add rO.x, rl1, r2
mul r4, rO.y, r3

The preceding code does not stall because the results output to r0.x are not used by the next
instruction. Register r0 is used consecutively but with different components, so it does not satisfy the
conditions for stalling.

© 2009-2011 Nintendo 79 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

12.8Results of Exceptional Operations

The vertex shader exhibits the following behavior as the result of calculating an exceptional operation.

e NaN is output for the logarithm of a negative value or -O0.

e NaN is output for the square root of a negative value or -0.

e NaN is output for operations that use NaN as an input value (except for the cmp instruction).

¢ Negative inifinity (-~) is output when infinity (=) is subtracted from a number.

¢ Negative infinity (-=) is output for the logarithm of a non-normalized number (a number with an
exponent of 0 and a nonzero significand) or +0.

o Infinity () is output when there is an overflow.

e Negative infinity (-) is output when there is an underflow.

¢ Infinity (<) or negative infinity (-«) is output for a division by positive or negative 0.

12.9Limitations Related to Invalid Data Output

Behavior is not guaranteed when a vertex attribute value of NaN (Not a Number) is output from the
vertex shader (written to an output register). Do not give NaN as an input vertex attribute or uniform
value from the application, nor as the calculation result output from a vertex shader.

12.10 Shader Implementations That Cause Invalid Operations

The order in which shader assembler instructions are executed can cause the hardware to carry out
invalid operations. This can cause the GPU to hang. The shader assembler or linker will output
warnings if a shader is implemented in a way that could cause invalid operations.

The following sections describe the kinds of conditions that could cause invalid operations.

12.10.1Invalid Operation Due to a mova Instruction

Invalid operations can be caused by any number of conditions. This section describes invalid
operations specifically caused by a mova instruction.

Some of the conditions documented here are understood completely, while other conditions are
highly suspect. Use the provided information to avoid known issues and troubleshoot current
problems, but understand that your implementation of other portions of the shader may introduce
results heretofore not seen. Factors to consider include the types of instructions preceding what
appears to be the offending instruction, the combination of registers used, and branch instructions in
registers. Factors to ignore include execution timing and register contents other than branch
instructions. Ultimately, a successful shader implementation is determined by trouble-free behavior as
exhibited on a production unit.

12.10.1.1 Executing a mova Instruction as the Second-to-Last Instruction

Shaders that execute a mova instruction as the second-to-last instruction with no dependence on the
final instruction can cause the hardware to hang. For vertex shaders, the last instruction executed is

CTR-06-0007-001-C 80 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

the last one written to the register. For geometry shaders, the last instruction specifies an end
instruction.

Code 12-9 Vertex Shader Causing Invalid Operations
// Vertex Shader 1

mova a0.x, roO // Final instruction right after mova.
mov 00, r2 // Final instruction does not use a0.x, raising risk of a hang.
end

Code 12-10 Vertex Shader Not Causing Invalid Operations

// Vertex Shader 2

mova a0.x, rO // Final instruction right after mova.

mov 00, c[a0-x] // However, final instruction does use a0.x, so no problem.
end

Code 12-11 Geometry Shader Causing Invalid Operations
// Geometry Shader
mova a0.x, rO // Execute mova.

end // End right after mova raises risk of a hang.

The shader assembler outputs warning 400a0003 whenever a mova instruction comes just before
the end instruction. The shader assembler outputs warning 400a0004 whenever a mova instruction
is followed by an instruction to write to an output register and then by an end instruction, and the
register written to by the mova instruction is not used by the next instruction. Avoid this set of
circumstances by taking steps such as inserting a nop instruction just before the final instruction, or
changing the order of instructions.

12.10.1.2 Executing mova Instructions Just Before and Just After Certain Other Instructions

Combinations of the mova instruction with the else-endif, call-ret, and loop-endloop
instructions can cause the hardware to hang. This section describes all three combinations.

The hardware might hang for an 1 b or i fc code clause when there is a mova instruction both right
before the el se and right after the endif. The shader assembler outputs warning 40070003 when it
detects such an implementation. You can avoid this sequence by taking steps such as inserting a nop
instruction just before the final instruction or changing the order of instructions.

Code 12-12 else-endif Clause Causing Invalid Operations
ifb boO

mova a0.x, rO // Executes a mova just before the else. Jumps to just after the
endif after executing.
else

© 2009-2011 Nintendo 81 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

endif
mova a0.x, rl // This can cause a hang when jumping from just before the else.

The hardware might hang for a call, callb, or cal lc code clause when there is a mova instruction
both right before the final ret of the called subroutine and right after the subroutine returns. The
shader assembler outputs warning 4009000c when it detects such an implementation. You can avoid
this sequence by taking steps such as inserting a nop instruction just before the final instruction or
changing the order of instructions.

Code 12-13 call-ret Clause Causing Invalid Operations

main: // main function.

call 1_function // Jump to 1_function.

mova a0.x, rO // mova again right after returning from I_function.
end // main function ends.

1_function: // Subroutine.

mova a0.x, ril // mova just before ret.

ret

The hardware might hang when there is a mova instruction both right after a oop instruction and
right before an endloop instruction. The shader assembler outputs warning 40070004 when it
detects such an implementation. You can avoid this sequence by taking steps such as inserting a nop
instruction just before the final instruction or changing the order of instructions.

Code 12-14 loop-endloop Clause Causing Invalid Operations
loop 10
mova a0.y, rO // mova right after loop.

mova a0.x, rl // mova right before endloop.

endloop

12.10.1.3 Stalling on a mova Instruction and Branching Right Afterwards

The hardware might hang when executing a mova instruction that a) stalls due to a dependence on
the preceding instruction and b) is immediately followed by a branch instruction. Branch instructions
are jpb, jpc, call, callb, callc, ifb, ifc, and breakc.

CTR-06-0007-001-C 82 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Code 12-15 mova Followed by a Branch Instruction Causing Invalid Operations

dp4 r0, rl, r2 // Write to rO.
mova a0.x, rO.x // r0O depends on dp4, so this stalls.
call I_function // Branch instruction right after a stalling mova.

The shader assembler outputs warning 400a0005 when it detects such an implementation (a branch

instruction following a mova instruction that has a temporary register as its source). You can avoid this
sequence by taking steps such as inserting a nop instruction just before the final instruction or
changing the order of instructions.

12.10.2Invalid Operation Due to a Specific Order of Instructions

The hardware carries out invalid operations when four instructions in a row meet all of the following
conditions. These combinations have repeatedly been performed to successfully reproduce invalid

operations.

1. The first and third instructions are latency-2 instructions (FIr, Litp, max, min, mov, sge, slt, abs).

2. The second instruction is a latency-2 or lower instruction (F1r, Litp, max, min, mov, sge, slt,
abs, nop).

3. The fourth instruction is a branch instruction (jpb, jpc, call, callb, callc, ifb, ifc, breakc).

4. The first instruction stalls. This stall must be for at least two clock cycles when the second
instruction is nop, and at least three clock cycles when the second instruction is not nop.

5. The first and second instructions do not depend on each other.

6. The second and third instructions do not depend on each other.

7. The first and third instructions do depend on each other.

8. One of the dst and one of the src operands for the third command must be the same.

The dependencies in conditions 5, 6, and 7 above describe when one of the dst operands of the
earlier instruction is the same register and same component as one of the src operands of the later
instruction. Having the same register index but different components is not a dependency.

The dependency in condition 8 above describes when the dst and src operands have the same
register index regardless of the component. In other words, this would apply to rO and rO, or r1.x
and rl.y.

The following code shows an example of this situation.

Code 12-16 Instruction Ordering That Causes Invalid Operations

rcp rl, r2.x // First instruction causes a stall.

min r0, rl, r2 // First instruction of the four that meet these

// conditions.

max r3, r4, r5 // Second instruction.

© 2009-2011 Nintendo 83 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

slt r5, rO, r5 // Third instruction.
call 1_function // Fourth instruction.

The first instruction of this chain is min, and the third is slt, both latency-2 instructions, thus meeting
condition 1. The second instruction is max, also latency-2 and thus fulfilling condition 2. The fourth
instruction is cal I, meeting condition 3. The min instruction waits for register rl to be written to by
the rcp instruction, causing a stall for three clock cycles and fulfilling condition 4. min and max are
not dependent, meeting condition 5. max and slt are not dependent, meeting condition 6. min and
st are dependent, meeting condition 7. Last, the dst and srcl operands are the same for sl t,
meeting condition 8.

The shader assembler outputs warning 400a0001 or 400a0002 when it detects an implementation
that meets all these conditions except condition 4.

The shader assembler has no means of telling whether the first instruction stalls, and so cannot
evaluate condition 4. It is possible to get a rough estimate of the length of any stall by using the
performance checking feature of the shader linker, but this is not a conclusive evaluation. Stalling
conditions depend on the instructions executed previously and how registers are used. Shaders
either definitely cause invalid operations, or definitely do not cause invalid operations. A shader that
operates properly even when the shader assembler outputs a warning must therefore not meet
condition 4, and is thus safe to continue using. If a shader does cause invalid operations, avoid this
sequence by taking steps such as inserting a nop instruction just before the final instruction or
changing the order of instructions.

CTR-06-0007-001-C 84 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

13 Error Messages for the Assembler and Linker

13.10verview

This chapter describes the error messages output by the assembler and linker. Errors are output in
the following format.

Input filename (error line number): Error level (Error Code): Error
description

The error level is either warning or error. Processing can continue when there is a warning. The input
filename, error line number, and other information may not be displayed for some types of errors.

13.2Assembler Error Messages

This section describes the errors and error codes output by the assembler.

80010001
(80010001): -0 option cannot be specified more than once.

The -0 option cannot be specified more than once.

80010003
(80010003): Definition key is not specified with —-D option

The key to define for the -D option has not been specified.

Specify it in the format "-Dkey" or "-Dkey=value".

80010004

(80010004): Definition value is not specified with “argument name” macro.
A value has not been correctly set for the definition macro with the -D option.

Specify it in the format "-Dkey" or "-Dkey=value".

80010005

(80010005): “argument name” includes illegal character.

A macro was defined for the -D option using illegal characters.

Use single-byte alphanumeric characters and underscores for macro names.

80010006
(80010006): “Macro name’ macro is redefined.

More than one macro with the same name has been defined with the -D option.

© 2009-2011 Nintendo 85 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

80010007
(80010007): Only one assembler file can be specified as input.

More than one assembler file has been specified as an input file. Specify only one assembler file.

80010008
(80010008): Input Ffile is not specified.

An assembler file has not been specified as an input file.

8001000b
(8001000b): “Macro name” macro name cannot start from number.

You cannot use a number as the first character of a macro with the -D option.

8001000d
(8001000d) : Unknown options are specified.

Unknown options were specified.

80030001
(80030001): Cannot open “filename”’.

Could not open the specified assembler file.

80030002
(80030002): Include filename is not specified.

A filename has not been specified with a #include statement.

Specify it in the format "#include "filename™".

80030003
(80030003): Syntax error in #include.
A #include statement was denoted incorrectly.

Specify it in the format "#include "filename™".

80030004
(80030004) : Cannot open include file “filename™.

Could not open an include file.

Specify the include path using the -1 option.

80030005
(80030005): Definition key is not specified.

A #define statement was denoted incorrectly.

Use the format "#define key value".

CTR-06-0007-001-C 86 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

80030006
(80030006) : Definition key include illegal character.

Use single-byte alphanumeric characters and underscores for macro names defined by #define
statements.

80030007
(80030007): “Macro name’ macro is redefined.

Duplicate macros have been defined by #define statements.

80030008
(80030008) : Definition key is not specified.

A #undeT statement was denoted incorrectly.

Use the format "#undef key".

8003000b
(8003000b) : Correspondent “#ifdef” Is not found.

A#endi T statement is missing a corresponding #i fdef statement.

8003000c
(8003000c) : Undefined directive.

An unsupported preprocessor pseudo-instruction has been specified.

8003000d
(8003000d) : #ifdef is not closed.

A #i1fdef statement is missing a corresponding #endi T statement.

8003000e
(8003000e): Syntax error. Macro is not specified.

A macro has not been specified for a #ifdef statement.

Specify the format "#ifdef macro".

8003000f
(8003000F): Syntax error. Invalid string is detected after macro.

A #ifdeT statement was entered incorrectly.

Specify the format "#ifdef macro".

80030010
(80030010): Syntax error. Macro is not specified.

A macro has not been specified for a #i fndef statement.

© 2009-2011 Nintendo 87 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

Specify the format "#ifndef macro".

80030011
(80030011): Syntax error. Invalid string is detected after macro.

A #ifndef statement was entered incorrectly.

Specify the format "#ifndef macro".

80030012
(80030012): Syntax Error. Invalid string is detected after directive.

Use single-byte alphanumeric characters and underscores for macro names specified by #i f,
#ifdef, and #1 fndef statements.

80030013
(80030013): Syntax Error. Invalid string is detected after directive.

An invalid string was detected after a #e lse statement.

80030014
(80030014): Correspondent “#ifdef” is not found.

Could not find a #ifdef statement corresponding to an #else statement.

80030015
(80030015): Syntax error. Invalid expression is detected.

A #i1 T statement was denoted incorrectly.

80030017
(80030017): Syntax error. Invalid expression is detected.

A macro entered after a #i1f statement uses invalid characters.

Use single-byte alphanumeric characters and underscores for macro names specified with #i1F
statements.

80030018
(80030018) : #error

This error is intentionally output by an #error statement.

80030019
(80030019): The top character of definition key must not be number.

You cannot use a number as the first character of a macro name defined using a #define statement.

8003001a
(8003001a): Macro parentheses have not been closed properly.

CTR-06-0007-001-C 88 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Parentheses are not denoted correctly in a definition using the #define statement.

8003001b
(8003001b): Invalid character is detected in macro argument.

One of the arguments to a function macro uses an illegal string.

Use single-byte alphanumeric characters and underscores for macro names.

8003001c
(8003001c): Duplicate macro argument is detected.

The same string is used more than once in the arguments to a function macro.

8003001d
(8003001d): Invalid macro argument is specified.

An incorrectly defined macro function was used.

8003001e
(8003001e): pragma command bind_symbol is invalid format.

The #pragma bind_symbol statement was denoted incorrectly.

8003001f
(8003001F): Undefined pragma command.

An unsupported pragma command was specified.

80030020
(80030020): Start index should be less than or equal to end index.

The starting register index is larger than the ending register index in a #pragma bind_symbol statement.

80030021
(80030021): Binding symbol name is duplicated.

Duplicate symbol names are defined by #pragma bind_symbol statements.

80030022
(80030022): Invalid register index is specified.

An invalid register index has been defined by a #pragma bind_symbol statement.

(The maximum number of registers was exceeded.)

80030023
(80030023): Specified registers are already bound to other symbol.

The same input register was bound to more than one symbol by #pragma bind_symbol statements.

© 2009-2011 Nintendo 89 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

An input register corresponds to a single register and cannot be bound to more than one symbol name.

80030024
(80030024): Pragma command output_map is invalid format.

The #pragma output_map statement was denoted incorrectly.

80030025
(80030025): Invalid data name is specified for pragma command output_map.

An invalid data attribute name has been specified in a #pragma output_map statement.

8003002c
(8003002c): Specified register is already mapped.

The register specified by a #pragma output_map statement has already been specified by another
#pragma output_map statement.

8003002d
(8003002d): Specified attribute iIs already mapped.

The data attribute name specified by a #pragma output_map statement has already been specified
by another #pragma output_map statement.

80030033
(80030033): If all textures are mapped, texturel and texture2 need to be mapped to
same register.

texturel and texture2 must be mapped to the same register when all textures have been defined
by #pragma output_map statements.

80030034
(80030034): comment /* */ is not closed.

Acomment of the /* ... */ type has not been closed properly.

80040001
(80040001): No vertex shader instruction.

No shader instruction has been denoted.

80040005
(80040005): loop instruction is not closed by endloop.

A loop instruction is missing a corresponding endloop instruction.

80040007
(80040007): if or else instruction is not closed by endif.

CTR-06-0007-001-C 90 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

An 1Fc or ifb instruction is missing a corresponding endi f instruction.

80040009
(80040009) : Unknown instruction.

An unknown shader instruction was denoted.

8004000c
(8004000c): The number of operand is short.

There are not enough operands.

8004000d
(8004000d): There are some extra operand.

Too many operands have been specified.

8004000e
(8004000e): “Operand” is unknown operand type.

An unknown operand type was specified.

8004000f
(8004000F): “Operand” is invalid format operand.

An invalid operand type was specified.

80040010
(80040010): ““Operand” is invalid offset.

The register offset notation is not correct.

80040011
(80040011): “Operand” is invalid address register offset.

The register offset notation for the address register is not correct.

80040012
(80040012): ““Operand” include unknown component.

An unknown component has been specified.

80040015
(80040015): break instruction is not between loop and endloop.

A break instruction was not placed between a loop and endloop instruction.

80040016
(80040016): loop instruction nest achieved limit.

© 2009-2011 Nintendo 91 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

A loop instruction was used beyond the nesting limit.

Up to 4 1oop statements can be nested.

80040017
(80040017): Correspondent loop instruction is not found.

An endloop instruction is missing a corresponding loop instruction.

8004001a
(8004001a): if instruction nest achieved limit.

An 1fb or ifc instruction was used beyond the nesting limit.

You can nest up to eight ifb and ifc instructions.

8004001b
(8004001b): Correspondent if instruction is not found.

An else instruction is missing a corresponding i fc or ifb instruction.

8004001d
(8004001d): loop instruction is not closed, but ret instruction is called.

A ret instruction cannot be placed between a loop and endloop instruction.

8004001f
(8004001fF): if else instruction Is not closed, but ret instruction is called.

A ret instruction cannot be placed between an ifc, 1 fb, or else instruction and an endif
instruction.

80040021
(80040021): “Operand” is invalid format operand.

An invalid operand format was specified.

80040022
(80040022): “Operand” is invalid index.

An invalid index was specified for an operand register.

80040023
(80040023): “Operand” is invalid format operand.

The parentheses used to specify an offset for an operand register have not been closed.

80040024
(80040024): “Operand” is invalid offset.

An invalid offset has been specified for an operand register.

CTR-06-0007-001-C 92 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

80040025
(80040025): ““Operand” is invalid offset.

Aregister specified with an offset for an operand register is not allowed to use an index.

80040026
(80040026) : “Operand” is invalid offset.

An invalid index was specified for an operand register.

80040027
(80040027): Correspondent if instruction is not found.

An endi T instruction is missing a corresponding i1fc or i fb instruction.

8004002a
(8004002a): Const register definition is duplicate.

Duplicate floating-point constant registers have been defined by def instructions.

8004002b
(8004002b): Bool register definition is duplicate.

Duplicate Boolean registers have been defined by defb instructions.

8004002c
(8004002c): Integer register definition is duplicate.

Duplicate integer registers have been defined by defi instructions.

80040031
(80040031): “Label name” is already used label name.

Duplicate label names have been used.

80040032
(80040032): Invalid label name is specified.

An invalid character has been used in a label name.

Use single-byte alphanumeric characters and underscores for label names.

80040035
(80040035): Error occurred while replacing macro instruction.

An error occurred while expanding a macro instruction.

Check whether you have already used a def instruction to define the floating-point constant registers
that are automatically defined by sincos and other instructions.

80040039

© 2009-2011 Nintendo 93 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

(80040039): Cannot break from if statement.

You cannot place a break instruction within an 1fc or i fb control block.

8004003a
(8004003a): ret instruction cannot be used just after endloop or endif.

A ret instruction cannot be called immediately after an endloop or endi f instruction.

8004003b
(8004003b) :At least 1 instruction need to be between if and else.

At least one assembly code instruction is required between an i fb or i fc instruction and an else

instruction.

8004003c
(8004003c):At least 1 instruction need to be between else and endif.

At least one assembly code instruction is required between an else instruction and an endif

instruction.

8004003d
(8004003d) :def instruction cannot specify the register defined by pragma

bind_symbol.

Aregister specified with #pragma bind_symbol cannot be specified with a def instruction.

8004003e
(8004003e) :defb instruction cannot specify the register defined by pragma
bind_symbol .

A register specified with #pragma bind_symbol cannot be specified with a defb instruction.

8004003f
(8004003fF) :defi instruction cannot specify the register defined by pragma

bind_symbol.

A register specified with #pragma bind_symbol cannot be specified with a defi instruction.

80040040
(80040040) :At least 1 instruction need to be between loop and endloop.

At least one assembly code instruction is required between a loop instruction and an endloop
instruction.

80040041
(80040041) :mova cannot be called continuously.

The mova instruction cannot be called consecutively.

CTR-06-0007-001-C 94 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

80040042
(80040042): ret cannot be called just after jpb and jpc.

The ret instruction cannot be called immediately after the jpb or jpc instruction.

.80050001
(80050001): Cannot open output File.

Cannot open the output file.

Confirm whether there is another file with the same name and read-only or other attributes.

80050003
(80050003): The size of swizzle register is short.

The maximum number of swizzling and masking patterns has been exceeded.

80050005
(80050005): ret instruction cannot be found for Label “label name”.

A label is missing a corresponding ret instruction.

A ret instruction is required for labels that are called as subroutines.

80050007
(80050007): The number of label is too big.

You cannot configure more than 65,535 labels.

8005000a
(8005000a): The exceptional jump is detected.

Exceptional jump control has occurred.

See section 12.5 Instructions That Cannot Be Called Consecutively.

8005000b
(8005000b): Cannot jump out from if statement and loop statement.

A jpb or jpc instruction cannot be used to jump from within an ifc or 1 fb instruction and an endif
instruction, or from within a loop instruction and an endloop instruction, to outside a control block.

8005000c
(8005000c) : breakc cannot be called just before endloop instruction.

A breakc instruction cannot be called immediately before an endloop instruction.

8005000d
(8005000d): jpb and jpc cannot be called just before endloop instruction.

A jpb or jpc instruction cannot be called immediately before an endloop instruction.

© 2009-2011 Nintendo 95 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

8005000e
(8005000e): jpb and jpc cannot be called just before endif instruction.

A jpb or jpc instruction cannot be called immediately before an endi ¥ instruction.

8005000f
(8005000F): jpb and jpc cannot be called just before else instruction.

A jpb or Jpc instruction cannot be called immediately before an else instruction.

80050010
(80050010): jpb and jpc cannot jump into if statement and loop statement.

A jpb or jpc instruction cannot jump into an if-endif or loop-endloop statement from an
external location.

80060004
(80060004): “Operand” is invalid operand type.

An unsupported operand was specified for a shader instruction.

80060005
(80060005): Value cannot be specified for “operand”.

You cannot specify a direct value for an operand.

80060006
(80060006): Index cannot be specified for “operand™.

You cannot specify a register number for an operand.

80060007
(80060007) : Component cannot be specified for “operand”.

You cannot specify a component for the operand.

80060009
(80060009): "-" cannot be specified for "operand'.

You cannot specify a minus sign ("-") with the operand.

8006000b
(8006000b): Offset index cannot be specified for "operand™.

You cannot specify an index offset for the operand.

8006000c
(8006000c): Address register offset cannot be specified for "operand™.

You cannot specify an index offset using an address register for the operand.

CTR-06-0007-001-C 96 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

8006000d
(8006000d) : Loop counter register offset cannot be specified for "operand™.

You cannot specify an index offset using the loop-counter register for the operand.

8006000e
(8006000e): Loop counter register and address register cannot be specified
together.

The loop-counter register and address register cannot be used at the same time.

8006000f
(8006000F): Index is not specified In "operand™.

Aregister number has not been specified for the operand's register.

80060010
(80060010): Invalid index is specified in "operand”.

The operand's register number exceeds the maximum number of registers.

80060011
(80060011): Invalid mask is specified for dest.

Masking has been incorrectly specified with the dest operand.

Specify masking in x, y, z, w order.

80060012
(80060012): Multiple constant registers cannot be specified at the same time.

You cannot specify more than one floating-point constant register as an operand at the same time.

80060016
(80060016): Src must have one of the following masks: .x|.-y|-z]-w-

You must use one of the following swizzling specifications with the src operand: .x, .y, -z, or .w.

80060017
(80060017):SrcO0 and dest cannot be the same.

You cannot specify the same register for srcO and dest.

80060018
(80060018): SrcO cannot have any swizzle except the default swizzle (-xyzw)

You cannot use a swizzling specification other than . xyzw with srcoO.

80060019
(80060019) : Dest must have one of the following masks: _Xx|.y|-z|-xy|-xz]-yz]-xyz.

© 2009-2011 Nintendo 97 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

You must specify one of the following masks with dest: .x, .y, .z, .Xy, .XZ, .yz, Or .XyZ.

8006001b
(8006001b): Dest must have "mask pattern'™ mask.

You must specify one of the masks shown by the mask pattern with dest.

8006001f
(8006001fF): Dest and srcO cannot be the same.

You cannot specify the same register for dest and srcO.

80060020
(80060020): Dest and src cannot be the same.

You cannot specify the same register for dest and src.

80060021
(80060021): SrcO must have one of the following masks: .x|.y]|-z|-w-

You must use one of the following swizzling specifications with srcO: . X, .y, -z, or .w.

80060022
(80060022): Srcl must have one of the following masks: .x|-y|-z]-w-

You must use one of the following swizzling specifications with srcl: .x, .y, -z, or .w.

80060023
(80060023): Dest and srcl cannot be the same.

You cannot specify the same register for dest and srcl.

80060024
(80060024): All operand must be the different register.

All operands must be different registers.

80060025
(80060025): Dest must have one of the following masks: _x|.y]-xy-

You must specify one of the following masks with dest: .x, .y, or .xy.

80060026
(80060026) : Source modifier and swizzling cannot be specified for srcl and src2.

You cannot use swizzling or minus signs with srcl1 and src2.

80060028
(80060028): Dest and srcl cannot be the same.

CTR-06-0007-001-C 98 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

You cannot specify the same register for dest and srcl.

80060029
(80060029): Srcl cannot have any swizzle except the default swizzle (.xyzw).

You cannot use a swizzling specification other than .xyzw with srcl.

8006002a
(8006002a) : Dest must have one of the following masks: _Xx|.y|-z|-xy|-xz]-yz]-xyz.

You must specify one of the following masks with dest: .x, .y, -z, - Xy, -XZ, .yz, or .XyZzZ.

8006002c
(8006002c): Source modifier and swizzling cannot be specified for srcl.

You cannot use swizzling or minus signs with srcl.

8006002d
(8006002d) : Source modifier and swizzling cannot be specified for src2.

You cannot use swizzling or minus signs with src2.

8006002e
(8006002e): Invalid index is specified In "operand™.

An invalid register number has been specified for the operand.

Specify the first register number for the operands of m4x4 and other instructions. Confirm whether the
register numbers used following macro expansion exceed the maximum number of registers.

8006002f
(8006002F) : Constant register cannot be used for srcO.

You cannot use a floating-point constant register for srco.

80060030
(80060030): Compare mode must be O or 1, 2, 3, 4, 5.

You must specify a value between 0 and 5 for the comparison mode with the cmp instruction.

80060031
(80060031): Status register bit must be 0 or 1.

You must specify a value of 0 or 1 for the status register.

80060032
(80060032): Condition mode is 0:OR 1:AND 2:0OnlyStatusO 3:0OnlyStatusl.

You must specify one of the following conditional modes: 0 (OR), 1 (AND), 2 (OnlyStatus0), or 3
(OnlyStatusl).

© 2009-2011 Nintendo 99 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

80060033
(80060033): Address register component must be x or y.

You must specify either the x or y component for the address register.

80060036
(80060036): SrcO and srcl cannot be the same.

You cannot specify the same register for srcO and srcl.

80060037
(80060037): Srcl and src2 cannot be the same.

You cannot specify the same register for srcl and src2.

80060038
(80060038): Dest and src2 cannot be the same.

You cannot specify the same register for dest and src2.

8006003b
(8006003b): Loop count must be in the range [0, 255].

You must use a value between 0 and 255 to set the loop count for the integer register defined by the
defi instruction.

8006003c
(8006003c): Loop counter initial value must be in the range [0, 255].

You must use a value between 0 and 255 to set the initial value for the loop-counter register for the
integer register defined by the defi instruction.

8006003d
(8006003d): Loop counter step must be in the range [-128, 127].

You must use a value between -128 and 127 to set the amount by which to increment the loop-
counter register for the integer register defined by the defi instruction.

80060040
(80060040): Multiple input registers cannot be specified at the same time.

You cannot specify more than one input register at the same time for the src operand. You can
specify the same register twice at the same time.

Code 13-1 Example for Error 80060040

add rO , vO , vO // This does not cause an error
add rO , vO, vl // This causes an error

40070001

CTR-06-0007-001-C 100 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

(40070001): Label “label name” is undefined.

A label could not be found.
(You can resolve this by linking another object that includes the label.)

40070003
(40070003): mova instruction both before else and after endif might cause the

hardware to hang.

The hardware might hang when there is a mova instruction both right before an e lse instruction and
right after an endi f instruction. See section 12.10.1 Invalid Operation Due to a mova Instruction.

40070004
(40070004): mova instruction at both first and last code in loop statement might

cause the hardware to hang.

The hardware might hang when there is a mova instruction both right after a 1oop instruction and
right before an endloop instruction. See section 12.10.1 Invalid Operation Due to a mova Instruction.

400a0001
(400a0001): The series of 4 instructions from here might cause the hardware to hang

if this instruction stalls for more than 3 clock cycles.

This series of four instructions meets the set of conditions that might cause the hardware to hang.
The hardware might hang if the instruction on the indicated line stalls for at least three clock cycles.
See section 12.10.2 Invalid Operation Due to a Specific Order of Instructions.

400a0002
(400a0002): The series of 4 instructions from here might cause the hardware to hang

if this instruction stalls for more than 1 clock cycle.

This series of four instructions meets the set of conditions that might cause the hardware to hang.
The hardware might hang if the instruction on the indicated line stalls for at least two clock cycles.
See section 12.10.2 Invalid Operation Due to a Specific Order of Instructions.

400a0003
(400a0003): mova instruction just before end instruction might cause the hardware

to hang.-

The hardware might hang whenever a mova instruction comes just before the end instruction. See
section 12.10.1 Invalid Operation Due to a mova Instruction.

400a0004
(400a0004): mova instruction just before the last instruction writing to output

register might cause the hardware to hang.

The hardware might hang whenever a mova instruction is followed by an instruction to write to an output
register and then by an end instruction. See section 12.10.1 Invalid Operation Due to a mova Instruction.

© 2009-2011 Nintendo 101 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

400a0005
(400a0005): mova instruction just before branch instruction might cause the

hardware to hang if mova stalled due to a register dependency.

The hardware might hang whenever a branch instruction follows a mova instruction that depends on
the register of a preceding instruction and therefore stalls. See section 12.10.1 Invalid Operation Due
to a mova Instruction.

13.3Linker Error Messages

This chapter describes the errors and error codes output by the linker.

80080001
(80080001): Input File is not specified.

An input file has not been specified.

80080005
(80080005): “Argument” is not found.

The input file could not be found.

80080006
(80080006) : Exceeded max number of long swizzle masks/patterns.

Exceeded the maximum number of swizzling patterns for the mad instruction.

80080007
(80080007): Exceeded max number of swizzle masks/patterns.

The total number of swizzling patterns has exceeded the limit.

8008000f
(8008000F): Label "label name'"™ is duplicate.

Duplicate label names have been defined in a subroutine object.

80080012
(80080012): Cannot open output file.

Cannot generate the executable file.

Confirm whether another file with the same name and read-only or other attributes exists.

80080014
(80080014): "Input filename' is invalid file format.

The input file is not an object file.

80080015

CTR-06-0007-001-C 102 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

(80080015): Some input files are the same name.

Input files with the same name have been specified.

8008001d
(8008001d): *Label name'™ is not subroutine.

A ret instruction has not been set for a label called as a subroutine from a cal I instruction.

8008001f
(8008001fF): "Label name™ cannot be found in input object files.

Could not find a label referenced from an input file.

80080020
(80080020) : Vertex shader size is over the limit.

The maximum number of shader instructions has been exceeded.

You can link a shader with up to 512 instructions.

80080022
(80080022): "Register name™ is duplicately defined in "object name' and "object

name' .

Aregister has been defined with different values in multiple objects using def, defi, or defb instructions.

80080024
(80080024): "Register name"™ is duplicately defined in "object name'" and "object

name" .

#pragma output_map definitions have mapped an output register to different output data attributes
in multiple objects.

80080025
(80080025) : symbol "'symbol name"™ is duplicately defined in "object name'"™ and

"object name™.

#pragma bind_symbol definitions have bound a symbol name to different registers in multiple objects.

8008002a
(8008002a) : symbol *symbol name™ in "object name' and "symbol name"™ in "object

name' are bound to the same register.

#pragma bind_symbol definitions have bound symbols in two different objects to the same input
register.

8008002b
(8008002b): "Label name'™ is duplicately defined in "subroutine object name"

© 2009-2011 Nintendo 103 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

A label name in a main object has also been defined in a subroutine object.

8008002¢c
(8008002c): "Output data attribute name" is duplicately defined in "object name™
and "object name™.

#pragma output_map definitions have mapped an output data attribute to different output registers
in multiple objects.

8008002d
(8008002d): Main routine cannot be found.

The input files do not have an object with the main and endmain labels.

8008002e
(8008002e): Cannot open map file.

Cannot generate the map file.

Confirm whether another file with the same name and read-only or other attributes exists.

8008002f
(8008002f): No input attribute is defined.

No input attributes have been defined.

80080030
(80080030): No output map is defined.

No output attributes have been defined.

80080031
(80080031): -debug and —nodebug cannot be specified together.

You cannot specify the -debug and -nodebug options together.

80080032
(80080032): def(bi) in ***_obj and bind_symbol in ***_obj specify the same register

**_
You cannot specify the same register with bind_symbol and def instructions.

80080033
(80080033): texturel and texture2 need to be mapped to same register if 4 textures
are mapped.

texturel and texture2 must be mapped to the same register when four textures have been set
by output_map statements.

CTR-06-0007-001-C 104 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

40090001
(40090001): end instruction is not found.

The end instruction is not found.

40090002
(40090002): end instruction is found in loop statement.

The end instruction was found in the loop-endloop statement.

40090003
(40090003): end instruction is found in only one of if and else statement.

The end instruction was found in only one of the if-else or else-endi T statements.

40090004
(40090004) : input register "Register Name'™ is not used.

There is a possibility that an input register defined by #pragma bind_symbol is not used.

40090005
(40090005): The access patterns of input registers are different between if and
else statement.

The input registers for the 1 F-else statement and the else-endi T statement are different.

40090006
(40090006) : output register ""Register Name'" is not set.

The output register defined with #pragma output_map may not be written.

4009000
(40090007): output register is set in loop statement.

The output register is set in the loop-endloop instruction.

40090008
(40090008) : The access patterns of output registers are different between if and
else statement.

The output register in use differs between the if-else statement and the else-endi f statement.

40090009
(40090009) : output register ""Register Name'"™ is already set before.

The output register is being written to multiple times.

4009000a
(40090009a) : Recursive call is found, and skipped.

© 2009-2011 Nintendo 105 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

A subroutine is being called recursively. The consistency checker feature will skip the call that is being
called recursively.

4009000b
(40090009b) : Cannot open file for performance report.

Cannot create a file for the output of the result of the performance checker feature.

4009000c
(4009000c): mova instruction both before and after returning from subroutine might

cause the hardware to hang.

The hardware might hang for a call, callb, or cal lc code clause when there is a mova instruction
both right before the final ret of the called subroutine and right after the subroutine returns. See
section 12.10.1 Invalid Operation Due to a mova Instruction.

CTR-06-0007-001-C 106 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

14 File Format

This chapter describes the format of files generated by the assembler tools.

14.1Intermediate Object Files

This section describes the format of intermediate object files generated by
ctr_VertexShaderAssembler32.exe.

14.1.1 Overview

Each file has the following structure.

Figure 14-1 Intermediate Object File Structure

File Header

Setup Information Block

Label Information Block

Program Code Information Block

Swizzle Data Information Block

Line Information Block

Relocation Information Block

Outmap Information Block

Bind Symbol Information Block

String Data Block

The following sections give details on each component.

14.1.2 File Header

Afixed file header is placed at the beginning of each file. The header information is used to get the
placement and number of data entries for each information block. The file header has the following
structure.

© 2009-2011 Nintendo 107 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

Code 14-1 File Header Structure
typedef struct tagOBJFILEHEADER {

char signature[4];

char version[2];

unsigned char shaderType;

unsigned char mergeOutputMapsDebug;

unsigned short inputMask;

unsigned short outputMask;

unsigned char geometryDataMode;

unsigned char startlndex;

unsigned char subdivPatchSize;

unsigned char constVertexNumber;

unsigned int setupOffset;

unsigned Int setupCount;

unsigned int labelOffset;

unsigned int labelCount;

unsigned int instOffset;

unsigned Int instCount;

unsigned int swizzleOffset;

unsigned int swizzleCount;

unsigned int lineOffset;

unsigned int lineCount;

unsigned int relocOffset;

unsigned int relocCount;

unsigned Int outmapOffset;

unsigned int outmapCount;

unsigned Int bsymOffset;

unsigned Iint bsymCount;

unsigned Int stringOffset;

unsigned Int stringSize;

} OBJFILEHEADER

Table 14-1 File Header Fields

Name Description
signature Stores the string "DVOJ".
version Includes the version of the assembler tool. The first byte is the major version and
the second byte is the minor version.
shaderType This is set to 0 for a vertex shader object and to 1 for a geometry shader object.
mergeOutputMapsDebug | Bit 0 is used by internal settings for the geometry shader.

Bit 1 is set equal to 1 for debug builds and to 0 otherwise.

CTR-06-0007-001-C
Released: April 26, 2011

108 © 2009-2011 Nintendo
CONFIDENTIAL

Vertex Shader Reference Manual

Name Description

inputMask The input registers information to use. A value of 1 is set for input registers defined
by #pragma bind_symbol.

outputMask The output registers information to use. A value of 1 is set for output registers
defined by #pragma output_map.

geometryDataMode Internal information for the geometry shader.

startindex Internal information for the geometry shader.

subdivPatchSize Internal information for the geometry shader.

constVertexNumber Internal information for the geometry shader.

setupOffset The byte index within the file to the setup information block.

setupCount The number of data entries for setup information.

labelOffset The byte index within the file to the label information block.

labelCount The number of data entries for label information.

instOffset The byte index within the file to the program code information block.

instCount The number of data entries for program code information.

swizzleOffset The byte index within the file to the swizzle data information block.

swizzleCount

The number of data entries for swizzle data information.

lineOffset

The byte index within the file to the line information block.

lineCount The number of data entries for line information.

relocOffset The byte index within the file to the relocation information block.
relocCount The number of data entries for relocation information.
outmapOffset The byte index within the file to the Outmap information block.
outmapCount The number of data entries for Outmap information.

bsymOffset The byte index within the file to the Bind symbol information block.
bsymCount The number of data entries for Bind symbol information.
stringOffset The byte index within the file to the string data block.
stringSize The number of bytes in the string data block.

© 2009-2011 Nintendo
CONFIDENTIAL

109 CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

14.1.3 Setup Information

There are setupCount entries in the setup information block given by setupOffset in the file
header. Setup data is configured by the def, defi and defb instructions in shader assembly. Each
setup information entry has the following structure.

Code 14-2 Setup Information Structure
typedef struct tagSETUPINFO{
unsigned short type;

unsigned short index;

unsigned int value[4];

} SETUPINFO

Table 14-2 Setup Information Fields

Name Description

type |e 0: Setup information for a Boolean register
e 1: Setup information for an integer register
e 2: Setup information for a floating-point constant register

index | Register index

value | For a Boolean register, this has a value of 1 when value[0] is true and 0 when value[0] is
false. For an integer register, this stores the three values defined by a defi instruction in bits [7:0],
[15:8], and [23:16] of value[0], respectively. For a floating-point constant register, this converts the
four values defined by a def instruction into 24-bit floating-point numbers and then stores them in
value[0] through value[3].

14.1.4 Label Information

There are labelCount entries in the label information block given by label0ffset in the file
header. Label information is set in shader assembly. Each label information entry has the following
structure.

Code 14-3 Label Information Structure
typedef struct tagLABELINFO{
unsigned int index;

unsigned Int address;

unsigned int length;

unsigned int stringlndex;

} LABELINFO

CTR-06-0007-001-C 110 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Table 14-3 Label Information Fields

Name Description
index The label information index. These are numbered starting at 0x000210000 in the order that
they were defined in shader assembly.
address The shader program address set by the label.
length The distance from the address set by the label to the ret instruction. This is the subroutine

length.

stringlndex | The pyte index in the string data block that stores the label name.

14.1.5 Program Code Information

There are instCount entries in the program code information block given by instOffset in the file
header. 32 bits of program code information correspond to a single instruction in shader assembly.

Note: This does not include definition instructions. Macro instructions and control flow instructions
may not always have a one-to-one correspondence with program code information.

14.1.6 Swizzle Data Information

There are swizzleCount entries in the swizzle data information block given by swizzleOffset in
the file header. Each swizzle data information entry has the following structure.

Code 14-4 Swizzle Data Information Structure

typedef struct tagSWIZZLEINFO{
unsigned int value;

unsigned short usedInfo;

unsigned short reserve;
} SWIZZLEINFO

Table 14-4 Swizzle Data Information Fields

Name Description

value
The swizzle data itself.

usedInfo
Internal information used when linking.

reserve
Areserved region.

© 2009-2011 Nintendo 111 CTR-06-0007-001-C

CONFIDENTIAL

Released: April 26, 2011

Vertex Shader Reference Manual

14.1.7 Line Information

There are 1ineCount entries in the line information block indicated by 1ineOffset in the file
header. Each line information entry has a one-to-one correspondence with a program code
information entry: it stores the filename and line count of the shader object for the program code
information entry with the same index. Each line information entry has the following structure.

Code 14-5 Line Information Structure
typedef struct tagLINEINFO{
unsigned int stringlndex;
unsigned int lineNo;

} LINEINFO

Table 14-5 Line Information Fields

Name Description

stringlIndex | The index to the region storing the filename of the shader assembly for the corresponding
program code. This is the index (in bytes) within the string data block.

lineNo The number of lines of shader assembly for the corresponding program code.

14.1.8 Relocation Information

There are relocCount entries in the relocation information block indicated by relocOffset in the
file header. The relocation information is accessed at link time. Each relocation entry has the following
structure.

Code 14-6 Relocation Information Structure
typedef struct tagRELOCATIONINFO{
unsigned int address;

unsigned short type;

unsigned short reserve;

unsigned int stringlndex;

} RELOCATIONINFO

Table 14-6 Relocation Information Fields

Name Description
address The program address associated with the relocation entry.
type e 0: Address relocation

1: Unresolved subroutine relocation
4: Swizzle index relocation

CTR-06-0007-001-C 112 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Name Description

reserve Areserved region.

stringlndex | The byte offset within the string data block to the location storing the label name for the
unresolved subroutine.

14.1.9 Outmap Information

There are outmapCount entries in the outmap information block indicated by outmapOffset in the
file header. Outmap information is defined by #pragma output_map in shader assembly. Each
outmap information entry has the following structure.

Code 14-7 Outmap Information Structure
typedef struct tagOUTMAPINFO{
unsigned short type;

unsigned short index;

unsigned short mask;

unsigned short reserve;

} OUTMAPINFO

Table 14-7 Outmap Information Fields

Name Description

type This stores the attribute type.
e 0: position

e 1: quaternion

e 2: color

e 3: texcoordO

e 4: texcoordOw

¢ 5: texcoordl

e 6: texcoord2

e 8: view

e 9: generic

index | The output register index.

mask The specified components. These are x, y, z, and w in order from the least-significant bit.

Feserve | A reserved region.

© 2009-2011 Nintendo 113 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

14.1.10Bind Symbol Information

There are bsymCount entries in the bind symbol information block indicated by bsymOffset in the
file header. Bind symbol information is defined by #pragma bind_symbol in shader assembly.
Each bind symbol information entry has the following structure.

Code 14-8 Bind Symbol Information Structure
typedef struct tagBINDSYMBOLINFO{
unsigned int stringlndex;

unsigned short startlndex;

unsigned short endlndex;

} BINDSYMBOL INFO

Table 14-8 Bind Symbol Information Fields

Name Description

stringlIndex | The pyte index within the string data block that stores symbol names.

startindex | The starting register index.

e 0-15: Input registers 0-15

e 16-111: Floating-point constant registers 0—95
e 112-115: Integer registers 0-3

e 120-135: Boolean registers 0-15

endIndex The ending register index. This has the same values as startlndex.

14.1.11 String Data

There are stringSize bytes of string data placed in the string data block indicated by
stringOffset in the file header. These include label names, symbol names, filenames, and so on.
Each string is delimited by the null character ("\Q").

14.2Executable Binary Files

This section describes the format of executable binary files generated by
ctr_VertexShaderLinker32.exe.

14.2.1 Overview

Each file has the following structure.

CTR-06-0007-001-C 114 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Figure 14-2 Executable Binary File Structure

Binary File Header

Package Information

Executable Image Information

The following sections give details on each component.

14.2.2 Binary File Header

A variable-length binary file header is placed at the start of the file. The binary file header has the
following structure.

Code 14-9 Binary File Header Structure
typedef struct tagBINFILEHEADER{
char signature[4];
unsigned int exeCount;

unsigned Int exeOffsetTop;

} BINFILEHEADER

Table 14-9 Binary File Header Fields

Name Description
signature Stores the string "DVLB".
exeCount The number of information entries for executable images.

exeOffsetTop | siores the byte offset within the file to the first information entry for an executable image. If
exeCount is 2 or greater, the binary file has multiple executable image information entries.
The byte offsets to the executable image information are stored immediately after
exeOffsetTop using four bytes per entry.

14.2.3 Package Information

Package information is placed immediately after the binary file header. Package information has the
following structure.

© 2009-2011 Nintendo 115 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

Figure 14-3 Package Information Structure

Package Information Header

Program Code Information Block

Swizzle Data Information Block

Line Information Block

String Data Block

The following sections describe each component.

14.2.3.1 Package Information Header

A fixed header is placed at the start of the package information. The placement and number of data
entries for each information block is obtained from the header information. The package information
header has the following structure.

Code 14-10 Package Information Header Structure
typedef struct tagPKGHEADER{

char

char

signature[4];
version[2];

unsigned short reservedO;

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
} PKGHEADER

instOffset;
instCount;
swizzleOffset;
swizzleCount;
lineOffset;
lineCount;
stringOffset;
stringSize;

Table 14-10 Package Information Header Fields

Name Description
signature Stores the string "DVLP".
version Includes the version of the linker tool. The first byte is the major version and the second byte
is the minor version.
instOffset The byte index within the package information to the program code information block.
instCount The number of data entries for program code information.

CTR-06-0007-001-C
Released: April 26, 2011

116

© 2009-2011 Nintendo
CONFIDENTIAL

Vertex Shader Reference Manual

Name Description

swizzleOffset | The pyte index within the package information to the swizzle data information block.

swizzleCount | The number of swizzle data information entries.

lineOffset The byte index within the package information to the line information block.

lineCount The number of data entries for line information.

stringOffset | The pyte index within the package information to the string data block.

stringSize The number of bytes in the string data block.

14.2.3.2 Package Information Blocks

Package information and intermediate object file information use the same structure for program code,
swizzle data, and line information blocks. For details on each of these, see sections 14.1.5 Program
Code Information, 14.1.6 Swizzle Data Information, and 14.1.7 Line Information, respectively. Each
package information block that references string data uses an index within the string data block in the
package information.

14.2.4 Executable Image Information

Executable image information holds information that is set for each linked object file. Executable
image information is generated for each linked main object. Executable image files are placed at the
byte offset (within the file) stored in exeOffsetTop in the binary file header. When there are multiple
executable image information entries, byte offsets to them are stored immediately after
exeOffsetTop using four bytes apiece. Each information entry for an executable image has the
following structure.

Figure 14-4 Executable Image Information Structure

Executable Image Information Block

Setup Information Block

Label Information Block

Outmap Information Block

Bind Symbol Information Block

String Data Block

The following sections describe each component.

© 2009-2011 Nintendo 117 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

14.2.4.1 Executable Image Information Header

Each information entry for an executable image has a header. The executable image's information
header has the following structure.

Code 14-11 Executable Image Information Header Structure
typedef struct tagEXEIMAGEHEADER{

char signature[4];

char version[2];
unsigned char shaderType;
unsigned char mergeOutputMapsDebug;
unsigned Iint mainAddr;
unsigned Int endAddr;

unsigned short inputMask;
unsigned short outputMask;
unsigned char geometryDataMode;
unsigned char startlndex;
unsigned char subdPatchSize;
unsigned char constVertexNumber;
unsigned int setupOffset;
unsigned Int setupCount;
unsigned int labelOffset;
unsigned int labelCount;
unsigned Int outmapOffset;
unsigned int outmapCount;
unsigned Int bsymOffset;
unsigned Iint bsymCount;
unsigned Int stringOffset;
unsigned Int stringSize;

} EXEIMAGEHEADER

Table 14-11 Executable Image Information Header Fields

Name Description

signature Stores the string "DVLE".

version Includes the version of the assembler tool. The first byte is the major version and
the second byte is the minor version.

shaderType This is set to O for a vertex shader object and to 1 for a geometry shader object.

mergeOutputMapsDebug | gt 0 is used by internal settings for the geometry shader.
Bit 1 is set equal to 1 for debug builds and to 0 otherwise.

mainAddr The program address set by the main label.

CTR-06-0007-001-C 118 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

Name Description

endAddr The program address set by the endmain label.

inputMask The input registers information to use. A value of 1 is set for input registers defined
by #pragma bind_symbol.

outputMask The output registers information to use. A value of 1 is set for output registers
defined by #pragma output_map.

geometryDataMode Internal information for the geometry shader.

startindex Internal information for the geometry shader.

subdivPatchSize Internal information for the geometry shader.

constVertexNumber Internal information for the geometry shader.

setupOffset The byte index within the executable image information to the setup information
block.

setupCount The number of data entries for setup information.

labelOffset The byte index within the executable image information to the label information
block.

labelCount The number of data entries for label information.

outmapOffset The byte index within the executable image information to the Outmap information
block.

outmapCount The number of data entries for Outmap information.

bsymOffset The byte index within the executable image information to the Bind symbol
information block.

bsymCount The number of data entries for Bind symbol information.

stringOffset The byte index within the executable image information to the string data block.

stringSize The number of bytes in the string data block.

14.2.4.2 Executable Image Information Blocks

Executable image information and intermediate object file information use the same information data
structure for setup, label, outmap, and bind symbol information blocks. For details on each of these,

see sections 14.1.3 Setup Information, 14.1.4 Label Information, 14.1.9 Outmap Information, and
14.1.10 Bind Symbol Information, respectively. Each executable image information block that
references string data uses an index within the string data block in the executable image information.

© 2009-2011 Nintendo
CONFIDENTIAL

119 CTR-06-0007-001-C
Released: April 26, 2011

Vertex Shader Reference Manual

15 Shader Checking Feature

This section describes the shader checking feature performed by the assembler tool.

15.1 Consistency Checker Feature

The consistency checker feature confirms that the assembly code is properly implemented. This
feature is enabled by specifying the —-check_consistency option in
ctr_VertexShaderLinker32.exe andis implemented in the linker. For each main object in the
link target, it checks several items. It follows the instructions from the main label of the main object
and checks up until the endmain label. When it finds something it checks for, it outputs a warning.

The consistency checker feature checks each instruction according to the following conditions.

e For call instructions, it also checks the call destination.

e It assumes that conditional jump and conditional call instructions do not branch. (The branch
destinations for jpb, jpc, callb, and callc are not considered.)

e For ifb and ifc instructions, it checks both the i f items and else items.

e Because an infinite loop occurs when a call instruction recursively calls a subroutine, it skips
executing the call instructions and goes on to the next instruction when the same subroutine is
called more than once by nested call instructions. (A warning is output in this case.)

It checks the following items.

e The execution of end instructions
e The reading of input registers
e The writing of output registers

The following gives details for each item checked. In this section, the i F instruction indicates both the
ifb and i fc instructions.

15.1.1 end Instruction Execution Check

Checks whether the end instruction was properly called. A warning is output if the following check
items are found.

¢ No end instruction is found.

e An end instruction is found in a loop-endloop instruction.

e Only the if-else statement or else-endi f statement has an end instruction. If the if instruction
has no corresponding el se instruction, and the end instruction is found in the i f-endi T statement,
a warning is output.

CTR-06-0007-001-C 120 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

15.1.2 Input Register Read Check

Checks whether the input registers are being used properly. This check targets the input registers and
components specified with #pragma bind_symbol. A warning is output if the following check items
are found.

e When not all input registers are being used, the check reports the names of registers and
components that might not be in use.

e When the way in which the input registers are used in the i f-else and else-endif statements
differ, this is reported because these differences might be caused by how the i f instruction
branches. If there is no el se instruction corresponding to the if instruction, and an input register is
used in the i f-endi f statement, a warning is output.

15.1.3 Output Register Write Check

Checks whether the output registers are being used properly. It targets output registers specified with
#pragma output_map. In addition, all xyzw components are targeted. A warning is output if the
following check items are found.

e When not all output registers are written, the check reports the names of registers and components
that might not have been written.

e When an output register is set in the loop-endloop instruction, the check reports this because,
depending on how many times the loop statement is repeated, the output register may be written to
several times.

e When the way in which the output registers are used in the i f-else and else-endif statements
differ, this is reported because these differences might be caused by how the if instruction
branches. If there is no el se instruction corresponding to the if instruction, and an output register
is used in the 1 F-endif statement, a warning is output.

e When an output register is being written to multiple times, this check reports the names of the
registers or components that might be written multiple times due to writing the instructions in
guestion.

15.2 Performance Checker Feature

The performance checker has two features: It estimates the number of clock cycles per vertex it will
take during execution based on the implementation of the shader assembly code, and it detects
instructions that will generate stalls. The performance checker feature is implemented in the linker,
and it is enabled by specifying the —check_performance option in
ctr_VertexShaderLinker32._exe. It checks each main object in the link target. Instructions are
tracked from the main label of the main object, and the check is carried out until the end instruction or
the endmain label. The result of the check is output to the command prompt where the linker was
executed and at the same time to a file. This output file is created with the same name as the binary
file created by the linker, but with the extension changed to "perf.txt". (It is created in the same
location as the binary file.)

© 2009-2011 Nintendo 121 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

The performance checker feature checks each instruction according to the following conditions.

e For call instructions, it also checks the call destination.

e It assumes that conditional jump and conditional call instructions do not branch. (The branch
destinations for jpb, jpc, callb, and callc are not considered. The condition is always
determined to be FALSE.)

e For ifband ifc instructions, it only checks the else item. (The condition is always determined to
be FALSE.)

e Because an infinite loop occurs when a cal l instruction recursively calls a subroutine, it skips
executing the cal l instructions and goes on to the next instruction when the same subroutine is
called more than once by nested cal I instructions.

The following items are output as the result of the check:

e The total number of clock cycles for the executed instructions
e The number of executed instructions
¢ Instructions that stall, the number of clock cycles, and the cause(s) of the stall.

In calculating the total number of clock cycles, one tick is counted for each instruction, and if there is
a stall, the number of ticks of the stall is added to the total. Note that this process does not account
for all of the causes of stalls that can take place on the actual hardware. The calculated total number
of clock cycles is simply a guideline and will not completely match the total on the actual hardware.

Details of the performance checker feature are presented below.

15.2.1 Detectable Causes of Stalls

This feature can detect a number of the factors that can cause stalls. The following sections provide
details about these various factors.

15.2.1.1 Stalls Due to Instruction Dependencies

The performance checker detects stalls caused by dependent relationships between registers used
by instructions. Processing will stall for two given instructions called in sequencewhen the instruction
called later references the computation result of the preceding instruction before that computation has
been completed, as the later instruction must wait for the computation to complete. The nhumber of
clock cycles for this stall depends on the latency of the instruction that was called first and on the
number of other instructions that execute between these two instructions. To learn about the latency
of various instructions, see section 12.7 Instruction Latency. The registers that are subject to this are
the temporary registers and the status registers. For status registers, the cmp instructions are
sometimes dependent on i1 fc, cal lc and breakc instructions.

Code 15-1 Dependency Stall Example
dp4 rO , r1 , r2
add r3 , r4 , ro

CTR-06-0007-001-C 122 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

In this case above, the dp4 calculation result written to rO is used as a source operand in the very
next add instruction. The dp4 instruction has a latency of five clock cycles, so the performance
checker detects that execution of the add instruction will stall for four clock cycles.

If a given instruction is dependent on a number of other instructions, the performance checker uses
the instruction that stalls for the largest number of clock cycles when calculating the stall duration of
that given instruction.

Code 15-2 Multiple Dependency Stall Example 1
dp4 rO.x , rl , r2

mov rO0.y, cO

add r3 , r4 , roO

The add instruction in the example above depends on the r0.x destination operand of the dp4
instruction, and on the r0.y destination operand of the mov instruction. This means that the add
instruction here will stall for three clock cycles due to dp4 and stall for one clock cycle due to mov.
Three clock cycles is the largest value, so the performance checker result is three clock cycles.

15.2.1.2 Stalls Due to mova Instruction Calls
Calls to the mova instruction always stall for three clock cycles.
15.2.1.3 Stalls Due to Branching

Processing stalls for two clock cycles when the program counter is changed by +1 or more by a call
or i instruction. When processing returns from the subroutine called by the call instruction, there
is a stall of two clock cycles for the instruction just before the ret instruction.

15.2.2 When There Are Multiple Stall Causes

If there are multiple stall causes for a given instruction, then the stall with the largest number of clock
cycles is used when calculating the stall for the given instruction.

Code 15-3 Multiple Dependency Stall Example 2
main:
call labelO0 // The call to labelO

end

labelO:
dp4 rO.x , rl, r2
mova a0.x, rO.x

ret

In the example above, the final mova instruction in the Iabel0 subroutine stalls for four clock cycles
due to the dependency on the prior dp4 instruction, then the mova call itself stalls for three clock

© 2009-2011 Nintendo 123 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

cycles, and finally the cal I branch instruction causes a stall of two clock cycles. The largest stall
value of four clock cycles is used as the calculated result.

15.2.3 Outputting the Results

The performance checker outputs its results to the command prompt where the linker was executed
and also to a file. This output file is created with the same name as the binary file created by the linker,
but with the extension changed to perf. txt.

The content of this output file looks something like the example below.

Code 15-4 Performance Checker Output
Main object: obj\VShader.o

Total executed clock count 14 clock

Total executed instruction count 7 instructions

Detail of stall

VShader.vsh(26): 2 clock stall is caused by branch.

VShader.vsh(36): 4 clock stall is caused.
1

+--- 3 clock stall is by mova instruction.

1

+--- 2 clock stall is by branch.

1

+--- VShader.vsh(35): 4 clock is to wait for this instruction to finish writing rO.x.

VShader.vsh(30): 1 clock stall is caused by reading temporary register.

1
+--- VShader.vsh(29): To wait for this instruction to finish writing rl.y.

Main object is the name of the main object that is the target of the performance check. A check
result is output for each main object in the link target. Total executed clock count is the total
number of clock cycles per vertex required for execution. The information below Detail of stall
shows the location and cause of the stall and the number of clock cycles of the stall. For a stall due to
dependencies, the locations of instructions with dependency relationships and the registers that are
the causes are shown. If there are multiple causes of stalls, then the number of clock cycles for each

CTR-06-0007-001-C 124 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Vertex Shader Reference Manual

cause is shown, together with the number of clock cycles that is the result of the combination of the
causes.

The check results are output in the order of the execution of the instructions, starting from the main
label. If an instruction is called multiple times in the same subroutine, then the performance check is
conducted multiple times on the instruction and the same stall information is output multiple times.

Basically, almost the same information that is output to the file is also output to the command prompt
where the linker was executed. (The information regarding dependencies is shown indented.) If the
linker is executed from an environment like Microsoft Visual Studio, then you can jump to the source
file of the shader assembly code by clicking the output result for causes of stalls in the Output window.
This is useful for checking the places where problems arise.

© 2009-2011 Nintendo 125 CTR-06-0007-001-C
CONFIDENTIAL Released: April 26, 2011

Vertex Shader Reference Manual

DMP and PICA are registered trademarks of Digital Media Professionals Inc.

All other company and product names in this document are the trademarks or registered trademarks of their respective companies.

Copyright © 2009-2011 Digital Media Professionals Inc. All rights reserved.

This documentation is the confidential and proprietary property of Digital Media
Professionals Inc. The possession or use of this documentation and its content
requires a written license from Digital Media Professionals Inc.

© 2009-2011 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

CTR-06-0007-001-C 126 © 2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

	1 About This Document
	2 Overview
	3 Operating Environment
	4 Main Objects and Reference Objects
	5 How to Use the Assembler Tools
	5.1 ctr_VertexShaderAssembler32 (Assembler)
	5.1.1 Options
	5.1.2 Example

	5.2 ctr_VertexShaderLinker32 (Linker)
	5.2.1 Input files
	5.2.2 Options
	5.2.3 Example

	6 Vertex Shader Resources
	6.1 Program RAM
	6.2 Registers
	6.2.1 Per-Register Resources
	6.2.2 Precision of Floating-Point Registers
	6.2.3 Input Registers
	6.2.4 Temporary Registers
	6.2.5 Floating-Point Constant Registers
	6.2.6 Address Register
	6.2.7 Boolean Registers
	6.2.8 Integer Registers
	6.2.9 Loop-Counter Register
	6.2.10 Output Registers
	6.2.11 Status Registers

	7 Assembly Language Grammar Reference
	7.1 Entering Assembly Instructions
	7.1.1 Operation
	7.1.2 Operand
	7.1.3 Comment

	7.2 Masking Output Components
	7.3 Rearranging Input Components (Swizzling)
	7.4 Adding a Negative Sign to Input Components
	7.5 Using Register Index Offsets for Input Operands
	7.6 Labels
	7.6.1 The main Label
	7.6.2 Label Name Collisions

	7.7 Reserved Words
	7.7.1 Register Names
	7.7.2 Assembly Language Instructions
	7.7.3 Preprocessor

	8 Preprocessor Pseudo-Instructions
	8.1 #include
	8.2 #define
	8.3 #undef
	8.4 #ifdef, #ifndef, #if, #else, #elif, #endif
	8.5 #error
	8.6 #pragma
	8.6.1 bind_symbol (symbol_name , start_index [, end_index])
	8.6.2 output_map (data_name , mapped_register)

	8.7 #line

	9 Assembly Language Instruction Reference
	9.1 Define Instructions
	9.1.1 def : Define Floating-Point Constants
	9.1.1.1 Calling Format
	9.1.1.2 Operands
	9.1.1.3 Overview
	9.1.1.4 Example

	9.1.2 defb : Define Boolean Constant
	9.1.2.1 Calling Format
	9.1.2.2 Operands
	9.1.2.3 Overview
	9.1.2.4 Example

	9.1.3 defi : Define Integer Constants
	9.1.3.1 Calling Format
	9.1.3.2 Operands
	9.1.3.3 Overview
	9.1.3.4 Example

	9.2 Arithmetic Instructions
	9.2.1 add : Add
	9.2.1.1 Calling Format
	9.2.1.2 Operands
	9.2.1.3 Overview
	9.2.1.4 Operation
	9.2.1.5 Example

	9.2.2 dp3: Three-Component Dot Product
	9.2.2.1 Calling Format
	9.2.2.2 Operands
	9.2.2.3 Overview
	9.2.2.4 Operation
	9.2.2.5 Example

	9.2.3 dp4: Four-Component Dot Product
	9.2.3.1 Calling Format
	9.2.3.2 Operands
	9.2.3.3 Overview
	9.2.3.4 Operation
	9.2.3.5 Example

	9.2.4 dph: Homogeneous Dot Product
	9.2.4.1 Calling Format
	9.2.4.2 Operands
	9.2.4.3 Overview
	9.2.4.4 Operation
	9.2.4.5 Example

	9.2.5 dst: Distance Vector
	9.2.5.1 Calling Format
	9.2.5.2 Operands
	9.2.5.3 Overview
	9.2.5.4 Operation
	9.2.5.5 Example

	9.2.6 exp: Exponential Base 2
	9.2.6.1 Calling Format
	9.2.6.2 Operands
	9.2.6.3 Overview
	9.2.6.4 Operation

	9.2.7 flr: Floor
	9.2.7.1 Calling Format
	9.2.7.2 Operands
	9.2.7.3 Overview
	9.2.7.4 Operation
	9.2.7.5 Example

	9.2.8 litp: Light Coefficients
	9.2.8.1 Calling Format
	9.2.8.2 Operands
	9.2.8.3 Overview
	9.2.8.4 Operation
	9.2.8.5 Example

	9.2.9 log: Logarithm Base 2
	9.2.9.1 Calling Format
	9.2.9.2 Operands
	9.2.9.3 Overview
	9.2.9.4 Operation
	9.2.9.5 Example

	9.2.10 mad: Multiply and Add
	9.2.10.1 Calling Format
	9.2.10.2 Operands
	9.2.10.3 Overview
	9.2.10.4 Operation
	9.2.10.5 Example

	9.2.11 max: Maximum
	9.2.11.1 Calling Format
	9.2.11.2 Operands
	9.2.11.3 Overview
	9.2.11.4 Operation
	9.2.11.5 Example

	9.2.12 min: Minimum
	9.2.12.1 Calling Format
	9.2.12.2 Operands
	9.2.12.3 Overview
	9.2.12.4 Operation
	9.2.12.5 Example

	9.2.13 mov: Move
	9.2.13.1 Calling Format
	9.2.13.2 Operands
	9.2.13.3 Overview
	9.2.13.4 Operation
	9.2.13.5 Example

	9.2.14 mova: Move to Address Register
	9.2.14.1 Calling Format
	9.2.14.2 Operands
	9.2.14.3 Overview
	9.2.14.4 Operation
	9.2.14.5 Example

	9.2.15 mul: Multiply
	9.2.15.1 Calling Format
	9.2.15.2 Operands
	9.2.15.3 Overview
	9.2.15.4 Operation
	9.2.15.5 Example

	9.2.16 nop: No Operation
	9.2.16.1 Calling Format
	9.2.16.2 Operands
	9.2.16.3 Overview
	9.2.16.4 Operation
	9.2.16.5 Example

	9.2.17 rcp: Reciprocal
	9.2.17.1 Calling Format
	9.2.17.2 Operands
	9.2.17.3 Overview
	9.2.17.4 Operation
	9.2.17.5 Example

	9.2.18 rsq: Reciprocal Square Root
	9.2.18.1 Calling Format
	9.2.18.2 Operands
	9.2.18.3 Overview
	9.2.18.4 Operation
	9.2.18.5 Example

	9.2.19 sge: Set on Greater Than or Equal
	9.2.19.1 Calling Format
	9.2.19.2 Operands
	9.2.19.3 Overview
	9.2.19.4 Operation
	9.2.19.5 Example

	9.2.20 slt: Set on Less Than
	9.2.20.1 Calling Format
	9.2.20.2 Operands
	9.2.20.3 Overview
	9.2.20.4 Operation
	9.2.20.5 Example

	9.3 Macro Instructions
	9.3.1 sub: Subtract
	9.3.1.1 Calling Format
	9.3.1.2 Operands
	9.3.1.3 Overview
	9.3.1.4 Operation
	9.3.1.5 Post-Macro Expansion
	9.3.1.6 Example

	9.3.2 abs : Absolute
	9.3.2.1 Calling Format
	9.3.2.2 Operands
	9.3.2.3 Overview
	9.3.2.4 Operation
	9.3.2.5 Post-Macro Expansion
	9.3.2.6 Example

	9.3.3 crs: Cross Product
	9.3.3.1 Calling Format
	9.3.3.2 Operands
	9.3.3.3 Overview
	9.3.3.4 Operation
	9.3.3.5 Post-Macro Expansion
	9.3.3.6 Example

	9.3.4 frc: Fraction
	9.3.4.1 Calling Format
	9.3.4.2 Operands
	9.3.4.3 Overview
	9.3.4.4 Operation
	9.3.4.5 Post-Macro Expansion
	9.3.4.6 Example

	9.3.5 lrp: Linear Interpolation
	9.3.5.1 Calling Format
	9.3.5.2 Operands
	9.3.5.3 Overview
	9.3.5.4 Operation
	9.3.5.5 Post-Macro Expansion
	9.3.5.6 Example

	9.3.6 m3x2: 3x2 Multiply
	9.3.6.1 Calling Format
	9.3.6.2 Operands
	9.3.6.3 Overview
	9.3.6.4 Operation
	9.3.6.5 Post-Macro Expansion
	9.3.6.6 Example

	9.3.7 m3x3: 3x3 Multiply
	9.3.7.1 Calling Format
	9.3.7.2 Operands
	9.3.7.3 Overview
	9.3.7.4 Operation
	9.3.7.5 Post-Macro Expansion
	9.3.7.6 Example

	9.3.8 m3x4: 3x4 Multiply
	9.3.8.1 Calling Format
	9.3.8.2 Operands
	9.3.8.3 Overview
	9.3.8.4 Operation
	9.3.8.5 Post-Macro Expansion
	9.3.8.6 Example

	9.3.9 m4x3: 4x3 Multiply
	9.3.9.1 Calling Format
	9.3.9.2 Operands
	9.3.9.3 Overview
	9.3.9.4 Operation
	9.3.9.5 Post-Macro Expansion
	9.3.9.6 Example

	9.3.10 m4x4: 4x4 Multiply
	9.3.10.1 Calling Format
	9.3.10.2 Operands
	9.3.10.3 Overview
	9.3.10.4 Operation
	9.3.10.5 Post-Macro Expansion
	9.3.10.6 Example

	9.3.11 nrm: Normalize
	9.3.11.1 Calling Format
	9.3.11.2 Operands
	9.3.11.3 Overview
	9.3.11.4 Operation
	9.3.11.5 Post-Macro Expansion
	9.3.11.6 Example

	9.3.12 pow : Power
	9.3.12.1 Calling Format
	9.3.12.2 Operands
	9.3.12.3 Overview
	9.3.12.4 Operation
	9.3.12.5 Post-Macro Expansion
	9.3.12.6 Example

	9.3.13 sgn: Sign
	9.3.13.1 Calling Format
	9.3.13.2 Operands
	9.3.13.3 Overview
	9.3.13.4 Operation
	9.3.13.5 Post-Macro Expansion
	9.3.13.6 Example

	9.3.14 sincos: Sine and Cosine
	9.3.14.1 Calling Format
	9.3.14.2 Operands
	9.3.14.3 Overview
	9.3.14.4 Operation
	9.3.14.5 Post-Macro Expansion
	9.3.14.6 Example

	9.4 Flow Control Instructions
	9.4.1 call: Call Subroutine
	9.4.1.1 Calling Format
	9.4.1.2 Operands
	9.4.1.3 Overview
	9.4.1.4 Operation
	9.4.1.5 Example

	9.4.2 callb: Boolean Call
	9.4.2.1 Calling Format
	9.4.2.2 Operands
	9.4.2.3 Overview
	9.4.2.4 Operation
	9.4.2.5 Example

	9.4.3 callc: Condition Call
	9.4.3.1 Calling Format
	9.4.3.2 Operands
	9.4.3.3 Overview
	9.4.3.4 Operation
	9.4.3.5 Example

	9.4.4 jpb: Boolean Jump
	9.4.4.1 Calling Format
	9.4.4.2 Operands
	9.4.4.3 Overview
	9.4.4.4 Operation
	9.4.4.5 Example

	9.4.5 jpc: Condition Jump
	9.4.5.1 Calling Format
	9.4.5.2 Operands
	9.4.5.3 Overview
	9.4.5.4 Operation
	9.4.5.5 Example

	9.4.6 ret: Return from Subroutine
	9.4.6.1 Calling Format
	9.4.6.2 Operands
	9.4.6.3 Overview
	9.4.6.4 Operation
	9.4.6.5 Example

	9.4.7 ifb: Start if Block by Boolean
	9.4.7.1 Calling Format
	9.4.7.2 Operands
	9.4.7.3 Overview
	9.4.7.4 Operation
	9.4.7.5 Example

	9.4.8 ifc: Start if Block by Condition
	9.4.8.1 Calling Format
	9.4.8.2 Operands
	9.4.8.3 Overview
	9.4.8.4 Operation
	9.4.8.5 Example

	9.4.9 else: Start else Block
	9.4.9.1 Calling Format
	9.4.9.2 Operands
	9.4.9.3 Overview
	9.4.9.4 Operation
	9.4.9.5 Example

	9.4.10 endif: End if Block
	9.4.10.1 Calling Format
	9.4.10.2 Operands
	9.4.10.3 Overview
	9.4.10.4 Operation
	9.4.10.5 Example

	9.4.11 loop: Start Loop Statement
	9.4.11.1 Calling Format
	9.4.11.2 Operands
	9.4.11.3 Overview
	9.4.11.4 Operation
	9.4.11.5 Example

	9.4.12 endloop: End Loop Statement
	9.4.12.1 Calling Format
	9.4.12.2 Operands
	9.4.12.3 Overview
	9.4.12.4 Operation
	9.4.12.5 Example

	9.4.13 breakc: Break from Loop Statement by Condition
	9.4.13.1 Calling Format
	9.4.13.2 Operands
	9.4.13.3 Overview
	9.4.13.4 Operation
	9.4.13.5 Example

	9.4.14 cmp: Compare
	9.4.14.1 Calling Format
	9.4.14.2 Operands
	9.4.14.3 Overview
	9.4.14.4 Operation
	9.4.14.5 Example

	9.4.15 end: End Process
	9.4.15.1 Calling Format
	9.4.15.2 Operands
	9.4.15.3 Overview

	10 Debug Build
	11 Map Files
	11.1 Overview
	11.2 Loading Objects Order
	11.3 Image Sizes
	11.4 Program Code Information
	11.5 Object Information
	11.6 Swizzle Pattern Data

	12 Precautions and Restrictions
	12.1 Starting and Ending a Shader
	12.2 Step Count
	12.3 Pattern Counts for Swizzling and Masking
	12.4 Control Instruction Limitations
	12.5 Instructions That Cannot Be Called Consecutively
	12.5.1 Consecutive Calls of else/endif/ret/endloop
	12.5.2 Consecutive Calls of mova
	12.5.3 Calls of jpc/jpb Immediately Before else/endif/ret/endloop
	12.5.4 Calling breakc Before Endloop

	12.6 Registers That Cannot Be Used Simultaneously
	12.7 Instruction Latency
	12.7.1 Arithmetic and cmp Instruction Latency
	12.7.2 Branch Instruction Latency
	12.7.3 Output Order of Calculation Results
	12.7.4 Stalls Due to Conflicts When Outputting Calculation Results
	12.7.5 Stalls Due to Conflicts Among Arithmetic Units
	12.7.6 Stalls Due to Instruction Dependencies

	12.8 Results of Exceptional Operations
	12.9 Limitations Related to Invalid Data Output
	12.10 Shader Implementations That Cause Invalid Operations
	12.10.1 Invalid Operation Due to a mova Instruction
	12.10.1.1 Executing a mova Instruction as the Second-to-Last Instruction
	12.10.1.2 Executing mova Instructions Just Before and Just After Certain Other Instructions
	12.10.1.3 Stalling on a mova Instruction and Branching Right Afterwards

	12.10.2 Invalid Operation Due to a Specific Order of Instructions

	13 Error Messages for the Assembler and Linker
	13.1 Overview
	13.2 Assembler Error Messages
	13.3 Linker Error Messages

	14 File Format
	14.1 Intermediate Object Files
	14.1.1 Overview
	14.1.2 File Header
	14.1.3 Setup Information
	14.1.4 Label Information
	14.1.5 Program Code Information
	14.1.6 Swizzle Data Information
	14.1.7 Line Information
	14.1.8 Relocation Information
	14.1.9 Outmap Information
	14.1.10 Bind Symbol Information
	14.1.11 String Data

	14.2 Executable Binary Files
	14.2.1 Overview
	14.2.2 Binary File Header
	14.2.3 Package Information
	14.2.3.1 Package Information Header
	14.2.3.2 Package Information Blocks

	14.2.4 Executable Image Information
	14.2.4.1 Executable Image Information Header
	14.2.4.2 Executable Image Information Blocks

	15 Shader Checking Feature
	15.1 Consistency Checker Feature
	15.1.1 end Instruction Execution Check
	15.1.2 Input Register Read Check
	15.1.3 Output Register Write Check

	15.2 Performance Checker Feature
	15.2.1 Detectable Causes of Stalls
	15.2.1.1 Stalls Due to Instruction Dependencies
	15.2.1.2 Stalls Due to mova Instruction Calls
	15.2.1.3 Stalls Due to Branching

	15.2.2 When There Are Multiple Stall Causes
	15.2.3 Outputting the Results

