DMPGL 2.0 System API Specifications

Version 2.3

Digital Media Professionals Inc.

The content of this document is highly confidential

and should be handled accordingly.

© 2009-2011 Nintendo CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

CTR-06-0006-001-D 2 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Table of Contents

N O 17T VT TP UP PP PPRPR 12
P (0111 =1 T4= LT o 1Y o (O PR TPPR 13
2.1 N SRR 13

P2 I R B 1Y/ | = € I 1 (=117 i o o H R PPRPPTPR 13
2.1.2 DMPGL FINAIZALONeiiiiiiiiiie ettt ettt e ettt e e et e e e anbbe e e s snbbeeesennees 14

P2 IS B € 1= 11 [o J= T Y (o o3 1o SO RO PTOR 14

2.2 PN [oTor=1 (o gl [0] (o)1 1 4= 11 o] IR RO RSPTPRPTP 14

I = Tol N1 (1o o] a1 o] Y] PSPPSR 16
3.1 (0] 00 F= T [0 [IS @ o= 0! £ PP UP PSPPI 16
3.1.1 3D CoMMANT BUFFEI ...ttt s rab e e st e e s e e e s nrbeeeeaae 17
0 2 O 4o 1 F= g o I L= [N =) TP UPPOPPRR 17

3.2 EXECULING COMMIEANAS ...ttt ettt e e e e bttt e e e e e s e eabb b et e e e e e e e s nnbebeeeeaaeeesanbbeneaaaeeeaannnes 19
3.2.1 Serial EXECULION IMOTEccoiiiiiiiiiiiie ittt ettt ettt e e st e e s sabe e e e s sabe e e e s sabeeeesanbeeeennes 19
3.2.2 Parallel EXECULION IMOOEcooiiiiiiiiiiiiiee ettt ettt e e e e e st be e e e e e e e e snnbeaeeaaeaeaannes 19
3.2.3 SYNchronous EXECULION MOGEuuiiiiiiiiiiiie ettt e et e e e e e s eeb e e e e e e e e e nnnes 20

3.3 N RSP SPTPRRTI 21
3.3.1 Generating Command LiSt ODJECLScoiiiiiiiiiiiiii e 21
3.3.2 Deleting Command LiSt OBDJECES........uuiiiiieiiiiiiiiiiie e s e e e e e e e e e e e s s e rr e e e e e e e annnes 21
3.3.3 Binding Command LiSt ODJECES........uuuiiiieeiiiiiiiieiie e e st e e e e e s s s e e e e e e ssnrere e e e e e e s s annrnaeeeaeeesaannes 21
3.3.4 Allocating Data Regions for Command List ODJECESoeiiiiiiiiiiiiiie e 22
3.3.5 Executing Command LiSt ODJECESuuiiiiiiiiiiiiiiiie e e e e s s s e e e e e s e e e e e e e e s e annes 22
3.3.6 Stopping ComMmMaNd LiSt ODJECLSueiiiiiiiiiiiiiii et e e e e e e e e s sbbereeeaeaeaaaanes 23
3.3.7 Scheduling Stops for Command LiSt ODJECTS........cceeiiiiiiiiiiiie e e e srrre e e e e anes 23
3.3.8 Splitting the 3D ComMmMaNd BUFFEIcooiiiii e 23
3.3.9 Flushing the Accumulated 3D Command BUfercccviiiiie i e 24
3.3.10 Clearing Command LiSt ODJECLSciiiiiiiiiiiiiiiaa ettt e e e e e e s sabraeeeaaeeaeaanes 24
3.3.11 Clearing Command List Objects and Filling Command BUffers...........ccocccvvvevieeiiiiiciiieene e, 24
3.3.12 Registering Interrupt Handlers for Command Completion ... 25
3.3.13 Setting Parameters for Command List ODJECES........ccvviiiiiiei i 26
3.3.14 Getting the Parameters of Command LiSt ODJECLSccoiiiiiiiiiiiiiiie e 26
3.3.15 Checking fOr V-SYNC UPAALESueiiiiiiiiiiiiiii ettt e e e e e sibeee e e e e e s e nanes 28
R0 T G T VANV o Tod s Y o]] (0] 2= L4) o PR 29
3.3.17 Registering the V-Sync Callback FUNCLIONoouuiiiiiiiii e 29
3.3.18 Waiting for a Command List Object to Complete EXECULIONccevveeiiiiiiiiiieee s iiiiiieee e e 29
3.3.19 Transferring Data Via DIMA ... ottt e e e e e e e e e e e s s bbb e e e aaaeeas 30
3.3.20 Transferring Data via DMA (Without Cache FIUSh)cooviiiiiiii e 30
3.3.21 Transferring Block Images with an Anti-Aliasing Filter ..., 30

© 2009-2011 Nintendo 3 CTR-06-0006-001-D

CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

3.3.22 IMage TranSfer REQUESESoiiiiiiiiiiiiii et e et sbae e e e sneeeas 31
3.3.23 Setting the Timeout for Waiting to Complete Command List Object Execution 32
3.3.24 Updating Additive Blend Results Rendered with Gas Density Informationcccoccceeennee. 32
3.3.25 Transferring a Block Image That Is Converted into a Linear Imagecccvveeeeeeeiiniiiiieeneeennn. 33
3.3.26 Transferring a Linear Image That Is Converted into a Block Image..........ccccccceiviiiiniiee e, 34
3.3.27 Transferring @ BIOCK IMaAQge...........eueiiiiiiii e e e e e e 35
3.3.28 1| TTa T TV (=10 o T o VTP ET PRI 37
3.4 NN_GX_CMDLIST _HW _STATE ..ottt ittt ettt et e et e et e e e b e e s snbaeeeesnnneeas 38
O B 1Yo F= 1 Oo a1 o] 1N = (O TP PPTT PSPPI 40
4.1 Processing Flow from Rendering Through DiSPlaycueeveeeiiiiiiiiieee e ccciiiieee e e e e e e 40
I S = = g T =Y o PR 40
4.1.2 Transferring Rendered RESUILS..........ooii i e e e e 41
g I N 0 T~ o] =Y/ o PR 42
4.2 SPECITYING the DISPIAY AFBAeeeeiieeiiieite ittt ettt e e e e e st bt e e e e e e s s anbbeeeeaeeeesasannbeeeaaaaaaaans 42
4.3 Y o PRSPPI 43
4.3.1 Generating Display BUffer ODJECESccooiiiiiiiiiieeeeee e 43
4.3.2 Deleting Display BUfer ODJECESuiiiiiiiiiiiiiiiie e e e e s e e e e e s s ae e e e e e e s e nnnneees 43
4.3.3 Activating DiSPIAY TarQeIS.ccoiiiiiiieiiei ettt e e e e e e s e e e e e e e e sbb b e e e e e e e e e e annneees 43
4.3.4 Binding DiSPlay BUFfEIS......iiiii ittt e e e s e e e e e s s st r e e e e e e nnnrees 43
4.3.5 Allocating DiSplay BUFFEIS ..ot e e e e e e e e e e e nneeees 44
4.3.6 SpecCifying the DISPIAY AI€@ccuuiiiiiiie et e et e e s s s e e e e e s e e e e e e e s snnraaeeeaeeeaeannnrees 44
4.3.7 Requesting Transfers of Rendered RESUILS..........cooi i 45
4.3.8 Displaying Rendered SCreens (SWapPPING) eeeeeeaiaurtrreeiaeaaaaiitieeeeaaaesaaieteeeeeaessaasrsseeeaaesassnsnees 46
4.3.9 Getting Parameters for Display Buffer ObJECES........cccvviiiiie e a7
4.3.10 DiSplay MOOE SENGSieeiiiiiie ettt e e e e e bbb e e e e e e e e saabb e eeaa e e e e snnbeneeaaans 47
4.3.11 Screen Display by Specifying the Display Address (Swapping by Specifying Addresses)........ 48

5 Command LiSt EXIENAEA AP ...ttt e ettt e e e e e e s ettt et e e e e e e e e bbbbeeeaaaeeaann 49
5.1 Saving and Reusing Command List OBJECESuuuiiiiiiiiiiiiii e 49
LS I A - Y/ T Vo I @ 2 0] ' = o PSR 49
5.1.2 USING SAVEd COMMEANAScoiiiiiiiiiieie ettt e ettt et e e e e et e e et e e e s s aabbeeeeeae e e s e annbbeeeaeaeeeaaannseees 50
5.2 [=To 11T gTo I @To] 4911 4 F= 10T 0 R TPPTP 52
5.3 L@ T g o (0 =T SRR 52
5.3.1 Importing and EXporting ComMMEANA LISTScouiiiiiiiiiiiiiiaa et e e e 52
5.3.2 Copying Command LiSt ODJECLSciiiiiiiiiiiiiiie et e e e s e e e e e e e e nnnneees 52
5.3.3 3D Command BUffer GENEIALIONeiiiiiiiiiiiiiiie ettt st bbb s enebe e e e eneee 52
SRS I Ao (o T To JRCT B @70 4] 1 F= 4 [0 TSSO URTTO 53
5.4 Y PP OUPPPRTPRN 53
5.4.1 Start Saving COMMEANG LISTSuuiiiiiiiiiiiiiiiii ettt e e et e e e e e e s e sabb e e e e e e e e s e snneeees 53
5.4.2 Stop Saving COMMANT LISTS.uuiiiiiiiiiiiiiiii ittt e e e e e et e e e e e e e s e sanbb e e e e e e e e e e e nneeees 53
CTR-06-0006-001-D 4 © 2009-2011 Nintendo

Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.4.3 Using Saved ComMMANd LiStS........ccuruiiiieeiiiiiiiiei e e e s s sttt e e e e e e s s st e e e e e s s snntnteeeeeeesssnnrnnreeeeeesnnnnes 54
5.4.4 EXPOrting COMMEANT LISESeeiiiiiiiiiiiiitae ettt ettt et e e e s ettt e e e e e e s aabb e e eaaa e e s snnbnaeeeaeeeaaannes 55
5.4.5 Importing COMMANG LISESeeviiiiiiiiiiiiiiiee e s it r e e e s s s e e e e e e s s st e e e e e e s snstn e e e e e eeessnnrnneeeaeeesnannes 58
5.4.6 Getting Command List Information for EXported Datacoouiiiiiiiiiieiiiiiiiieeee e 58
Lo A o] o) Y/ To JE 0] 4o 4 = To I 13 £ SRR 59
5.4.8 Checking the DMPGL State and Generating CommMandSoocuuiiiiiieaeiiiiiiieie e e 59
5.4.9 Updating the DIMPGL SEALEcciiiiiiiiiiieee ettt e e e e e e s ib b be e e e e e e e e snnbnaeeeaeeesannnes 60
5.4.10 Setting the Command OULPUL MOUE.........c..uuiiiiiee e e e e e e e s s s e e e e e e e e e nanes 60
5411 Getting the Command OULPUL MOAE ... 61
Lo 72 Vo (o 1 To JRCT I 2N @ 1112 0 =1 (o <SR 61
5.4.13 Adding 3D Commands (Without Cache FIUSN)c..ueiiiiiiii e 62
5.4.14 Adding a Copied COmMMANG LIStccceeiiiiiiiiiiiee e st s s st e e e e e s s e e e e e e e s ennrnrreeeeeeseannes 62
5.4.15 Getting the Updated DMPGL SEALEooiiiiiiiiieeeeiieeee ettt a e e e e e e e anes 63
5.4.16 Invalidating DMPGL State UPAatesS..........uvvieieiiiiiiiiiiieeeeiisieieeeeeee e e sssnnineee e e e s s snsnnseeeeeeesssnnnnneees 63
5.4.17 Moving the Command Buffer POINTET ... 64
55] e= 1 L =T [PRSP RR 64
LT R S - L (= = Vo T Y 01T PP RPOPPRP 64
5.5.2 State FIag DEPENUENCIEScoeiiiiiiiiiiiiiee ettt et e e e e et e e e e e e saabb et eeaa e e s annbeaeeeaeaesaannes 67
5.5.3 Lookup Table Command GENETALIONccueeieiiiiieieiitiieeeiiieeeestiee e s sttee e sbeee e s sbeeeessbeeeessnbeeeeses 67
5.6 DMPGL Functions That Generate COMMEANASccuieeiiiiiiiiiieiaaai it e e e e e e e e e s snreeeeeea e e e aanes 68
5.7 3D Command Buffer SPeCIfiCatioNSooeuiiiiiiee e 70
5.7.1 BaSIC SPECIFICALIONSeiiiiiiiiie ettt ettt e e e e e s e bbb et e e e e e e e s sbbbeeeeaaeaeannbnaeeaaeaeaannes 70

L A 11 T | Lo Ao oS PEER 71
B.7.3 BUISTACCESS. ..o 71
5.8 o (@ = To 1S (=) {04 4 = 11T o PSR 72
LS A = =T T [T S r= L A =0 1S (=T PR 72
5.8.2 Vertex Shader Floating-Point REGISIEISo.uuiiiiiiiee ettt e e e e e 72
5.8.3 Vertex Shader BoOIean REQISIEISuuiiiiiiiiiiiiieie e sttt e e s s s e e e e e e ss e e e e e s s annnreaeeeeeeesennnes 74
5.8.4 Vertex Shader INtEger REQISIEISuu ittt e et e e e e e e s snbereeeae e e e aaanes 74
5.8.5 Vertex Shader Starting Address Setting ReQIStErS........ccvuiiiiieiiiirir e e e 74
5.8.6 Registers That Set the Number of Input Vertex AtrDULESooouiiiiiiii e 75
5.8.7 Registers That Set the Number of Output Registers Used by the Vertex Shaderc........... 75
5.8.8 Registers That Set the Vertex Shader Output MaskK ...t 75
5.8.9 Registers That Set Vertex Shader Output AtIDULES...........oevieiiiiiiiiiie e 75
5.8.10 Clock Control Setting Registers for Vertex Shader Output Attributescccceeeeeviiciieeneee e, 77
5.8.11 Vertex Shader Program Code Setting REQISLErSoouiiiiiiiiii e 77
5.8.12 Registers That Map Vertex Attributes to Input REQISLErSvvevveeii i 78
5.8.13 Registers That Set Fixed Vertex Attribute Values ... 79
5.8.14 Registers for Vertex Attribute Array SEtiNgS.......ccuvviirieie e 80
5.8.15 Other Setting Registers Related to the Vertex Shader ... 89
5.8.16 Texture Address Setting REJISIEISuuuiiii e e e e e e s nrrarreeee s 89
5.8.17 Render Buffer Setting REQISLEIScooi e 89
© 2009-2011 Nintendo 5 CTR-06-0006-001-D

CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.8.18 Texture Combiner SEttiNg REQISIEISuuuiiiieee ittt s s e e e e e s e s e e e e e e e s e nnnnrees 90
5.8.19 Registers That Set Fragment LiIghtingooo i 93
5.8.20 Texture Setting REQISIEIS.uuuiiiiie ittt e e s srte e e e e e e s s e e e e e s s st r e e e e e s s sasreeeereeessannnnnees 102
5.8.21 REQISIErS fOr GAS SEIINGS .. .eeiiie ettt e e e e e et e e e e e e e annbeaeeeaeas 111
5.8.22 oo IS CY 1] T LT 1) (=] £ 114
5.8.23 Fragment Operation Setting REQISLEIScoiiiiiiiiiiie et 115
5.8.24 Shadow Attenuation Factor Setting REQIStErSuuiiiiiiaiiiiiee et 115
5.8.25 W BUffer SEttiNg REQISIEISuuuiiiiie i e e s s e e e e e e s s e e e e e e e s e nnnneees 116
5.8.26 User Clip SettiNg REQISIEIS. ...ccoii ittt e e e et e e e e e e e snnbereeaaeas 117
5.8.27 Alpha Test SEttiNg REGISIEIS. ...uuiiiieiiii e s e er e e e s s e e e e e s e e e e e s s sanreer e e e e e e s ennnneees 117
5.8.28 Framebuffer Access Control Setting REGISIEIS........coi it 118
5.8.29 Viewport SEtliNg REGISIEISuuuiiiieeiiiiiiiiii i s et er e e e e e s s e e e e e e s st e e e e e e s s sanreeneeaeessannnneees 122
5.8.30 Depth Test SettiNng REGISIEIS ...t e e e reeea s 122
5.8.31 Logical Operation and Blend Setting REQISTErS........c.oivcviiiiiiee e e e 123
5.8.32 Early Depth Test Setting REGISIEISceiiiii e e s 125
5.8.33 Stencil Test SettiNg REGISIEISvvviei i e e e e e s s e e e e e e s nnnneees 126
5.8.34 CUlling SettiNg REGISIEISeeiiiiiiie ettt e e e e e e e e e e e e sab e ae e e e e e e e e nanaeees 127
5.8.35 SCISSONNG SENG REQISIEIS ...uuiiiii e i i it e e e e e e e e e s s s rrar e e e e e e s e nnnneees 127
5.8.36 Color Mask Setting REQISIEISuuiieeiiiitiiiiee e e et e e s s e e e e e e e e e e e s s s areeaeeesennnneees 128
5.8.37 Block Format Setting REGISIEISuiieiiiiee ettt e e ee e 129
5.8.38 Settings Registers Specific to the ReNdering APl..........coo i 129
5.8.39 Settings Registers Specific to the Geometry Shader...........oooiiiiiiiiiiii e 134
5.8.40 Settings Registers When Reserved Geometry Shaders Are Usedccccceeeeviiiniieeeeeee e, 137
5.8.41 Clearing the Framebuffer Cacheoooii i 147
5.8.42 Commands That Generate Interrupts (Split Commands)ccceeeviiiiiieieeeee e 148
5.8.43 Command Buffer EXECULION REQISLEIS.......cuiiiiiiiiiiiiei et 148
5.8.44 Settings Information for Otherwise Undocumented BitS..........ccccceeevviiiiieieeee e 152
5.9 Code to Convert Formats for PICA Register SettiNgSuuveiiiiiiiiiiiieiiee e 154
5.9.1 Converting from float32 t0 flOat24.........ooeeeiiiiiiee e 154
5.9.2 Converting from float32 t0 flOatLB..........cccuvviiiiiee i 155
5.9.3 Converting from float32 t0 flOat3L.......cooiuiiiiiiiie e 155
5.9.4 Converting from float32 t0 float20..........cccuviiiiiiee e 156
5.9.5 Converting a 32-Bit Floating-Point Number into an 8-Bit Signed Fixed-Point Number with 7

= (o110 £ F= U =T £ PSR TPSR 156

5.9.6 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11
[=Tt o] F= LI = (TP ETPT 157

5.9.7 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11
Fractional Bits (Alternate Method) ..o 158

5.9.8 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 8

[=Tt o] F= LI = (PP ERPT 158

5.9.9 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 11
[=Tt o] F= LI = (TP ETPT 159
CTR-06-0006-001-D 6 © 2009-2011 Nintendo

Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.9.10 Converting a 32-Bit Floating-Point Number into a 16-Bit Signed Fixed-Point Number with 12

FraCONAI BilS....cciii ittt e e e ettt e e e e e e s bbb b et e e e e e e e e nnraeeeaaeeean 160
5.9.11 Converting a 32-Bit Floating-Point Number into an 8-Bit Unsigned Fixed-Point Number with

NO FraCtioN@l BItSceeiiiiiiiiiiiiieee ittt e ettt e e e e e e st et e e e e e e e s annnbeeeaaaeeas 161
5.9.12 Converting a 32-Bit Floating-Point Number into an 11-Bit Unsigned Fixed-Point Number with

= T o] F= L =] £ PPN 161
5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point Number with

12 FraCtionNal BitS........eveiiieiiiiiii ettt 162
5.9.14 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number with

24 FraCtioNal BilS.......ceeeiieiiireie ittt 163
5.9.15 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number with 8

FIaCtioN@I BItS.......oiiiieieiieiiie ittt st 163

5.9.16 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned Integer 164
5.9.17 Alternate Conversion from a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit

L8 oIS o g T=To I a1 1=To = SO PP TP 164
5.9.18 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit Signed Integer...164
5.9.19 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value 164
5.10 Command Cache Restrictions and PreCaUtiONSocueviiiiiiee ittt 165
L0 O = (@ N =T 1S3 =T gl I PRSP 165
LS = 1 (o] G @o o L= PSP PRPPRPPPN 196
Y] (o] g I o 1] (] PP PPPPPRPTE 204
Code
Code 5-1 Sample 32-Bit FIoating-Point INPULuuiiirie e e e e e enrnaees 73
Code 5-2 Sample 24-Bit FIoating-Point INPULoeiiii e 74
Code 5-3 Sample Vertex Shader DefinitioNSuvuiiirie i e e 76
Code 5-4 Sample INLEHEAVEU AFTAYeieeiiie ettt e e e e e e s e e e e e e e e e s e aabbbe e e e e e e e s snbreneeas 84
Code 5-5 Vertex Array Settings for an Interleaved ArTayoevvee oo 84
Code 5-6 Sample INAEPENAENT ATTAYuuiiiiieeieitiiie e e e et e e e e e e s e b e e e aa e e s e aanbbeeeeaaeeeannreeeeas 85
Code 5-7 Vertex Array Settings for an INdependent ArTaY..........uveeeeeiiiiiiieieeee e e e e s e e e e e e snnrneeees 85
Code 5-8 Sample Vertex Data Structure with Padding COMPONENTSccoiiaiiiiiiiiieieeeiiiiieeee e 87
Code 5-9 Sample Vertex Data Structure with Automatic Padding.............eevieiiiiiiiiiiiieeieeee e, 87
Code 5-10 Another Sample Vertex Data Structure with Automatic Paddingccccceeevvviiiiieeee e, 88
Code 5-11 Conversion into a 24-Bit Floating-Point NUMDBET ... 154
Code 5-12 Conversion into a 16-Bit Floating-Point NUMDBETcccoiiiiiiiiiiiee e 155
Code 5-13 Conversion into a 31-Bit Floating-Point NUMDET ... 155
Code 5-14 Conversion into a 20-Bit Floating-Point NUMDBETcccoiiiiiiieiriee e e e 156
Code 5-15 Conversion into an 8-Bit Signed Fixed-Point Number with 7 Fractional Bits.......................... 156
Code 5-16 Conversion into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits........................ 157
© 2009-2011 Nintendo 7 CTR-06-0006-001-D

CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Code 5-17 Alternate Conversion into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits 158
Code 5-18 Conversion into a 13-Bit Signed Fixed-Point Number with 8 Fractional Bits 159
Code 5-19 Conversion into a 13-Bit Signed Fixed-Point Number with 11 Fractional Bits 159
Code 5-20 Conversion into a 16-Bit Fixed-Point NUMDET ... 160
Code 5-21 Conversion into an 8-Bit Unsigned Fixed-Point Number with No Fractional Bits................... 161
Code 5-22 Conversion into an 11-Bit Unsigned Fixed-Point Number with 11 Fractional Bits.................. 161
Code 5-23 Conversion into a 12-Bit Unsigned Fixed-Point Number with 12 Fractional Bits 162
Code 5-24 Conversion into a 24-Bit Fixed-Point Number with 24 Fractional BitS...........cccccovvveiiiiieeeenns 163
Code 5-25 Conversion into a 24-Bit Fixed-Point Number with 8 Fractional Bits............cccooocviiiiiiiiinnnns 163

Code 5-26 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned Integer164
Code 5-27 Alternate Conversion of a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit

L8 113 T [=T I 1 a1 (=0 = SRS 164
Code 5-28 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit Signed Integer . 164
Code 5-29 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value.......................... 165
Tables
Table 2-1 Alignments for EaCh BUFfEI TYPEooiiiiiiiiiieie et 14
Table 3-1 Parameter List 1 for Command LiSt ODJECEScocuvviiiiiee i 26
Table 3-2 Parameter List 2 for Command LiSt ODJECEScooiuiiiiiiiiiiiie e 27
Table 3-3 width and height in nNgXFilterBIoCKIMAgE.ccocoiiviiiiiiiieee e 31
Table 3-4 Color Buffer Formats and nngxAddMemoryFi I ICommand Parameterscoocccvveeeeeeennnnnns 38
Table 3-5 Depth/Stencil Buffer Formats and nngxAddMemoryFi I ICommand Parameters...................... 38
Table 4-1 List of Parameters for Display Buffer ODJECESeuiiiiiiiiiii e 47
TaDIE 5-1 StAE FlAg TYPES ... eiiieieiie ettt ettt e e e ettt e e e e e s e ab b b e et e e e e e e s abbabe e e e e e e e e annbbsaeeeaeesaannreees 64
Table 5-2 State Flag DEPENUENCIEScc.uvieiieieee ittt ie e e e e e et e e e e e e s s s e e e e e s s et te e e e e e e s s snsrnaeeeeeesaannnnenns 67
Table 5-3 Conditions for Enabling LOOKUP TaDIEScoiiiiiiiiii e 67
Table 5-4 FUNCHON LISt ..ottt ettt se e n et e snne e sne e e nn e e nnre e e rne e 69
Table 5-5 ComMMAaNd Bit SITUCTUIEooiiiiiiieiee ettt e e et e e e e e e e e sbb e e e e e e e e e e e nnneeees 70
Table 5-6 Registers That Set Output Attributes from the Vertex Shader...........cccooccvviieiee i 75
Table 5-7 Clock Control Setting Registers for Vertex Shader Output Attributescccccoviiiiiiiiiiieniinns 77
Table 5-8 Vertex Shader Program Code Setting REQISIEIS........uuuiiieiiiiiiiieieeee e e e 78
Table 5-9 Vertex Shader Swizzle Pattern Setting ReQISIErSccuiiiiiiiiiiiiiia e 78
Table 5-10 Registers That Map Vertex Attributes to INput REQISLErSuvevvveeiiiiiiiiiiiiee e 78
Table 5-11 Registers for Vertex Attribute Array SEttNGSoooeeiiiiiiee e 80
Table 5-12 Texture Data Address Setting REQISIEISuiiiii i e e 89
Table 5-13 Block Format Setting REQISIEISccciiiiiiiiiii e e et s e e e e e e e e e e s s s e e e e e e e e e nnnneees 90
Table 5-14 Texture Combiner Setting REGISIEISuuuiiiii e 90
Table 5-15 Texture Combiner Numbers and Starting REGQISIEIScccovicivieiieie e 93
Table 5-16 Registers That Enable or Disable Lightingccuueuiiiiiiiiiii e 94
Table 5-17 Registers That Set Each Color COMPONENLvviiiiieee e e e e e 95
Table 5-18 Registers That Set Individual Components of Light Source Coordinatesccccceeeeerrnnnnns 96
CTR-06-0006-001-D 8 © 2009-2011 Nintendo

Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Table 5-19 Registers That Set Individual Components of the Spotlight Directionccccccceeevviivinennnnn. 97
Table 5-20 Setting Registers for the Bias and Scale with Distance Attenuation.............ccccccceeeiiiiiiiieeennn. 97
Table 5-21 Registers Used by Other Miscellaneous Settings for Individual Light Sources..............c......... 97
Table 5-22 Registers That Configure Lookup Tables for Fragment Lighting ..o, 98
Table 5-23 Registers That Set the Range of Lookup Table Arguments..........ccccveveeeiiiiciiieeeee e eeen 99
Table 5-24 Registers That Set Lookup Table INpUt ValUESoouiiiiiiiiiii e 99
Table 5-25 Registers That Set the Output Scaling for LoOokup Tablesccuuviiiiiiiiiiiieiieieeen 100
Table 5-26 Registers for Shadow Attenuation SEHINGSvvvveiiiiiiiiiire e 100
Table 5-27 Registers for Other Miscellaneous Fragment Lighting Settingsccccccoeciiiieiiiiiiiiiiiiieenen, 101
Table 5-28 Shadow Texture Setting REQISIEISuuiii it s e e e e s e e e e e s e nanrrneeeeees 102
Table 5-29 Registers That Set the Texture SamPpPIEr TYPEcoooo it 102
Table 5-30 Registers for Texture Coordinate SEIECHIONccciiiiiiiiiiiie e 103
Table 5-31 Registers for Procedural TEXTUIre SELHNGSuueiiieiiiiiiiiiiiee e e e 103
Table 5-32 Registers That Configure Lookup Tables for Procedural TEXIUIESccoecvvviveeeeeiiiiiiiineennn, 105
Table 5-33 Registers That Set the Texture RESOIULION ...t 107
Table 5-34 Registers for Texture FOrmat SEHNGSoocvviiiiiee e e s snrereeae s 107
Table 5-35 Registers for Texture WRAP MOUE SEHNYSueiiiiiiiiiiiiiiieee ettt 108
Table 5-36 Registers for Texture Filter MOde SetliNgS.......uuuuvieiiiiiiiiiiiee e e srere e e 109
Table 5-37 Registers for TEXtUre LOD SEINGS ...vvvieeiiiiiiiiiiiree e et e e e e ssstiee e e e e s s srreee e e e e e s s snnrneneeeee s 109
Table 5-38 Registers for Texture Border Color SEHNQYSeeiiiaiiiiiiiiiei et 110
Table 5-39 Registers for Texture LOD Bias SEtHNQSccvvvriiieeiiiiiiiiiiree et e e e e s s sraee e e e e e s sanreeneeae s 110
Table 5-40 RegiSters fOr Gas SEHINGScoi it e e e e e e e e e e s e nabbeeeaaaee s 111
Table 5-41 Registers That Set the Shading LOOKUP TabIecccooeiiiiiiiii e 113
Table 5-42 FOQ SettiNg REGISIEISuuiiiiiiiiiiitiie et e et e e e e e e st e e e e e e e e e s e snabbeeeaaaaeas 114
Table 5-43 Fog Lookup Table Setting REQISIEISccii i e e e snreen e e e e 114
Table 5-44 Fragment Operation Setting REQISEISccuuiiiiiiieiiiitee e e e 115
Table 5-45 Shadow Attenuation Factor Setting REQISIENccciiiiiiiiiiee e 115
Table 5-46 w Buffer SEetting REQISTEISooi ittt e e e e e e e e s eeaaaeeas 116
Table 5-47 User Clip SettiNg REQISIEIScii et e e s a e e e s s s e e e e e e e s s sanreneeeeees 117
Table 5-48 Alpha Test Setting REQISTEIS ... ettt a e e e e e e s s eanbeeeaaaeeas 117
Table 5-49 Framebuffer Access Control Setting ReQISIErS.......coiiuiiiiiiiiiei e 118
Table 5-50 Combinations of Framebuffer Access Control Setting Registers.......ccccccovcvvvveeveeviviciiennenenn, 119
Table 5-51 Conditions for Disabling Access to the Framebuffer..........cco e, 120
Table 5-52 Viewport SEttiNg REGISIEIS.cci i s st e e e s a e e e s s s er e e e e e e s s nnanreneeeeees 122
Table 5-53 Depth Test Setting REJISIEIS ea e 123
Table 5-54 Logical Operation and Blend Setting REQISIEIScccuviiiiiei e 123
Table 5-55 Early Depth Test Setting REQISLEISccuiii it e e e 125
Table 5-56 Stencil Test Setting REQISIEISuviiiiiee i e e e s s rrrreeeee s 126
Table 5-57 Culling SettiNg REQISIEIS.ooi it a et e e e e e e s sabbeeeaaaeeas 127
Table 5-58 SCISSOINNG SetliNg REGISIEIS ...ccii i iiiiiiie e r e e e e e e e s s st r e e e e e s s nnanreneeeeees 127
Table 5-59 Color Mask Setting REQISLEISuuiiiiiiaiiiiiieee et a e e e e e e e s e saebeeeaaae s 128
Table 5-60 Block Format Setting REJISIEISuuiiiiieiiiiiiiiie e e e e e e e e s s nnrreareeee s 129
© 2009-2011 Nintendo 9 CTR-06-0006-001-D

CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Table 5-61 Register Settings Related to the Rendering API (if the Vertex Buffer Is in Use)ccc........ 129
Table 5-62 Register Settings Related to the Rendering API (when the Vertex Buffer Is Not in Use)....... 132
Table 5-63 Geometry Shader Program Code and Swizzle Pattern Data Settings Registers................... 136
Table 5-64 Miscellaneous Settings Registers When the Geometry Shader IS in Useocccvieeeeeenn. 137
Table 5-65 Register Setting Values When the Point Shader Is Usedcccccceeiviiiiiiiiine e 137
Table 5-66: Point Shader Uniforms and Their Corresponding REQISErScccoiiriiiiiiiiiiaaiiiiiiiieeeeeeee 139
Table 5-67 Register Setting Values When Line Shading IS USedooocuiiiiiiiiiiiiiiiiiiiee e 139
Table 5-68 Line Shader Uniforms and Their Corresponding REQIStErSuevvvveiviiiiiiieiiee e criiiieeeeeee 140
Table 5-69 Register Setting Values When the Silhouette Shader IS Used..........c.oooiiiiiiiiiiiiiiiiiceneeenn. 140
Table 5-70 Silhouette Shader Uniforms and Their Corresponding RegiStersccccvvvveeeeiiicivinenneeennn 141
Table 5-71 Register Setting Values When Catmull-Clark Subdivision IS Used............cccccceiiiiiiiiieneeennn. 142
Table 5-72 Catmull-Clark Subdivision Shader Uniforms and Their Corresponding Registers................. 143
Table 5-73 Register Setting Values When Loop Subdivision IS Used...........ccccceeeiiiiiiiiiiiiiiiniiiieeeeeee 144
Table 5-74 Loop Subdivision Shader Uniforms and Their Corresponding Registers..........c.coeevvvvvereeenn. 145
Table 5-75 Register Setting Values When the Particle System Shader Is Used...........cccccccoiiiiiiinnnnnnn. 145
Table 5-76 Particle System Shader Uniforms and Their Corresponding RegiSterscccccevvvevvvieereeennn. 146
Table 5-77 Register Settings for Command Buffer Execution Commandsooccuveieeieeiniiiiiiiieeneeeenn. 148
Table 5-78 Otherwise Undocumented Bit Setting INformationcccooocciieiie i 153
Table 5-79 PICA REQISTEI LIStuuuieiiiieiiiiiiiiiiie e e s sttt e e s s st e e e e e e s s st e e e ae e s s s ssnnbeeeeeaeesansrntneneeeeenanns 166
TabIe 6-1 ErrOr COOE@ LIST ..eiiiiieiieiiie ettt ettt et e e e s e sttt e e e e e e s e abbbe e e e e e e e s aanbbnbeeeaaaaeaanns 196
Figures
Figure 3-1 Block Diagram of a Command List ODJECE...........eooiiiiiii e 16
Figure 3-2 3D Command BUFFEEueiiiii ettt e e e s 17
Figure 3-3 Command Execution in Serial EXECUtION MOEooceviiiiiiee i e e 19
Figure 3-4 Command Execution in Parallel EXecution MOde...............ueiiiiiiiiiiiiiiiiic e 20
Figure 3-5 Command Execution in Synchronous EXecution Mode............ccovviiiiiiiieee i 20
Figure 3-6 Transferring Partial IMage REQIONScoiii it 36
T T = =Y T 1Y o RO 40
Figure 4-2 Transferring Rendered RESUILSuiiiiiiiii e 41
Figure 4-3 Displaying Images After RENUEIINGueviieeiiiiiiiiiie e e e e e e s e aeeeee s 42
Figure 4-4 SpecCifying the DISPIAY AFEacoi ittt e e e e e e e e e e e s snbbeaeeeaeas 42
Figure 5-1 Saving Command LiSt ODJECTS...........uuiiiiie e e r e e e s e e e e e e e snreaeeeees 49
Figure 5-2 Using a Copy of a Saved 3D Command BUFfer ... 50
Figure 5-3 Using a Saved 3D Command Buffer DIr€CHY.........ccceeiiiiiiiiieie e 51
Figure 5-4 First Example of Specifying an EXPort COrreCtlyooovviiiriieeiiiiiiieeeee e 56
Figure 5-5 Second Example of Specifying an EXport COrrectlyueeeeiiiiiiiiiiiiiiiiee e 57
Figure 5-6 First Example of Specifying an EXPort INCOITECHYcccuvveiiiieee e 57
Figure 5-7 Third Example of Specifying an EXport COrrectlyoocuueiieiieiiiiiiiieiieee e 57
Figure 5-8 Fourth Example of Specifying an EXport CorreCtlycccuvvvveieeiiiiciie e 58
Figure 5-9 Command StruCture fOr BUISE ACCESS ...ccuiiaiiiiiiiiiiiie ettt e ettt e e e e e e e e e e e e e e snnbeaeeeeeas 71
CTR-06-0006-001-D 10 © 2009-2011 Nintendo

Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Figure 5-10 How to Set 24-Bit Floating-Point NUMDBDEISooviiiiiiiiiiieee e 74

Figure 5-11 Use EXamPle 1 DIAQIram L.ottt sttt e e e e e st e e e e e e e s nbabe e e e e e e e e snneeeeeas 149

Figure 5-12 Use EXample 1 DIAQramM 2cccoeiiiiiiieieeee e e ieiiiieeee e e e s s snstaeeeeseeessssntaeeesaeessnnsssseeseeaesssnsssseees 150

Figure 5-13 Use EXample 2 DIAgQram 1 ...ttt a et e e e e e s nbabe e e e e e e e e snnneeeeas 151

Figure 5-14 Use EXample 2 DIAQIaM 2cceeoiiiiiiieieee e e e isiiieeee e e e s s sntaeeeeae e e s s ssnntaeeeeaeessnnnsnsneeeeeesssnnsssseees 151
Equations

Equation 4-1 Display Buffer Address in HArdWAareocuviiiiiiiiiiiii e 46
© 2009-2011 Nintendo 11 CTR-06-0006-001-D

CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

1 Overview

This document describes the system API for the development hardware drivers for DMPGL 2.0. There
are four system APIs:

e Initialization API

e Execution Control API

e Display Control API

e Command List Extended API

CTR-06-0006-001-D 12 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

2 Initialization API

This chapter describes the specifications of the DMPGL 2.0 initialization API.

The initialization APl must be called prior to the calling of any other DMPGL API. The initialization API
initializes the overall system. Values for the following settings must be passed to it:

e Settings for LCD display
e Memory allocators
e Other extended settings

2.1 API

This section describes the functions in the API.

2.1.1 DMPGL Initialization

GLboolean nngxlInitialize(
GLvoid* (*allocator)(GLenum, GLenum, GLuint, GLsizei),
void (*deallocator)(GLenum, GLenum, GLuint, GLvoid*));

Initializes DMPGL. Operation is not guaranteed if any other functions are called prior to this function.
It will return GL_TRUE if initialization is successful. It will return GL_FALSE upon failure. When this
function is called again after a successful initialization without first calling the nngxFinalize
function, it will return GL_FALSE.

Specify pointers to the memory allocator and deallocator to the al locator and deal locator
arguments, respectively. The allocator is used to allocate memory, and the deallocator is used to
deallocate memory. The following values are passed to the first argument of the allocator and
deallocator functions.

e NN_GX_ MEM_FCRAM Allocates the FCRAM region
e NN_GX MEM_VRAMA Allocates a region in the A channel in VRAM
e NN_GX_ MEM_VRAMB Allocates a region in the B channel in VRAM

The following values are passed to the second argument of the allocator and deallocator functions.

e NN_GX MEM_SYSTEM System memory

e NN_GX_MEM_TEXTURE Texture memory

e NN _GX MEM_VERTEXBUFFER Vertex buffer memory

e NN_GX_ MEM_RENDERBUFFER Render buffer memory

e NN_GX_MEM_DISPLAYBUFFER Display buffer memory

e NN_GX_ MEM_COMMANDBUFFER 3D command buffer memory

If the second argument is set to NN_GX_MEM_TEXTURE, NN_GX_MEM_VERTEXBUFFER,
NN_GX_MEM_RENDERBUFFER, NN_GX_MEM_DISPLAYBUFFER, or NN_GX_MEM_COMMANDBUFFER,
the name (ID) of the appropriate object will be passed to the third argument of the allocator and
deallocator functions.

© 2009-2011 Nintendo 13 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

For the fourth argument to the allocator function, specify the size (in bytes) of the memory area to be
allocated. The allocator function will return the address of the area that was allocated. If the allocation
failed, it will return zero.

For the fourth argument to the deallocator, specify the address of the area allocated by the allocator.
For the first, second, and third arguments to the deallocator, specify the same arguments that you
passed to the allocator when the memory was allocated.

The initialization function does not create a default render buffer. The user must create a render buffer
explicitly based on the settings being used.

2.1.2 DMPGL Finalization

void nngxFinalize(void);

Finalizes DMPGL. Some hardware is not reinitialized even if the nngxInitial ize function is called
again after DMPGL finalization.

2.1.3 Getting an Allocator

void nngxGetAllocator (
GLvoid* (**allocator)(GLenum, GLenum, GLuint, GLsizei),

void (**deallocator)(GLenum, GLenum, GLuint, GLvoid*));

Gets the allocator set by nngxInitialize, the DMPGL initialization function. Specify a pointer to a
function pointer for both al locator and deal locator to get the allocator and deallocator
respectively. The allocator and deallocator are not obtained if al locator and deal locator are set
to 0.

2.2 Allocator Information

Implementation of the allocators set using DMPGL initialization functions must comply with the
following address alignment rules.

Table 2-1 Alignments for Each Buffer Type

Buffer Type Alignment

Texture 128 bytes
(2D and environmental mapping)

Vertex buffer Alignment of each vertex attribute

4 bytes (GLFloat type)

2 bytes (GLshort and GLushort types)
1 byte (GLbyte and GLubyte types)

Color buffer 64 bytes

Depth buffer (stencil buffer) 32 bytes (for 16-bit depth buffers)
96 bytes (for 24-bit depth buffers)
64 bytes (for 24-bit depth + 8-bit stencil buffers)

CTR-06-0006-001-D 14 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Buffer Type

Alignment

Display buffer

16 bytes

3D command buffer

16 bytes

System

4 bytes (when the size allocated is a multiple of four)

2 bytes (when the size allocated is a multiple of two that is
not a multiple of four)

1 byte (when the size allocated is not a multiple of two)

These alignments all indicate multiples starting from each address bank (128 MB). For example, a
96-byte alignment would require that the starting addresses of the buffer data be placed at the
following positions: (0x1000_0000, 0x1000_0060, 0x1000_00C0, 0x1000_0120, ...).

Apart from the address alignment rules listed above, you must also implement your allocators with the

following specifications of the PICA hardware in mind.

e All six faces of cube-map textures must be contained within 32 MB boundaries.
e Addresses for all six faces of cube-map textures must share the same values for the most

significant 7 bits.

e For cube-map textures, the address of the GL_TEXTURE_CUBE_MAP_POSITIVE_X face must be less
than or equal to the address of any other face. In other words, the following relationship must be

satisfied:

(Address of the GL_TEXTURE_CUBE_MAP_POSITIVE X face) < (Address of any other face)

e They must not be located partially in VRAMA and patrtially in VRAMB.

© 2009-2011 Nintendo
CONFIDENTIAL

15

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

3 Execution Control API

This chapter describes the specifications of the DMPGL 2.0 execution control API. The execution
control API lets applications control execution of 3D rendering with a high degree of freedom. It
replaces the traditional “one-pipe mode” and “two-pipe mode” mechanisms of execution control.

3.1 Command List Objects

The execution control API introduces a new object called the command list object. This object is
treated as the execution unit. A single command list object is made up of the following data.

e 3D command buffer
e Command requests

Figure 3-1 Block Diagram of a Command List Object

Command List Object

3D Command Buffer

Command | Command | Command il Command
Request 1 | Request 2 | Request 3 Request N

The following three actions are performed on command list objects.

e Accumulating commands
e Executing accumulated commands
e Executing commands immediately while accumulating them

The total accumulatable size of the 3D command buffer and the maximum accumulatable number of
command requests are specified using the nngxCmd l i stStorage function. The command list
object cannot accumulate any more than these specified limits. A completion interrupt callback is
issued to notify the application that accumulated commands have finished executing. Command list
objects that have finished execution can be reused by clearing their content with the
nngxClearCmdlist function.

CTR-06-0006-001-D 16 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

3.1.1 3D Command Buffer

A 3D command buffer is one of the components that make up each command list object. It stores the
register write commands to set for PICA. When a 3D execution command from a command request
begins, the content of this buffer will be loaded into PICA and executed. The 3D command buffer is

caused to accumulate commands by calls to gIDrawE lements and other functions in the rendering
API.

Figure 3-2 3D Command Buffer

3D Command Buffer

Command Set 1 Command Set 2
\\\
| \\\\\
| ~— _
— N ™
c| S| S 5c
sls|s| ... cE
E|lE|E G £
E| €| € =)
(@) (@) o =0
Ol]O]| O

The 3D command buffer stores a number of sequential command sets. Each command set includes
multiple register write commands; the last command in each command set is the interrupt generation
command. This final command acts as the command loading completion command (that is, the

command indicating that the loading of commands has completed). All 3D execution commands are
executed in command set units.

3.1.2 Command Requests

Command requests include DMA transfer commands, 3D execution commands, memory fill
commands, post-transfer commands, and render texture transfer commands. Each type of command
is queued when certain corresponding functions are issued, and those functions are triggered by
specific causes. The details for each type of command are explained below.

3.1.2.1 DMA Transfer Commands
These commands perform a DMA transfer of textures or vertex buffer data from FCRAM to VRAM.

Functions that allocate texture memory (like gl TexImage2D) and functions that allocate vertex
buffers (like glIBufferData) will cause commands to be queued.

© 2009-2011 Nintendo 17

CTR-06-0006-001-D
CONFIDENTIAL

Released: May 13, 2011

DMPGL 2.0 System API Specifications

3.1.2.2 3D Execution Commands

These commands cause the PICA register write commands that have accumulated in the 3D
command buffer to be loaded into PICA and executed. The register write commands for PICA include
the start rendering command. Each time a 3D execution command is run, a single command set that
includes multiple register write commands is executed. When functions like glClear or
glCopyTexImage2D are called, a loading complete command is written to the 3D command buffer
to pause the 3D rendering, and the contents of the 3D command buffer up to that point are queued as
a single 3D execution command. It is also possible to stop the loading of the 3D command buffer at
will by using the nngxSplitDrawCmdl ist function (see section 3.3.8 Splitting the 3D Command
Buffer).

3.1.2.3 Memory Fill Commands

These commands use the PICA memory fill feature to fill allocated regions in VRAM with a specified
pattern. When the glClear function is called when attached to a render buffer allocated in VRAM,
the command will be queued. Moreover, in order to execute the glClear function, several PICA
registers must be set in addition to the memory fill, so a single 3D execution command will also be
queued. In other words, the register write commands for the glClear function and a 3D command
loading complete command are added to the 3D command buffer after the commands that had
already accumulated beforehand, one 3D execution command is queued for the sake of loading the
3D command buffer up through that point, and the fill command is queued after that.

3.1.2.4 Post-Transfer Commands

These commands take rendered images that were rendered in PICA block format using PICA’s post-
filters and convert them into a linear format that can be loaded to the LCD. This queues commands
using the nngxTransferRender Image function in the display buffer control API. As with the
glIClear function, this requires that the loading of all commands (such as render commands) up to
that point in the 3D command buffer be completed. To do this, a loading complete command is added
to the 3D command buffer, and the post-transfer command is queued after the 3D execution
command is queued. When the 3D command buffer is completed by calling the
nngxSplitDrawCmdl ist function immediately beforehand, only the post-transfer command will be
gueued.

3.1.2.5 Render Texture Transfer Commands

These commands copy rendered results from PICA to textures. Commands are queued using
glCopyTexImage2D or other such functions in the texture-copying API. As with the glClear
function, this requires that the loading of all commands (such as render commands) up to that point in
the 3D command buffer be completed. To do this, a loading complete command is added to the 3D
command buffer, and the render texture transfer command is queued after the 3D execution
command is queued. When the 3D command buffer is completed by calling the
nngxSplitDrawCmdl ist function immediately beforehand, only the render texture transfer
command will be queued.

CTR-06-0006-001-D 18 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

3.2 Executing Commands

The 3D command buffer and command requests of command list objects can be run in one of three
modes: serial execution mode, parallel execution mode, or synchronous execution mode. The

current implementation only supports serial execution mode. The other modes are planned to
be supported in the future.

Each mode is explained below.

3.2.1 Serial Execution Mode

Serial execution mode will cause queued command requests to execute in order from start to finish.

Each command will be executed after the previous command has finished executing. The figure
below shows an example.

Figure 3-3 Command Execution in Serial Execution Mode

Command Request

Dl Memory Fill Dl Render 2os!
Transfer Commr)ém d Transfer Command Transfer
Command Command Command
Start Executing Command List
DMA Memory DMA Post
_— . Render —
Transfer Fill Transfer Transfer

All commands are being executed in order.

3.2.2 Parallel Execution Mode

Parallel execution mode will split the queued command requests into two pipelines and execute them
in parallel, one for DMA transfer commands and another for all other commands.

© 2009-2011 Nintendo
CONFIDENTIAL

19 CTR-06-0006-001-D

Released: May 13, 2011

DMPGL 2.0 System API Specifications

Figure 3-4 Command Execution in Parallel Execution Mode

Command Request

DhikY Memory Fill Db Render Pk
Transfer y Transfer Transfer
Command Command
Command Command Command

Start Executing Command List

\

y

DMA DMA
Transfer | Transfer
Memory Post
Fill R Transfer

3.2.3 Synchronous Execution Mode

Synchronous execution mode will split the queued command requests into two pipelines and run
them in parallel, one for DMA transfer commands and another for all other commands. However,
unlike parallel execution mode, render commands will not execute until any DMA transfer commands
that had entered the queue before them have finished executing.

Figure 3-5 Command Execution in Synchronous Execution Mode

Command Request

Ll Memory Fill D Render e
Transfer Comm);n d Transfer Command Transfer
Command Command Command
Start Executing Command List
v
DMA DMA >
Transfer | Transfer
v
Memory Post
— . Render
Fill Transfer >
CTR-06-0006-001-D 20 © 2009-2011 Nintendo

Released: May 13, 2011

CONFIDENTIAL

DMPGL 2.0 System API Specifications

3.3 API

This section describes the functions in the API.

3.3.1 Generating Command List Objects

void nngxGenCmdlists(GLsizei n, GLuint* cmdlists);

Generates a command list object. Specifically, it will create n command list objects and store the
object names in cmdl ists. Command list objects have their own namespaces; 0 is reserved for the
driver. When a negative value is specified for n, a GL_ERROR_8000_DMP error is generated. When
memory failed to be allocated for the management region, a GL_ERROR_8001_DMP error is
generated.

3.3.2 Deleting Command List Objects

void nngxDeleteCmdlists(GLsizei n, const GLuint* cmdlists);

Deletes command list objects. Specifically, it will delete n command list objects whose names are
stored in the cmdl ists argument. Attempts to delete a command list object that is running causes a
GL_ERROR_8003_DMP error to be generated. The running command list object will not be affected,
but the other command list objects will be deleted. When a negative value is specified for n, a
GL_ERROR_8002_DMP error is generated.

3.3.3 Binding Command List Objects
void nngxBindCmdlist(GLuint cmdlist);

Binds the command list object specified in cmdl ist. Command list objects that are bound will
thereafter accumulate commands. Call the nngxRunCmdl i st function to run command list objects
once they are bound. Commands can continue to accumulate in a command list object after that
command list has started to execute, but it is also possible to bind another command list object and
start accumulating commands there. That said, the order in which commands accumulate in
command list objects and the order in which those commands are executed must be the same.

A new command list object is generated when cmdl i st refers to an unused object name. When
memory fails to be allocated for the management region at this time, a GL_ERROR_8004_DMP error is
generated. When you call this function while a command list is being saved, a GL_ERROR_8005_DMP
error is generated. For details on saving command lists, see section 5.4.1 Start Saving Command
Lists.

If no command list object has been bound, or if bound command list objects either have insufficient
space in the 3D command buffer or lack available command request slots, calling a DMPGL function
that accumulates commands will generate an error. If there is insufficient space in the 3D command
buffer, a GL_ERROR_COMMANDBUFFER_FULL_DMP error is generated; if there is insufficient space in
the command request region, a GL_ERROR_COMMANDREQUEST_FULL_DMP error is generated. When
the command list object is not bound, each error is generated depending on whether a 3D command
buffer or command request command is being accumulated.

© 2009-2011 Nintendo 21 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

3.3.4 Allocating Data Regions for Command List Objects

void nngxCmdlistStorage(GLsizei bufsize, GLsizei requestcount);

Allocates a region for the 3D command buffer of a bound command list object, and also allocates a
region for the command request queue. The size of the 3D command buffer (in bytes) will be the size
specified to the bufsize argument. The number of slots allocated in the command request queue
will be the value specified to the requestcount argument. When memory allocation fails, a
GL_ERROR_8006_DMP error is generated. DMPGL function calls that attempt to add more commands
than the command list object is capable of storing (given the specified 3D command buffer size and
the command request count) will cause a GL__INVALID_OPERATION error to be generated. A
GL_INVALID_OPERATION error is also generated when a function that generates commands is
called on a bound command list object whose data region has not yet been allocated using this
function. Execution of this function is ignored when the reserved object 0 is currently bound. If this
function is called again on a command list object for which a data region has already been allocated,
the existing region will be deallocated, and a new one will be allocated.

It is recommended to allocate more space in the 3D command buffer and more slots in the command
request queue than you think you'll require. If necessary, though, you can call the

nngxGetCmdl istParameteri function (described later) to find the actual size used and aim to
allocate the optimal size.

When this function is called on a command list object that is executing, a GL_ERROR_8007_DMP error
is generated. When negative values are specified for bufsize or requestcount, a
GL_ERROR_8008_DMP error is generated.

3.3.5 Executing Command List Objects

void nngxRunCmdlist(void);

Sequentially executes the command requests of command list objects that have been bound using
the nngxBindCmdl ist function. Execution of this function is ignored when the reserved object 0 is
currently bound.

There are three execution modes for command requests: serial execution mode, parallel execution
mode, and synchronous execution mode. See the section 3.2 Executing Commands for more details
about each of these modes. The execution mode is set by specifying NN_GX_CMDLIST_RUN_MODE
for the pname argument of the nngxSetCmdl istParameteri command. In the param argument,
specify NN_GX_CMDLIST_SERIAL_RUN for serial execution mode,
NN_GX_CMDLIST_PARALLEL_RUN for parallel execution mode, or NN_GX_CMDLIST_SYNC_RUN for
synchronous execution mode.

If the nngxRunCmd I i st function is called while a command list object is running, the call is ignored.
Calls to nngxRunCmd I ist are also ignored if this function is called during the period after a call to
the nngxStopCmdl i st function has specified to stop commands and before all issued commands
have actually stopped. To confirm the completion of issued commands, call the

nngxGetCmdl istParameteri function and specify NN_GX_CMDLIST_IS_RUNNING for the pname
parameter, or use the nngxWaitCmdl istDone function, which waits for the commands to complete.

CTR-06-0006-001-D 22 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Calling this function generates a GL_ERROR_8009_DMP error if a region has not been properly
allocated for the bound command list object's command buffer and command requests.

3.3.6 Stopping Command List Objects
void nngxStopCmdlist(void);

Stops the command requests of an executing command list. When the nngxRunCmdl i st function is
called, all command requests for command list objects will execute in order. Calling this function
(nngxStopCmdl ist) will stop execution after any already-issued command requests finish executing.
(Itis not possible to interrupt the execution of commands that have already started executing or that
have been issued in advance and are waiting to start execution. The nhumber of commands that are
issued in advance is dependent on the system.) Call the nngxRunCmdl i st function to resume
execution.

3.3.7 Scheduling Stops for Command List Objects
void nngxReserveStopCmdlist(GLint id);

Causes command requests to stop executing automatically after the id"™ command request has
finished executing for a bound command list object. When this is specified for a command list object
that is already executing, a GL_ERROR_800A_DMP error is generated. When the value specified for
the id argument is zero, negative, or exceeds the maximum command request count, a
GL_ERROR_800B_DMP error is generated.

3.3.8 Splitting the 3D Command Buffer
void nngxSplitDrawCmdlist(void);

Adds a 3D command loading complete command to the 3D command buffer of a bound command list
object and queues the resulting 3D execution command in the command requests. If executing
commands while accumulating them, the system will execute the 3D commands up to the split point
set using this function.

The final command in the 3D command buffer must be a loading complete command. A loading
complete command will be inserted at the end of the 3D command buffer even when calling functions
such as glCopyTexImage2D and glClear, which require that the 3D command buffer be
interrupted.

Calling this function generates a GL_ERROR_800C_DMP error when 0 is bound as the current
command list. AGL_ERROR_800D_DMP error is generated when the maximum number of
accumulated command requests has been reached. A GL_ERROR_800E_DMP error is generated
when, by adding a 3D command loading complete command, the accumulated 3D command buffer
exceeds its maximum size.

Some other system functions call this function internally and will output the error codes described in
this section if this function causes an error.

This function (nngxSplitDrawCmdl ist) always adds a 3D command loading complete command
to the 3D command buffer and queues the 3D execution command, even if no other commands have

© 2009-2011 Nintendo 23 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

accumulated yet in the 3D command buffer. The nngxFlush3DCommand function adds a 3D
command loading complete command and queues the 3D execution command only when 3D
commands have already accumulated. To avoid unintentionally adding unneeded commands, we
recommend using the nngxFlush3DCommand function instead of this function.

3.3.9 Flushing the Accumulated 3D Command Buffer

void nngxFlush3DCommand(void);

Adds a 3D command loading complete command to the 3D command buffer of the bound command
list object and queues a 3D execution command as a command request. If executing commands
while accumulating them, the system will execute the 3D commands up to the split point that was set
using this function.

If no 3D commands have accumulated in the 3D command buffer since the last time it was split, this
function does not add a 3D command loading complete command or queue the 3D execution
command.

The final command in the 3D command buffer must be a loading complete command. A loading
complete command will be inserted at the end of the 3D command buffer even when calling functions
such as glCopyTexImage2D and glClear, which require that the 3D command buffer be
interrupted.

Calling this function generates a GL_ERROR_8084_DMP error when 0 is bound as the current
command list. AGL_ERROR_8085_DMP error is generated when the maximum number of
accumulated command requests has been reached. A GL_ERROR_8086_DMP error is generated
when, by adding a 3D command loading complete command, the accumulated 3D command buffer
exceeds its maximum size.

3.3.10 Clearing Command List Objects

void nngxClearCmdlist(void);

Clears a bound command list object. It restores the 3D command buffer and the command request
queue to the unused state (they revert to their state right after allocation).

A GL_ERROR_800F_DMP error is generated when this function is called on command list objects that
are executing.

3.3.11 Clearing Command List Objects and Filling Command Buffers

void nngxClearFillCmdlist(Gluint data);

Clears a bound command list object. The 3D command buffer and the command request queue
return to the unused state. The content of the 3D command buffer is initialized with the value given by
data.

A GL_ERROR_8065_DMP error is generated when this function is called on command list objects that
are executing.

CTR-06-0006-001-D 24 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

3.3.12 Registering Interrupt Handlers for Command Completion
void nngxSetCmdlistCallback(void (*func)(GLint));

Registers an interrupt handler that is called when command requests for a bound command list object
finish execution. When 0 is specified for the func argument, the handler will not be called. A
GL_ERROR_8010_DMP error is generated when this function is called on command list objects that

are executing.
void nngxEnableCmdlistCallback(GLint id);
void nngxDisableCmdlistCallback(GLint id);

If the nngxEnableCmdlistCal Iback function is called, the interrupt handler will be called once the
id™ accumulated command request of a bound command list object has completed. Calls to the
interrupt handler can be disabled with the nngxDisableCmdl istCal Iback function once they've
been enabled with the nngxEnableCmdl istCal Iback function. By default, calls to the interrupt
handler are disabled. It is also possible to call the interrupt handler on multiple command requests by
calling the nngxEnableCmdl istCal Iback function multiple times on a single command list object.

When -1 is specified for the 1d argument, the interrupt handler will be called when all command
requests have been completed for the given command list object.

The number of accumulated commands (the value specified for the §1d argument) will be passed to
the interrupt handler as an argument in order to identify which command request triggers the handler.

The value of id can be determined when accumulating commands by calling the
nngxGetCmdl istParameteri function to get the current number of accumulated command
requests.

Note that this sets a completion interrupt for the id™ command to be accumulated. It does not set a
completion interrupt for the id™ command to be executed. In parallel execution mode and
synchronous execution mode, the id™ accumulated command request won't necessarily be the
same as the id"™ executed command request.

It is possible to poll for completed commands even if you're not using interrupt handlers. To get the
execution status, specify NN_GX_CMDLIST_I1S_RUNNING to the nngxGetCmdl istParameteri
function.

A GL_ERROR_8012_DMP error is generated when the nngxEnableCmdl istCal Iback function is
called with the 1d argument set equal to 0, a negative number other than -1, or a value that exceeds
the maximum command request count.

A GL_ERROR_8014_DMP error is generated if the nngxDisableCmdlistCal Iback function is
called with the 1d argument set equal to 0, a negative number other than -1, or a value that exceeds
the maximum command request count.

© 2009-2011 Nintendo 25 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

3.3.13 Setting Parameters for Command List Objects

void nngxSetCmdlistParameteri(GLenum pname, GLint param);

Sets the parameters of a bound command list object. The settings are listed below. Attempting to set
parameters for a command list object that is executing will result in a GL_ERROR_8015_DMP error.
When values not listed in the table below are set for the pname or param parameters, a
GL_ERROR_8016_DMP error is generated.

Table 3-1 Parameter List 1 for Command List Objects

pname

param

Description

NN_GX_CMDLIST_RUN_MODE

NN_GX_CMDLIST_SERIAL_RUN

(The mode listed above is the only
one that is currently supported.)

Sets the execution mode.

NN_GX_CMDLIST_GAS_UPDATE

GL_TRUE
GL_FALSE (Default)

If the nngxSplitDrawCmdlist or
nngxFlush3DCommand function is
called while GL_TRUE is set, the
accumulated 3D execution
commands will update the additive
blend results of the rendered gas
density values when execution
completes.

If GL_FALSE is set, ordinary
operation is restored and the
commands that accumulate will
update the gas density values only
when necessary.

This setting is configured separately
per each command list object.

To have effect, this setting must be
set to GL_TRUE when accumulating
commands (when the
nngxSplitDrawCmdlist or
nngxFlush3DCommand function is
called). If GL_TRUE is set when
executing commands, it has no effect
on command execution.

This setting only affects 3D execution
commands accumulated by the
nngxSplitDrawCmdlist and
nngxFlush3DCommand functions.

For more information on how the
additive blend result of rendered gas
density values is updated, also see
section 3.3.24 Updating Additive
Blend Results Rendered with Gas
Density Information.

3.3.14 Getting the Parameters of Command List Objects

void nngxGetCmdlistParameteri(GLenum pname, GLInt* param);

Gets the parameters of a bound command list object and stores them in param. The various settings
are listed below. When values not listed in the table below are set for the pname parameter, a

CTR-06-0006-001-D
Released: May 13, 2011

26

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

GL_ERROR_8017_DMP error is generated. When pname is set equal to a value other than
NN_GX_CMDLIST_BINDING or when 0 is bound to the current command list, a
GL_ERROR_8018_DMP error is generated.

Table 3-2 Parameter List 2 for Command List Objects

pname Value Description
NN_GX_CMDLIST_RUN_MODE Gets the execution mode that is currently set.
NN_GX_CMDLIST_IS_RUNNING Gets the execution status of the command list.

If a value of GL_TRUE is obtained, the command list is executing. If a
value of GL_FALSE is obtained, the command list is not executing.

NN_GX_CMDLIST_USED_BUFSIZE | Gets the size (in bytes) of the commands accumulated in the 3D
command buffer.

NN_GX_CMDLIST_USED_REQCOUNT | Gets the number of command requests that are currently accumulated.

NN_GX_CMDLIST_MAX_BUFSIZE Gets the maximum size of the 3D command buffer. This gets the value
that was specified for the bufsize argument of the
nngxCmdl istStorage function.

NN_GX_CMDLIST_MAX_REQCOUNT | Gets the maximum number of command requests.

This gets the value that was specified for the requestcount argument
of the nngxCmdl istStorage function.

NN_GX_CMDLIST_TOP_BUFADDR | Gets the starting address of the 3D command buffer.

NN_GX_CMDLIST_BINDING Gets the ID of the command list object that is currently bound.

NN_GX_CMDLIST_RUN_BUFSIZE | Gets the size (in bytes) of the 3D command buffer that has already been
run.

NN_GX_CMDLIST_RUN_REQCOUNT | Gets the number of command requests that have already been run.

NN_GX_CMDLIST_TOP_REQADDR | Gets the starting address of the data region for the command request
queue.

NN_GX_CMDLIST_NEXT_REQTYPE | |f command execution is stopped, this will get the command type of the
command request that will be run next. If a command is running, this will
get the command type of the command request being run. If all
command requests have already finished running, nothing will be
obtained. The macros below indicate the types of commands that are
obtained with this parameter.

NN_GX_CMDLIST_REQTYPE_DMA: DMA transfer command
NN_GX_CMDLIST_REQTYPE_RUN3D: 3D execution command
NN_GX_CMDLIST_REQTYPE_FILLMEM: Memory fill command
NN_GX_CMDLIST_REQTYPE_POSTTRANS: Post transfer command

NN_GX_CMDLIST_REQTYPE_COPYTEX: Render texture transfer
command

© 2009-2011 Nintendo 27 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

pname Value Description

NN_GX_CMDLIST_NEXT_REQINFO | |f command execution is stopped, this will get the parameter information
for the command request that will be run next. If a command is running,
this will get the parameter information for the command request being
run. If all command requests have already finished running, nothing will
be obtained.

This is only supported if the next command to be run or the command
currently running is a 3D execution command. If this parameter is used
when any other command is running or up next, nothing will be
obtained.

The address of the command buffer will be returned in the first element
of param, and the size (in bytes) of the command buffer will be stored in
the second element of param.

NN_GX_CMDLIST_HW_STATE Gets a 32-bit value indicating the hardware status. The definitions of
each bit are shown below:

[20]: Set (has a value of 1) when a post transfer is executing
[19]: Set when a memory fill is executing

[18]: Set when a FIFO underrun error occurred for the lower LCD
[17]: Set when a FIFO underrun error occurred for the upper LCD
[16]: Set when the post-vertex cache is busy

[15]: Set when bits [1:0] in Register 0x252 are set to the value 1
[14]: Set when vertex processor 3 is busy

[13]: Set when vertex processor 2 is busy

[12]: Set when vertex processor 1 is busy

[11]: Set when vertex processor 0 (which doubles as the geometry
shader processor) is busy

[10]: Set when bits [1:0] in register 0x229 are not O

[9]: Set when input to the module that loads the command buffer
and the vertex array is busy

[8]: Set when output to the module that loads the command buffer
and the vertex array is busy

[7]: Set when the early depth test module is busy

[6]: Set when the per-fragment operations module is busy
processing the data from the previous-stage module

[5]: Set when the per-fragment operations module is busy in relation
to framebuffer access

[4]: Set when the texture combiners are busy
[3]: Set when fragment lighting is busy

[2]: Set when the texture units are busy

[1]: Set when the rasterization module is busy
[0]: Set when triangle setup is busy

3.3.15 Checking for V-Sync Updates

GLint nngxCheckVSync(GLenum display);

Used to check for V-Sync updates on the screen or screens specified by display. When
NN_GX_DISPLAYO is specified for display, V-Syncs for screen 0 (the first screen) will be processed.
When NN_GX_DISPLAY1 is specified, V-Syncs for screen 1 (the second screen) will be processed.

CTR-06-0006-001-D 28 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

When NN_GX_DISPLAY_BOTH is specified, V-Syncs for both screens will be processed. When any
other value is specified for display, a GL_ERROR_8019 DMP error is generated. The return value in
this case will be undefined.

The driver's internal V-Sync counter will be the return value, and the V-Sync can be checked
asynchronously by checking whether this value has been updated. When NN_GX_DISPLAY_BOTH is
specified for display, the value will be updated by V-Syncs on both screens.

The internal counter for the return value will reset to 0 if the implementation-dependent maximum
count is exceeded. This maximum value may be changed without notice in the future when the driver
is updated.

3.3.16 V-Sync Synchronization

void nngxWaitVSync(GLenum display);

Used for V-Sync synchronization on the screen or screens specified by display. When
NN_GX_DISPLAYO is specified for display, V-Syncs for screen 0 (the first screen) will be processed.
When NN_GX_DISPLAY1 is specified, V-Syncs for screen 1 (the second screen) will be processed.
When NN_GX_DISPLAY_BOTH is specified, V-Syncs for both screens will be processed. When any
other value is specified for display, a GL_ERROR_801A DMP error is generated and control returns
immediately.

If this function is called, control will return after waiting for the next V-Sync.

3.3.17 Registering the V-Sync Callback Function

void nngxSetVSyncCallback(GLenum display, void (*func)(GLenum));

Registers the V-Sync callback. When NN_GX_DISPLAYO is specified for display, a V-Sync callback
for screen O (the first screen) will be registered. When NN_GX_DISPLAY1 is specified, a V-Sync
callback for screen 1 (the second screen) will be registered. When NN_GX_DISPLAY_BOTH is
specified, a shared V-Sync callback for both screens will be registered. For func, specify a pointer to
the callback function. A screen identifier will be passed as an argument to the callback function. When
any other value is specified for display, a GL_ERROR_801B_DMP error is generated.

3.3.18 Waiting for a Command List Object to Complete Execution

void nngxWaitCmdlistDone(void);

Waits for an executing command list object to complete. Control returns when all of the accumulated
command requests finish executing. 3D execution commands are executed until they reach the
location where the command buffer was already split when this function was called. If you want to
ensure that the entire 3D command buffer is executed, call the nngxSpl itDrawCmdl ist function
before calling this function.

This function does not return until command execution has completed. See section 3.3.23 Setting the
Timeout for Waiting to Complete Command List Object Execution for details on setting a timeout.

© 2009-2011 Nintendo 29 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

3.3.19 Transferring Data via DMA

void nngxAddVramDmaCommand(

const GLvoid* srcaddr, GLvoid* dstaddr, Glsizei size);

Accumulates a DMA transfer command in the current command list. The DMA transfer command
transfers size bytes of data from the address specified by srcaddr to the address specified by
dstaddr.

A GL_ERROR_8062_DMP error is generated when a valid command list is not currently bound. A
GL_ERROR_8064_DMP error is generated when size is negative.

This function flushes the cache in the area specified by srcaddr. If it is not necessary to flush the
cache, you can use nngxAddVramDmaCommandNoCacheF lush to omit the cache flush.

3.3.20 Transferring Data via DMA (Without Cache Flush)

void nngxAddVramDmaCommandNoCacheFlush(

const GLvoid* srcaddr, GLvoid* dstaddr, GLsizei size);

Accumulates a DMA transfer command in the current command list. The DMA transfer command
transfers size bytes of data from the address specified by srcaddr to the address specified by
dstaddr. This function is the same as hngxAddVramDmaCommand, except it does not flush the
cache in the area specified by srcaddr.

A GL_ERROR_8090_DMP error is generated when a valid command list is not currently bound. A

GL_ERROR_8091_DMP error is generated when size has a negative value.

3.3.21 Transferring Block Images with an Anti-Aliasing Filter

void nngxFilterBlocklmage(const GLvoid* srcaddr, GLvoid* dstaddr,

GLsizei width, GLsizei height, Glenum format);

Accumulates a transfer command—with an anti-aliasing filter for block images—in the current
command list. A block image is a rendered image or an image that uses the 8-block addressing
format of a texture in the native PICA format. A 2x2 anti-aliasing filter is applied as data is transferred
from the address specified by srcaddr to the address specified by dstaddr. The width and height
of the original image are specified by width and height, respectively, in pixels. The following pixel
formats can be specified for format.

e GL_RGBAS_OES: 32-hit REGSBSAS
e GL_RGB8_OES: 24-bit R8GSBS
GL_RGBA4: 16-hit RAGABAA4
GL_RGB5_Al: 16-hit RSG5B5A1
GL_RGB565: 16-bit RSG6B5

Calling this function generates a GL_ERROR_8068_DMP error when 0 is bound to the current
command list or when the command request queue is too small.

Both srcaddr and dstaddr must be 8-byte aligned. A GL_ERROR_8069_ DMP error is generated
when either value is not 8-byte aligned.

CTR-06-0006-001-D 30 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

The value of Fformat restricts the values of width and height, as shown in the following table.

Table 3-3 width and height in nngxFilterBlockImage

format width height
* GL_RGBA8_OES | o multiple of 64 that is greater than or A multiple of 8 that is greater than or
e GL_RGB8_OES |equalto 64 equal to 64
e GL_RGBA4
¢ GL_RGB5 Al A multiple of 128 that is greater than or A multiple of 8 that is greater than or
equal to 128 equal to 128
e GL_RGB565

A GL_ERROR_806A_DMP error is generated when the specified values conflict with these restrictions.

A GL_ERROR_806B_DMP error is generated when an invalid Format is specified.

3.3.22 Image Transfer Requests

void nngxTransferLinearlImage(const GLvoid* srcaddr, GLuint dstid, GLenum target);

Adds to the current command list a command that transfers the region specified by the srcaddr
argument to the render buffer or texture specified by the dstid argument.

The srcaddr argument specifies the address of the source data to transfer. The dstid argument
specifies the object ID of the render buffer or texture where the data should be transferred. When the
target argument is GL_RENDERBUFFER, dstid must indicate a render buffer object. In this case, if
dstid specifies 0, the data will be transferred to the color buffer attached to the current framebuffer.
When the target argument is GL_TEXTURE_2D, dstid must indicate a 2D texture object. When the
target argument is GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, dstid must indicate a cube-map texture object.

The region specified by the srcaddr argument must store image data that has the same format,
width, and height as the render buffer or texture specified by the dstid argument. The source image
data will be converted to block addressing in the native PICA as it is transferred to the destination.
When the destination object is a render buffer, the data will be converted to either 8-block addressing
or 32-block addressing, depending on the block format setting that was set when this function was
called. When the destination object is a texture, the data will be converted to 8-block addressing. This
function will only convert the addressing, it will not perform V-flipping or byte-order conversion. Since
the render buffer and texture use the native PICA format for images, the source image data must
have V-flipping or byte-order conversion done in advance if necessary.

When the commands accumulated in the current 3D command buffer have not been split, a split
command is added before the transfer command.

When the destination is in 24-bit format, the source data must be in 32-bit format, and the first byte of
each four-byte sequence of the source data will be discarded when the data is transferred. (The
hardware does not support transfers from 24-bit format sources to 24-bit format destinations.)

© 2009-2011 Nintendo 31 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

If this function is called when the current command list is bound to O, the GL_ERROR_805B_DMP error
will be generated. When the maximum number of accumulated command requests has been reached
in the current command list, the GL_ERROR_805C_DMP error will be generated. When the size of the
current 3D command buffer is insufficient, the GL_ERROR_805D_DMP error will be generated. When
the render buffer or texture specified to the dstid argument does not exist, or when the address has
not been allocated, the GL_ERROR_805E_DMP error will be generated.

When the 8-block format was configured when this function was called, the width and height of the
destination render buffer must be multiples of 8. Likewise, when the 32-block format was configured
when this function was called, the width and height of the destination render buffer must be multiples
of 32. The width and height must also be greater than or equal to 128. When these restrictions are
violated, the GL_ERROR_805F_DMP error will be generated.

When an invalid target is specified, the GL_ERROR_8060_DMP error will be generated. When the
size of the destination render buffer or texture is anything other than 32, 24, or 16 bits, the
GL_ERROR_8067_DMP error will be generated.

3.3.23 Setting the Timeout for Waiting to Complete Command List Object Execution

void nngxSetTimeout (GLIint64EXT time, void (*callback)(void));

This function specifies the length of time that the nngxWaitCmdl i stDone function, which waits for
the executing command list object to complete, will wait before timing out. The time argument
specifies the length of time until timeout as a system tick value. The cal Iback argument specifies a
pointer to the callback function to call after timing out.

Once this timeout is set, any call to nngxWaitCmdl istDone that does not return before time has
elapsed will result in a call to the function specified in cal Iback and the completion of the call to
nngxWaitCmdl istDone, whether command execution has completed or not.

The default value for time is 0, which generates no timeout. The default value for cal Iback is NULL,
meaning no callback function is called when a timeout occurs.

This timeout feature is only enabled in debug and development builds.

3.3.24 Updating Additive Blend Results Rendered with Gas Density Information
void nngxSetGasAutoAccumulationUpdate (GLint id);

Updates INVERTED_ACC_MAX1, a value related to the results of additive blending when gas density
information is rendered. For more details on INVERTED_ACC_MAX1, see the DMPGL 2.0
Specifications.

When called, the nngxSetGasAutoAccumulationUpdate function configures the maximum value
of DI—a result of additive blending when gas density information is rendered—to be applied to
INVERTED_ACC_MAX1 within the interrupt handler that is invoked upon completion of the id’'th
command request accumulated in the bound command list object. For example, when id is 1 this
setting affects the first command request, when id is 2 this setting affects the second command
request, and so on. You must specify a command request that is a 3D execution command.

CTR-06-0006-001-D 32 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

This function is required to implement the functionality of the fragment shader uniform
dmp_Gas.autoAcc using commands generated by the application. You must clear the maximum
value saved for the additive blending result D7 to 0 as necessary before you start rendering gas
density information. The maximum value is cleared (initialized) with bits [15:0] of register 0x125. After
rendering the gas density information, use this function again to update INVERTED ACC_MAX1
before you start gas shading.

INVERTED_ACC_MAX1 is updated correctly when this function is called on a command request that
includes a command to render gas density information. However, note that it is impossible to update
INVERTED_ACC_MAX1 before gas shading when this function is called on a command request that
includes both a command to render gas density information and a command to start gas shading.
Furthermore, if a value is written to bits [15:0] of register 0x0e5 after this function has updated
INVERTED_ACC_MAXZ, this function’s settings are overwritten and invalidated.

A GL_ERROR_806D_DMP error is generated when 0 is bound as the command list object. A
GL_ERROR_806E_DMP error is generated when id is less than or equal to 0, when id is greater than
the number of accumulated command requests, and when the command request specified by id is
not a 3D execution command.

Settings related to updating the additive blend result of rendering gas density information can be
configured using the nngxSetCmdl istParameteri function. For details, see the description of
NN_GX_CMDLIST_GAS_UPDATE in section 3.3.13 Setting Parameters for Command List Objects.

3.3.25 Transferring a Block Image That Is Converted into a Linear Image
void nngxAddB2LTransferCommand(

const GLvoid* srcaddr, GLsizei srcwidth, GLsizei srcheight,
GLenum srcformat, GLvoid* dstaddr, GLsizei dstwidth, GLsizei dstheight,

GLenum dstformat, GLenum aamode, GLboolean yflip, GLsizei blocksize);
Adds commands to the command list to convert a block image into a linear image and then transfer it.

This function converts a block image in the rendering format into a linear image in the display format.
Although the nngxTransferRender Image function provides equivalent functionality, this function
has more general uses. Also, like nngxTransferRender Image, this function only adds a transfer
request command without adding a 3D split command.

The block image at the address specified by srcaddr is transferred as a linear image and stored at
the address specified by dstaddr. Both srcaddr and dstaddr must be 16-byte aligned.

The original image’s width and height in pixels are given by srcwidth and srcheight; the
transferred image’s width and height in pixels are given by dstwidth and dstheight. These
dimensions must all be multiples of the block size, which is either 8 or 32. However, if the transferred
image uses 24 bits per pixel and a block size of 8, both the original and transferred images must have
widths that are multiples of 16. This function exits without adding any commands if any of the image
dimensions is 0. The width and height of the transferred image must be less than or equal to the width
and height of the original image.

© 2009-2011 Nintendo 33 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

The original and transferred images have pixel formats specified by srcformat and dstformat
using the following macros.

o GL_RGBA8_OES: 32-hit RGBAS
e GL_RGBS8_OES: 24-bit RGBS

e GL_RGBA4: 16-bit RGBA4

e GL_RGB5_A1: 16-bit RGBA5551
e GL_RGB565: 16-bit RGB565

Conversions that increase the pixel size are not possible. For example, you cannot convert from a 24-
bit format to a 32-bit format or from a 16-bit format to either a 24- or 32-bit format.

The antialiasing filter mode is specified by aamode using the following macros.

e NN_GX_ANTIALIASE_NOT_USED: No antialiasing
e NN_GX_ANTIALIASE_ 2x1: Transfer with 2x1 antialiasing
e NN_GX_ANTIALIASE_ 2x2: Transfer with 2x2 antialiasing

When antialiasing is enabled, the transferred image is shrunk in half in the filtering direction.
Specifically, 2x2 antialiasing shrinks the image in half vertically and horizontally and 2x1 antialiasing
shrinks the image in half horizontally.

The transferred image is flipped vertically when yflip is GL_TRUE and is not flipped when yflip is
GL_FALSE. Nonzero values are considered to be GL_TRUE.

The original image is transferred using a block size of 8 or 32, specified by blocksize.
This function generates the following errors.

e GL_ERROR_807C_DMP when 0 is bound to the current command list or the command request
queue is full

e GL_ERROR_807D_DMP when srcaddr or dstaddr is not 16-byte aligned

e GL_ERROR_807E_DMP when blocksize is not 8 or 32

e GL_ERROR_807F_DMP when aamode is an invalid value

e GL_ERROR_8080_DMP when srcformat and dstformat are invalid values

e GL_ERROR_8081_DMP when dstformat has a larger pixel size than srcformat

e GL_ERROR_8082_DMP when either srcwidth, srcheight, dstwidth, or dstheight is invalid

e GL_ERROR_8083_DMP when the width or height of the transferred image is larger than the original
image

3.3.26 Transferring a Linear Image That Is Converted into a Block Image

void nngxAddL2BTransferCommand(
const GLvoid* srcaddr, GLvoid* dstaddr,

GLsizei width, GLsizei height, GLenum format, GLsizei blocksize);
Adds commands to the command list to convert a linear image into a block image and then transfer it.

This function converts a linear image in the display format into a block image in the rendering format.
Although the nngxTransferLinear Image function provides equivalent functionality, this function

CTR-06-0006-001-D 34 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

has more general uses. Also, like nngxTransferLinear Image, this function only adds a transfer
request command without adding a 3D split command.

The linear image at the address specified by srcaddr is transferred as a block image and stored at
the address specified by dstaddr. Both srcaddr and dstaddr must be 16-byte aligned.

The width and height of both the original and transferred images (in pixels) are given by width and
height. Both images must have the same width and height and these dimensions must all be
multiples of the block size, which is either 8 or 32. However, if the transferred image uses 24 bits per
pixel and a block size of 8, the width must be a multiple of 32. This function exits without adding any
commands if either width or heightis 0.

The transferred image has a pixel format specified by format. The original image must have the
same format as the transferred image unless format is a 24-bit format, in which case the original
image must use a 32-bit format. For each four-byte block of the original data that is transferred, the
first byte is discarded (the hardware does not support transfers between 24-bit formats). Specify the
pixel format using the following macros.

o GL_RGBA8_OES: 32-hit RGBAS
o GL_RGBS8_OES: 24-bit RGBS

e GL_RGBA4: 16-bit RGBA4

o GL_RGB5_A1: 16-bit RGBA5551
o GL_RGB565: 16-bit RGB565

The transferred image has a block size of 8 or 32, specified by blocksize.
This function generates the following errors.

e GL_ERROR_806F DMP when 0 is bound to the current command list or the command request
queue is full

e GL_ERROR_8070_DMP when srcaddr or dstaddr is not 16-byte aligned

e GL_ERROR_8071 DMP when blocksize is not 8 or 32

e GL_ERROR_8072_DMP when width or height is invalid

e GL_ERROR_8073 DMP when format is invalid

3.3.27 Transferring a Block Image

void nngxAddBlocklImageCopyCommand(
const GLvoid* srcaddr, GLsizei srcunit, GLsizei srcinterval,
GLvoid* dstaddr, GLsizei dstunit, GLsizei dstinterval, GLsizei

totalsize);
Adds a block image transfer command to the current command list.

This function can copy images between textures and rendered render buffers. This function’s
distinguishing feature is its ability to transfer a specified amount of data with a specified skip size,
allowing you to cut a region out of the original image and fit an image into a partial region of the target
image.

© 2009-2011 Nintendo 35 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Data is transferred from the address specified by srcaddr into the address specified by dstaddr.
Both addresses must be 16-byte aligned.

The total number of bytes to transfer is specified by totalsize, which must be a multiple of 16.

Data is transferred srcunit bytes at a time, with a skip size (in bytes) specified by srcinterval.
This process can be described as follows.

1. Read and transfer srcunit bytes of data.
2. Skip (do not transfer) the next srcinterval bytes of data.
3. Repeat until totalsize bytes have been transferred.

If srcinterval is 0, this function reads and transfers a continuous region of totalsize bytes. For
any other srcinterval value, data is alternatively read and skipped; this allows you to transfer
partial regions that are cut out of the original image.

The transferred data is written dstunit bytes at a time with a skip size of dstinterval bytes. This
process can be described as follows.

1. Write dstunit bytes of transferred data.
2. Advance the write address by (skip) dstinterval bytes.
3. Repeat until totalsize bytes have been transferred.

If dstinterval is 0, this function writes a continuous region of totalsize bytes. For any other
dstinterval value, data is alternatively written and skipped; this allows you to paste an image into
a partial region of the target image.

Figure 3-6 Transferring Partial Image Regions

srcunit srcinterval srcunit srcinterval I

dstunit dstinterval dstunit dstinterval | 111

The colored regions in the figure are transferred.

The srcunit, srcinterval, dstunit, and dstinterval arguments must all be non-negative
multiples of 16 that are less than 0x100000.

This function generates the following errors.

e GL_ERROR_8074_DMP when 0 is bound to the current command list or the command request
queue is full

CTR-06-0006-001-D 36 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

e GL_ERROR_8075_DMP when srcaddr or dstaddr is not 16-byte aligned
e GL_ERROR_8076_ DMP when totalsize is not a multiple of 16
e GL_ERROR_8077_DMP when srcunit, srcinterval, dstunit, or dstinterval is invalid

Note: When you set this function’s arguments to transfer a block image that is the result of rendering
(or some other process), remember that the transfer source and transfer destination image’s
starting address is at its upper-left corner (the origin for standard OpenGL ES is the bottom
left) and that, when it uses a block size of 8, its data is placed in 8x8 pixel blocks. For more
details about block formats, see the section on the native PICA format in the DMPGL 2.0
Specifications.

3.3.28 Filling Memory

void nngxAddMemoryFillCommand(
GLvoid* startaddrO, GLsizei sizeO, GLuint dataO, GLsizei widthO,
GLvoid* startaddrl, GLsizei sizel, GLuint datal, GLsizei widthl);

Adds commands to the current command list to fill the specified regions with the specified data.

By filling memory with a specified data pattern, this function can be used to clear the color and depth
(stencil) buffers. The glClear function provides equivalent functionality, but this function has more
general uses. You can fill two regions using separate parameters for each. Channel 1 is configured by
startaddrO, size0, dataO, and widthO. Channel 2 is configured by startaddrl, sizel,
datal, and widthl.

Memory is filled starting at addresses startaddrO and startaddrl. These addresses must be 16-
byte aligned. If an address is specified as 0, its corresponding channel is not used. This function can
only fill VRAM. It cannot fill FCRAM.

size0 and sizel bytes of memory are filled. Both size0 and sizel must be multiples of 16.
Memory regions are filled by repeatedly storing the data specified by dataO and datal.
The number of bits in each fill pattern is specified by widthO and widthl, which can be 16, 24, or 32.

e Given a value of 16, memory is filled 16 bits at a time using bits [15:0] of data0O and datal.
e Given a value of 24, memory is filled 24 bits at a time using bits [23:0] of data0O and datal.
e Given a value of 32, memory is filled 32 bits at a time using bits [31:0] of data0O and datal.

The following table shows which bits of data0 and datal are used to clear various color buffer formats,
as well as the corresponding brightness values for each component and the required values for widthO
and widthl. For example, a GL_RGBA8_OES color buffer’'s R, G, B, and A components are cleared
using bits [31:24], [23:16], [15:8], and [7:0], respectively, of dataO or datal; each component’s
brightness is a value between 0 and 255; and the value of widthO or width1 must be 32.

© 2009-2011 Nintendo 37 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Table 3-4 Color Buffer Formats and nngxAddMemoryFi I ICommand Parameters

Color Buffer data0O / datal Bits Brightness Values widtho/
Format R G B A R G B A widthl Value
GL_RGBAB_OES |[31:24] | [23:16] | [15:8] | [7:0] | 0-255 | 0-255 | 0-255 | 0-255 32
GL_RGBA4 [15:12] | [11:8] | [7:4] | [3:0] | 0-15 | 0-15 | 0-15 | 0-15 16
GL_RGB5_A1l [15:11] | [10:6] | [5:1] [0:0] 0-31 | 0-31 | 0-31 | Oor1 16
GL_RGB565 [15:11] | [10:5] | [4:0] . 0-31 | 0-63 | 0-31 - 16

The following table shows which bits of dataO and datal are used to clear various depth and stencil
buffer formats, as well as the required values for widthO and widthl. For example, a

GL_DEPTH24 STENCIL8_ EXT depth/stencil buffer's depth and stencil values are cleared using bits
[23:0] and [31:24], respectively, of dataO or datal; the value of widthO or widthl must be 32.

Table 3-5 Depth/Stencil Buffer Formats and nngxAddMemoryFil ICommand Parameters

dataO/datal
Bits widthO /

Depth/Stencil Buffer Format widthl Value

Depth | Stencil
GL_DEPTH24_STENCIL8_EXT | [23:0] | [31:24] 32
GL_DEPTH_COMPONENT24_OES | [23:0] - 24
GL_DEPTH_COMPONENT16 [15:0] - 16

This function generates the following errors.

e GL_ERROR_8078_DMP when 0 is bound to the current command list or the command request
queue is full

e GL_ERROR_8079 DMP when startaddrO or startaddrl is not 16-byte aligned

e GL_ERROR_807A_DMP when sizeO or sizel is not a multiple of 16

e GL_ERROR_807B_DMP when widthO or widthl is invalid

If startaddroO is 0, size0, data0, and widthO are not checked for errors. Likewise, if
startaddrl is O, sizel, datal, and widthl are not checked for errors.

Channel 0 and channel 1 are executed simultaneously. If they have overlapping regions, it is
undefined which result will ultimately be applied.

3.4 NN_GX_CMDLIST HW_STATE

Several bits of the value obtained by passing NN_GX_CMDLIST_HW_STATE to the

nngxGetCmdl istParameteri function represent the busy states of hardware. If a problem occurs
with hardware operations, such as the GPU hanging, the NN_GX_CMDLIST_HW_STATE value may be
useful in determining the cause of the problem.

CTR-06-0006-001-D 38 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

The cause of hardware malfunction is usually due to one of the modules entering a continuously busy
state. However, because modules affect each other, it is not always obvious which module has the
problem. When modules operate in series (for instance, when triangle setup passes results to the
rasterization module, which passes results to the texture units, and so on), busy states are
propagated backward from later-stage modules to earlier-stage modules. If several modules
operating in series issue a busy signal, the last-stage module might be the cause. Conversely, the
per-fragment operations module represented by bit [6] sometimes issues a busy signal due to invalid
data from the previous stage. In such cases an earlier module might be the cause.

Propagation of busy signals can largely be classified into two categories: those issued by
rasterization and pixel operations represented by bits [0] through [7], and those issued by geometry
operations represented by bits [8] through [16].

Rasterization and pixel operations operate in series in the following order: triangle setup, rasterization
module, texture units, fragment lighting, texture combiners, and per-fragment operations module.
Busy signals from later-stage modules are propagated backward to earlier-stage modules. In other
words, busy states propagate through NN_GX_CMDLIST_HW_STATE from bit [5] to bit [4], bit [3], bit
[2], bit [1], and then bit [O].

Although bit [6] also represents the per-fragment operations module, its state propagates to bit [0] and
[1], but not to bit [2], bit [3], or bit [4].

The early depth test module represented by bit [7] becomes busy when waiting to clear the early
depth buffer (internal memory). The busy state of this bit does not propagate to other modules.

Busy signals do not propagate backward from triangle setup to earlier-stage modules. (These earlier-
stage modules are vertex caching and geometry creation, shown in the Overview Figure for the
DMPGL 2.0 Pipeline in the DMPGL 2.0 Specifications.) In short, busy signals do not propagate from
rasterization and pixel operations to geometry operations or vice versa.

Next is a description of geometry operations. The following modules operate in series in this order:
vertex input (modules for loading the command buffer and vertex arrays), vertex processers, and post
vertex cache. Busy signals propagate backward from later-stage to earlier-stage modules. In other
words, busy signals propagate from bit [16] to bits [11], [12], [13], and [14], then to bit [8] and to bit
[9].Although bit [11], bit [12], bit [13], and bit [14] correspond to the busy signals of vertex processors
0, 1, 2, and 3 respectively, the busy signal for the post vertex cache propagates to specific vertex
processors. This is because the vertex processors are placed in parallel between the vertex load
module and post vertex cache. (The busy signal of the post vertex cache does not necessarily
propagate to all four vertex processors.)

The above explanation applies only when geometry shaders are disabled. If geometry shaders are
enabled, vertex processor 0 serves as the geometry shader processor and is positioned after the
post-vertex cache in the pipeline. In this situation, the busy signal of the geometry shader processor
propagates to the post-vertex cache, and the busy signal of the post-vertex cache propagates to
vertex processors 1, 2, and 3. However, although a busy signal originating with the geometry shader
processor can propagate to the post-vertex cache, it does not propagate to stages earlier than that; in
contrast, a busy signal originating with the post-vertex cache does propagate to earlier stages. In
other words, busy signals propagate from bit [11] to bit [16], and from bit [16] to bits [12], [13]. and [14],
to bit [8], and then to bit [9].

© 2009-2011 Nintendo 39 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

4 Display Control API

This chapter describes the API for controlling the framebuffer (display buffer) in DMPGL 2.0.

This API allows you to perform the following types of operations.

e The applications can generate multiple new display buffers.
e The application can specify whether or not to transfer the rendered results to the display buffer.
Rendering results from individual render passes can also be transferred to multiple display buffers.

e The application can then freely specify which display buffer to display to.

These features allow the CPU to create render commands several frames ahead of time without
having to synchronize with the actual rendering. Furthermore, display buffers to which rendered
results have been transferred can be displayed again any number of times.

4.1 Processing Flow from Rendering Through Display

4.1.1 Rendering

In this phase, multiple display buffers and a single color buffer are prepared, and data is rendered to
the color buffer. (P3D is PICA's 3D rendering module.)

Figure 4-1 Rendering

P3D || PPF || PDC

Rendering

DisplayBuffer

— e s

Note: The example shown in the figure assumes that the color buffer has been allocated in VRAM,
and that the display buffers have been allocated in FCRAM.

CTR-06-0006-001-D
Released: May 13, 2011

40

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

4.1.2 Transferring Rendered Results

In this phase, rendered results are transferred to one or more display buffers by means of a block-
linear transfer. Display buffers to which data has been transferred can then be displayed. (PPF stands
for PICA Post-Filter, the module that performs post-filtering. This module converts rendered results
from PICA's own native rendering format (block format) to the linear format used for display.)

Figure 4-2 Transferring Rendered Results

DisplayBuffer]

|

|

|

|

|

|

e 1 |
|

IBlock lith

ear transfer

|
|
: ColorBuffer
|
|

© 2009-2011 Nintendo 41 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

4.1.3 Displaying

In this phase, the display buffer(s) to which the rendered results have been transferred are displayed.
Switching between display buffers is done when V-Syncs occur. (PDC stands for PICA LCD
Controller.)

Figure 4-3 Displaying Images After Rendering

DisplayBuffer B

— e —— e — G —— e — G —— — e —— — — — ——— e —— -

Display to screen

Screen

4.2 Specifying the Display Area

The figure below shows how the display area is specified during the transfer from the color buffer to
the display buffer, and during the subsequent transfer from the display buffer to the LCD.

Figure 4-4 Specifying the Display Area

Color Buffer D|Sp|ay Buffer LCD DISplay
I_|J_1 'S Ih
’ dx [lh I
dh dh || lw
ch(] ex Iw
p dw d dy
L cye | h dw -
< ow >
CTR-06-0006-001-D 42 © 2009-2011 Nintendo

Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

The blocks shown in the figure above are the color buffer, the display buffer, and the LCD display
(from left to right). The dimensions cw and ch indicate the width and height of the color buffer, and
these values are specified using the glRenderbufferStorage function. The area defined by the
offsets cx and cy will be transferred to the display buffer. The offsets cx and cy are specified using
the nngxTransferRender Image function. The dimensions dw and dh indicate the width and height
of the display buffer, and these values are specified using the nngxDisplaybufferStorage
function. The area defined by the offsets dx and dy will be displayed to the LCD. The offsets dx and
dy are specified using the nngxDisplayEnv function. The size of the display device is given by lw
and Ih.

4.3 API

This section describes the functions in the API.

4.3.1 Generating Display Buffer Objects

void nngxGenDisplaybuffers(GLsizei n, GLuint* buffers);

Generates display buffer objects. It generates n display buffer objects and stores the object names in
buffers. When a negative value is specified for n, a GL_ERROR_801C_DMP error is generated.
When memory failed to be allocated for the management region, a GL_ERROR_801D_DMP error is
generated.

4.3.2 Deleting Display Buffer Objects

void nngxDeleteDisplaybuffers(GLsizei n, GLuint* buffers);

Deletes display buffer objects. Specifically, it will delete n display buffer objects whose names are
stored in the buffers argument. If you attempt to delete the current display buffer object, a value of
0 is first bound to the current display buffer target. When a negative value is specified for n, a
GL_ERROR_801E_DMP error is generated.

4.3.3 Activating Display Targets

void nngxActiveDisplay(GLenum display);

Specify NN_GX_DISPLAYO, NN_GX_DISPLAY1, or NN_GX_DISPLAYO_EXT for the display
argument. This will activate the specified display target and use the display buffer that is bound to the
active display target for subsequent operations. When any other value is specified for display, a
GL_ERROR_801F_DMP error is generated.

4.3.4 Binding Display Buffers

void nngxBindDisplaybuffer(GLuint buffer);

Binds the display buffer object that is specified for the buffer argument. The binding target will be
the display target that was activated using the nngxActiveDisplay function. It is used when
allocating display buffer regions or when specifying which display buffer to display on the LCD. If a
display buffer is bound using this function and the nngxSwapBuffers function is then called, the
bound display buffer will be displayed. At that point, the display buffer that is bound to

© 2009-2011 Nintendo 43 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

NN_GX_DISPLAYO will be displayed to screen 0, and the display buffer that is bound to
NN_GX_DISPLAY1 will be displayed on screen 1. A new display buffer object is generated when
buffer refers to an unused object name. When memory fails to be allocated for the management
region at this time, a GL_ERROR_8020_DMP error is generated.

4.3.5 Allocating Display Buffers
void nngxDisplaybufferStorage(

GLenum format, GLsizei width, GLsizei height, GLenum area);

Allocates a memory region for the display buffer object that is bound to the currently active display
target. Use the width and height arguments to specify the size of the display buffer. Use the
format argument to specify one of the following display buffer formats:

e GL_RGB8_OES: 24-bit R8GSBS
e GL_RGBA4: 16-bit R4G4B4A4
e GL_RGB5_Al: 16-bit R5G5B5A1
e GL_RGB565: 16-bit R5G6B5

Note that it is not possible to specify formats whose pixel sizes are larger than that of the color buffer.
The values for the width and height arguments must be multiples of 8. However, an error occurs if
the 32-block format is set and the nngxTransferRender Image function is called with a display
buffer that has a width and height that are not multiples of 32. If memory has already been
allocated for the target display buffer object, that memory will be deallocated, and a new region will be
allocated.

Use area to specify one of the following values as the location of the area being allocated.

e NN_GX_MEM_FCRAM Allocates the region from FCRAM
e NN_GX_MEM_VRAMA Allocates the region from the A channel in VRAM
e NN_GX_MEM_VRAMB Allocates the region from the B channel in VRAM

A GL_ERROR_8021_DMP error is generated when 0 is bound to the active display target. A
GL_ERROR_8022_DMP error is generated when an invalid value is specified for width and height.
A GL_ERROR_8023_DMP error is generated when format is set equal to a value other than those
listed in this section. A GL_ERROR_8024_DMP error is generated when area is set equal to a value
other than those listed in this section. AGL_ERROR_8025_ DMP error is generated when memory
failed to be allocated for the display buffer.

4.3.6 Specifying the Display Area

void nngxDisplayEnv(GLint displayx, GLint displayy);

Specifies the area of the active display target's display buffer to display. The coordinates (displayx,
displayy) are used to specify the starting positions of the display area within the display buffer.
(This will be the same size as the LCD's display area). The settings made using this function are not
associated with display buffer objects and are set for each display screen (screen 0 and screen 1).
When a negative value is set for either displayx or displayy, a GL_ERROR_8026_DMP error is
generated.

CTR-06-0006-001-D 44 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Values specified with this function affect the display buffer address set in the hardware, which must
be aligned to a 16-byte address. When you set a value that conflicts with this restriction, an error is
generated when the nngxSwapBuffers function is called. For details, see 4.3.8 Displaying
Rendered Screens (Swapping).

4.3.7 Requesting Transfers of Rendered Results
void nngxTransferRenderlImage(GLuint buffer, GLenum mode,

GLboolean yflip, GLint colorx, GLint colory);

Adds commands to the current command list that transfer rendering results from the current color
buffer to the display buffer specified by buffer. When the commands accumulated in the 3D
command buffer have not been split, a split command is added before the transfer command.

A GL_ERROR_8027_DMP error is generated when 0 is bound to the current command list. A
GL_ERROR_8028_DMP error is generated when the maximum number of accumulated command
requests has been reached. AGL_ERROR_8029_DMP error is generated when a valid display buffer
has not been bound. A GL_ERROR_802A_DMP error is generated when a valid color buffer has not
been bound. A GL_ERROR_802F_DMP error is generated when the 3D command buffer is not large
enough to add a split command.

The mode argument specifies the antialiasing mode using one of the following values.

e NN_GX_ANTIALIASE_NOT_USED No antialiasing
o NN_GX ANTIALIASE_2x1 Transfer using 2x1 antialiasing
e NN_GX_ANTIALIASE_2x2 Transfer using 2x2 antialiasing

When any other value is specified for mode, a GL_ERROR_802B_DMP error is generated.

If yFlip is GL_TRUE, the transferred image will be flipped in the y-direction. Any non-zero value
specified for the yFlip argument will be treated in the same way as if GL_TRUE had been specified.

An area the size of the display buffer is transferred from the color buffer to the display buffer. The
starting positions of the data in the color buffer to transfer are specified using the coordinates
(colorx, colory). When the width! and the height2 of the region of the color buffer to transfer are
smaller than the width and height of the display buffer, a GL_ERROR_802C_DMP error is generated.
When mode is set to NN_GX_ANTIALIASE_2x1, and the width of the region of the color buffer to
transfer is less than twice the width of the display buffer, a GL_ERROR_802C_DMP error is generated.
When mode is set to NN_GX_ANTIALIASE 2x2, and the width and height of the region of the color
buffer to transfer are less than twice the width and height of the display buffer, a
GL_ERROR_802C_DMP error is generated.

For the 8-block format, the arguments colorx and colory must both be positive integer multiples of
eight. For the 32-block format, they must both be positive integer multiples of 32. Specifying any other
value will cause a GL_ERROR_802D_DMP error.

! The width of the color buffer in pixels minus colorx
> The height of the color buffer in pixels minus colory

© 2009-2011 Nintendo 45 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

A GL_ERROR_802E_DMP error is generated when the size of the display buffer (in pixels) where the
data is being copied is greater than the size of the color buffer (in pixels) from which the data is being
copied. AGL_ERROR_8059_ DMP error is generated when the source color buffer or the destination
display buffer has a width or height that is not a multiple of 32 while the 32-block format is set.

AGL_ERROR_805A_DMP error is generated when a color buffer is transferred to a display buffer that uses
24-bit pixels and the 8-block format when either buffer has a width or height that is not a multiple of 16.

When the current color buffer was rendered when the 32-block format was set, the 32-block format
must be set when calling this function as well. The same applies to the 8-block format. When the block
format setting when this function is called is not the same as the block format setting used when the
color buffer was rendered, the rendered results will not come out correctly. The block format setting is
configured using the g IRenderBlockModeDMP function. For details, see the DMPGL 2.0 Specification.

4.3.8 Displaying Rendered Screens (Swapping)
void nngxSwapBuffers(GLenum display);

Displays the bound display buffer to the display target specified by display when the next V-Sync
occurs. When NN_GX_DISPLAYO is specified for display, only screen 0 (the first screen) will be
processed. When NN_GX_DISPLAY1 is specified, only screen 1 (the second screen) will be
processed. When NN_GX_DISPLAY_BOTH is specified, both screens will be processed. When any
other value is specified for display, a GL_ERROR_8030_DMP error is generated. A
GL_ERROR_8031_DMP error is generated when a valid display buffer has not been bound. A
GL_ERROR_8032_DMP error is generated when the nngxDisplayEnv function sets a display region
that falls outside of the display buffer that will be displayed.

This function can be called at any time. Once this call has finished executing, it will display the display
buffer that was bound at the time of the call once the first V-Sync occurs. If this function is called
multiple times before the V-Sync occurs, only the most recent call will be applied.

This function sets a value in hardware indicating the address of the display buffer to show. The
display buffer address that is ultimately set in hardware is calculated from the address allocated by
the nngxDisplaybufferStorage function with consideration for the display buffer’s resolution and
pixel size, the LCD resolution, the offset values set by the nngxDisplayEnv function, and so on.
The address set in the hardware must be 16-byte aligned. A GL_ERROR_8053 DMP error is
generated for settings that conflict with this restriction. The address set in hardware is calculated by
the following equation.

Equation 4-1 Display Buffer Address in Hardware
allocaddr + pixelsize X (dbwidth X (dbheight — lcdheight — displayy) + displayx)

In Equation 4-1 allocaddris the address allocated by the nngxDisplaybufferStorage function;
pixelsize is the number of bytes per pixel in the display buffer; dbwidth and dbheight are the width and
height of the display buffer resolution; kdheightis the height of the LCD screen resolution; and
displayx and displayy correspond to the displayx and displayy values in the nngxDisplayEnv
function.

CTR-06-0006-001-D 46 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

A GL_ERROR_9000_DMP error is generated when the display mode is
NN_GX_DISPLAYMODE_STEREO and NN_GX_DISPLAYO_EXT is bound to either O or a display buffer
without an allocated region. AGL_ERROR_9001_DMP error is generated when the display mode is
NN_GX_DISPLAY_MODE_STEREO and the nngxDisplayEnv function specifies a display region
outside of the display buffer. AGL_ERROR_9002_DMP error is generated when the display mode is
NN_GX_DISPLAYMODE_STEREO and the display buffers bound to NN_GX_DISPLAYO and
NN_GX_DISPLAYO_EXT have a different resolution, format, or memory region.

4.3.9 Getting Parameters for Display Buffer Objects
void nngxGetDisplaybufferParameteri(GLenum pname, GLint* param);

Gets the parameters for the object bound to the active display target and stores them in param. The
settings are listed below. When values not listed in the table below are set for the pname parameter, a
GL_ERROR_8033_DMP error is generated.

Table 4-1 List of Parameters for Display Buffer Objects

pname Description
NN_GX_DISPLAYBUFFER_ADDRESS Gets the address of the display buffer.
NN_GX_DISPLAYBUFFER_FORMAT Gets the format of the display buffer.
NN_GX_DISPLAYBUFFER_WIDTH Gets the width of the display buffer.
NN_GX_DISPLAYBUFFER_HEIGHT Gets the height of the display buffer.

4.3.10 Display Mode Settings
void nngxSetDisplayMode(GLenum mode) ;

Sets the display mode. You can specify either NN_GX_DISPLAYMODE_NORMAL or
NN_GX_DISPLAYMODE_STEREO for mode. A GL_ERROR_9003_DMP error occurs when any other
value is specified.

When the display mode is NN_GX_ DISPLAYMODE_NORMAL, 400 lines of the display buffer are shown
normally on screen 0. When the display mode is NN_GX_DISPLAYMODE_STEREO, the two display
buffers are displayed stereoscopically to screen 0 for the left and right eyes. Screen 1 is unaffected.

The display target NN_GX_DISPLAYO_EXT is used when the display mode is
NN_GX_DISPLAYMODE_STEREO. The display buffers bound to NN_GX_DISPLAYO and
NN_GX_DISPLAYO_EXT are used for the left and right eyes, respectively. As with other display
targets, use the nngxActiveDisplay, nngxBindDisplaybuffer, and nngxDisplayEnv
functions to activate, bind a display buffer to, and specify a display region for NN_GX_DISPLAYO_EXT,
respectively. The display buffers for the left and right eyes must have the same resolution and format
and be placed in the same memory region. When any of these settings are different, an error occurs
when the nngxSwapBuffers function is called.

The default display mode setting is NN_GX_DISPLAYMODE_NORMAL.

© 2009-2011 Nintendo 47 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

The display target macros NN_GX_DISPLAYO_LEFT and NN_GX_DISPLAYO_RIGHT are also
prepared as aliases for NN_GX_DISPLAYO and NN_GX_DISPLAYO_EXT, respectively.

4.3.11 Screen Display by Specifying the Display Address (Swapping by Specifying
Addresses)

void nngxSwapBuffersByAddress(GLenum display, const GLvoid* addr,

const GLvoid* addrB, GLsizei width, GLenum format);

The display argument specifies the display to which to display the contents of the buffers specified
by addr and addrB.

This function can be called at any time. The data stored in the specified addresses is displayed at the
first V-sync after this function call completes. If this function is called multiple times before a V-sync
occurs, the last call of this function in relation to each screen is the one applied to each screen.

If you specify NN_GX_DISPLAYO in display, the upper screen is swapped. If you specify
NN_GX_DISPLAY1 the lower screen is swapped. If you specify any other value for display, the
error GL_ERROR_8087_DMP will result.

The addr argument specifies the starting address of the buffer to display. If stereoscopic display is
enabled (the display mode is NN_GX_DISPLAYMODE_STEREDO), this is the address of the image to
display for the left eye. addr must be aligned to a 16-byte boundary. If not aligned correctly, the error
GL_ERROR_8088_DMP will result.

When stereoscopic display is enabled, the addrB argument specifies the starting address of the
buffer to display for the right eye. addrB is valid only for the upper screen. If stereoscopic display is
disabled and NN_GX_DISPLAY1 is specified in display, then addrB is ignored. addrB must be
aligned to a 16-byte boundary. If not aligned correctly, the error GL_ERROR_8089 DMP will result.

The width argument specifies the number of pixels of width of the display buffer. width represents
the width of the display buffer, not the width of the LCD screen. Although the pixel width of both the
upper and lower LCD screens is 240, you can specify a pixel width for the buffer greater than 240 if
you display only a portion of the display buffer. width must be a multiple of 8 and have a value of at
least 240. If an invalid value is specified, the error GL_ERROR_808A_DMP will result.

The format argument specifies the display buffer format. Any of the following formats may be

specified.

e GL_RGB8 OES R8G8B8 (24 bits)

e GL_RGBA4 R4G4B4A4 (16 bits)
e GL_RGB5_A1 R5G5B5A1 (16 bits)
e GL_RGB565 R5G6B5 (16 bits)

If a format other than given above is specified, the error GL_ERROR_808B_DMP will result.

When you use this function to display buffers, specifying display regions via nngxDisplayEnv
settings has no effect. Be sure to take offsets and any similar adjustments into account when
specifying addresses in addr and addrB.

CTR-06-0006-001-D 48 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5 Command List Extended API

This chapter explains the extended API related to the command list objects handled in Chapter 3
Execution Control API. This API allows you to reuse executed commands that are generated by the
DMPGL 2.0 API. Because you are reusing the commands themselves, you avoid the cost of calling
DMPGL 2.0 functions that are normally required to generate them, which in turn reduces the CPU
load. Hereafter, the mechanism for reusing command list objects is called the command cache.

5.1 Saving and Reusing Command List Objects

The command cache API represents a process for accumulating commands in command list objects.
You can specify when to start and stop saving commands, and then reuse the saved commands. It is
actually the command requests and 3D command buffers maintained by command list objects that
are saved and reused.

5.1.1 Saving Commands

To save commands, call the functions to start and stop saving commands as they accumulate in a
command list. For more details, see sections 5.4.1 Start Saving Command Lists and 5.4.2 Stop
Saving Command Lists.

Figure 5-1 Saving Command List Objects

l 3D Command iuffer

Comman Command | Command | Cgmmand
Reques Request Request equest [| [| [|
1 2 3 4

/ Command List Object

i y
(Start Saving) (Stop Saving)

The red area in the figure indicates the commands that have been saved. You get the following save
information when you call the function to stop saving commands: the address at which you started
saving the 3D command buffer, the save size, the ID at which you started saving command requests,
and the number of command requests saved. To reuse saved commands, specify (as a set) the save
information obtained when you stopped saving, along with the command list object from which
content was saved.

© 2009-2011 Nintendo 49 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

When this feature "saves commands" it is actually recording accumulated command information.
Command data itself is not saved outside of the region in which the command list object accumulates
commands. You therefore cannot reuse a saved command list object that has been deleted or cleared.

You can start and stop saving a single command list object as many times as you like.

5.1.2 Using Saved Commands

You can call a function to use saved commands (see section 5.4.3 Using Saved Command Lists).
When the function to use saved commands is called, saved commands are added to the command
list object that is currently bound. Command requests are added to the current command list object as
copies. You can choose whether or not to copy the 3D command buffer to the current command list
object.

5.1.2.1 The Method That Copies the 3D Command Buffer

With the method that copies the 3D command buffer, the saved 3D command buffer is copied by the
CPU to the current 3D command buffer. We recommend that you use a small 3D command buffer to
minimize the CPU load. If some of the copied command requests are 3D execution commands, their
execution address information is converted from the original 3D command buffer to the copied 3D
command buffer.

Figure 5-2 Using a Copy of a Saved 3D Command Buffer

—__“

Command | Command ommand
Request Request Request I] [| [|
2 3 4

Copy the 3D
Command Buffer

— e
\ 3D Command
v e— e gl

Command Commandl Command | Command]

Request Request Request Request
1 2 3 4

Turrent Command List

CTR-06-0006-001-D 50 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.1.2.2 The Method That Does Not Copy the 3D Command Buffer

With the method that does not copy the 3D command buffer, only command requests are copied and
PICA directly accesses the 3D command buffer where it is saved. Because the CPU does not copy
the 3D command buffer, we recommend that you use this method for a low CPU load and a large 3D
command buffer. Copied 3D execution commands use the original 3D command buffer address

information. (However, the execution address of the first 3D execution command is converted to the
address at which saving began.)

Figure 5-3 Using a Saved 3D Command Buffer Directly

—_—“

3D Command %‘fer

Command | Command \:ommand
Request Request Request [| [| [|
2 3 4

-l - Saved Command List

Execute from the Origina
3D Command Buffer

3D Com
F
Command | Comman Command | Command \
Request Request Request Request
1 2 3 4

Turrent Command List

The 3D command buffer execution address moves from the current 3D command buffer to the saved
3D command buffer when commands are executed. Once execution has finished in the saved 3D
command buffer, it continues again from the current 3D command buffer. A split command must be
inserted in the current 3D command buffer when its address returns to the current.

5.1.2.3 Copied Command Request Information

Though you can choose whether to copy the 3D command buffer, command requests are always
copied. Command requests maintain information that is fixed for each command type and is all
copied. This information does not change when a command is copied, even if the DMPGL state has

changed since it was saved. However, information may change for the first 3D execution command to
be copied.

e DMA Transfer Commands: The original and destination addresses, as well as the transfer size,
are preserved for a DMA transfer.

o 3D Execution Commands: The execution starting address and execution size in the 3D command

© 2009-2011 Nintendo 51 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

buffer are preserved. When the address of the 3D command buffer at which saving began is not
identical to the execution starting address, when the command request is copied, the execution
starting address is replaced with the starting save address. The execution size is also changed to
match.

e Memory Fill Commands: The starting address, size, and clear color are preserved for the color
buffer to fill. The starting address, size, clear depth value, and clear stencil value are preserved for
the depth stencil buffer.

e Post-Transfer Commands: The address, resolution, and format are preserved for both the source
color buffer and the destination display buffer.

e Render Texture Transfer Commands: The address and resolution are preserved for both the
source color buffer and the destination texture.

5.2 Editing Commands

You can edit a saved 3D command buffer directly to change commands. The 3D command buffer is a
collection of commands that write to PICA registers. By replacing the data to write appropriately in
accordance with register specifications, you can change settings that correspond to vertex shader
uniforms, reserved fragment shader uniforms, and so on before execution. For details, see section
5.7 3D Command Buffer Specifications.

5.3 Other Features

The following features have been provided to make command list objects more convenient.

5.3.1 Importing and Exporting Command Lists

Commands accumulated in a command list object can be exported as binary data to a specified
memory location. The exported data can be imported into any command list.

5.3.2 Copying Command List Objects

Commands accumulated in a command list object can be copied to another command list object.

5.3.3 3D Command Buffer Generation

A 3D command buffer is usually generated when a specific set of DMPGL 2.0 functions are called, but
you can also generate the commands in 3D command buffers as complete sets of the commands
relating to each feature.

Commands are normally generated only for states that have changed since commands were last
generated (this is called delta command generation), but you can specify that all commands to be
generated instead (this is called complete command generation).

With delta command generation, you also have the option to always generate commands related to
the functions that have been called, regardless of whether the state has been changed.

CTR-06-0006-001-D 52 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.3.4 Adding 3D Commands

You can copy any data to the current 3D command buffer to add commands. 3D execution
commands can be added with the specified data region as the 3D command buffer’s execution
address.

5.4 API

This section describes each function in the API.

5.4.1 Start Saving Command Lists

void nngxStartCmdlistSave(void);

Starts saving the current command list object. You can get the information that is saved by using the
nngxStopCmd I istSave function.

It is assumed that saved commands will be reused. As there is no way of knowing what the PICA
register values will be when the 3D command buffer is reused, you must save all commands that
need to be re-configured. If you call functions as usual when saving commands, only delta commands
will be generated. Because delta commands are only generated for states whose settings have
changed, some necessary commands may not be generated. To generate all of the necessary
commands, either use complete commands or configure the command output mode.

Complete commands refer to commands that are entirely generated together for each state.
Complete command generation is excessive because it generates all commands for each feature. For
details, see section 5.4.9 Updating the DMPGL State.

You can configure the command output mode to always generate commands related to certain
functions that are called, regardless of whether settings changed. For details, see section 5.4.10
Setting the Command Output Mode.

This combination of features allows you to generate and save the appropriate commands as
necessary.

A GL_ERROR_8034_DMP error is generated when this function is called to save commands and then
is called again before it finishes saving. AGL_ERROR_8035_DMP error is generated when 0 is bound
to the current command list.

Callls to this function sometimes cause dummy commands to be generated in the 3D command buffer
for padding.

5.4.2 Stop Saving Command Lists

void nngxStopCmdlistSave(
GLuint* bufferoffset, GLsizei* buffersize,

GLunit* requested, GLsizeil™* requestsize);

Stops saving the current command list object. When you stop saving commands, information is
returned as follows: bufferoffset is the offset (in bytes) to the address the 3D command buffer’s

© 2009-2011 Nintendo 53 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

save start address; buffersize is the number of bytes saved in the 3D command buffer;
requestid is the ID at which you started saving command requests; and requestsize is the
number of command requests saved. Reuse command lists with this save information.

The offset (in bytes) to the save start address is returned in bufferoffset, but this offset must be
added to the starting address of the 3D command buffer to find the actual 3D command buffer save
start address. To get the starting address of the 3D command buffer maintained by the command list
that is currently bound, call the nngxGetCmdl istParameteri function with pname set to
NN_GX_CMDLIST_TOP_BUFADDR.

Calling the nngxStopCmdl i stSave function does not cause a split command to be generated in the
3D command buffer. Call the nngxSplitDrawCmdl ist function explicitly if a split command is
required. 3D execution command requests may not be saved at all if the 3D command buffer has not
been split. If the 3D command buffer does not have any split commands, you must use the copy
method in order to reuse commands.

A GL_ERROR_8036_DMP error is generated when you have not started saving the command list.
Calls to this function sometimes cause dummy commands to be generated in the 3D command buffer

for padding.

5.4.3 Using Saved Command Lists

void nngxUseSavedCmdlist(GLuint cmdlist,
GLuint bufferoffset, GLsizei buffersize,
GLunit requestid, GLsizei requestsize,

GLbitfield statemask, GLboolean copycmd);

Adds saved commands to the current command list. Specify a saved command list for cmdlist.
Specify the save information obtained by the nngxStopCmdlistSave function for bufferoffset,
buffersize, requestid, and requestsize. These are the offset (in bytes) from the starting
address of the 3D command buffer's save address, the number of bytes saved, the command request
save start ID, and the number of command requests saved, respectively, but you should always
specify the same set of values that you obtained from the nngxStopCmdl istSave function. The
save information specified to this function is not checked for errors (whether it matches the value
obtained when saving ended), so behavior is undefined if you specify invalid values.

Specify a bitwise OR of state flags for which to generate complete commands for statemask. The
DMPGL state and the actual PICA register settings will be in conflict after you call this function. To
resolve this, you must generate all commands and re-set the PICA registers. It is sometimes
redundant to generate all commands, however, so complete commands are generated only if they
correspond to state flags specified by statemask. For details on the state flags specified to statemask,
see section 5.5 State Flags.

When you specify GL_TRUE for copycmd, the 3D command buffer copy method is used when
commands are applied. When GL_FALSE is specified, the method that does not copy the 3D
command buffer is used when commands are applied. For further details on behavior, see section
5.1.2 Using Saved Commands. If the method that does not copy 3D command buffer is used, only

CTR-06-0006-001-D 54 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

sections that have split commands properly configured are executed. Without a split command,
execution would not otherwise return from the external 3D command buffer to the current command
list. The 3D command buffer is ignored where it is not included in command request 3D execution
commands. If you are using a command list with the method that does not copy the 3D command
buffer, you must call the nngxSpl itDrawCmdl ist function to add a split command before you stop
saving.

If the method that does not copy the 3D command buffer is used when commands are applied, the
execution address will move from the 3D command buffer that is currently accumulating commands
to an external 3D command buffer. The driver therefore calls the nngxSplitDrawCmdl i st function
to add a split command to the current 3D command buffer before it copies the command requests.
The nngxSplitDrawCmdl ist function is not called immediately after the current 3D command
buffer is split.

When a) the copy method for the 3D command buffer is used, b) requestsize is nonzero, and c)
the first command of the saved command requests is not a 3D execution command, the driver calls
the nngxSplitDrawCmdl ist function to add a split command to the current 3D command buffer
before it copies the command list. The nngxSplitDrawCmdl i st function is not called immediately
after the current 3D command buffer is split.

A GL_ERROR_8037_DMP error is generated when 0 is bound to the current command list.

A GL_ERROR_8038_DMP error is generated when an invalid value is specified for cmdlist.

A GL_ERROR_8039_DMP error is generated when cmdl i st specifies the current command list.

A GL_ERROR_803A_DMP error is generated when this function has added saved commands that
exceed either the maximum capacity of the current command list's 3D command buffer or number of
command requests.

5.4.4 Exporting Command Lists

GLsizei nngxExportCmdlist(GLuint cmdlist,
GLuint bufferoffset, GLsizei buffersize,
GLuint requestid, GLsizei requestsize,

GLsizei datasize, GLvoid* data);

Exports the command list specified by cmdl ist into memory as binary data. A
GL_ERROR_803B_DMP error is generated if an invalid value is specified for cmdlist.

Specify the offset (in bytes) from the starting address of the 3D command buffer to the first address to
export for bufferoffset. Specify the number of bytes to export from the 3D command buffer for
buffersize. Specify the ID of the first command request to export for requestid. Command
request IDs start at 0 and increase sequentially in the order that commands are accumulated. Specify
the number of command requests to export for requestsize. To determine which values to specify
for buFferoffset, buffersize, requestid, and requestsize while commands are
accumulating, call the nngxGetCmdl istParameteri function and get both the size of the
accumulated 3D command buffer and the number of command requests. Set pname equal to
NN_GX_CMDLIST_USED_BUFSIZE or NN_GX_CMDLIST_USED_REQCOUNT to get the size of the

© 2009-2011 Nintendo 55 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

accumulated 3D command buffer or the number of accumulated command requests, respectively.
The values specified for bufferoffset, buffersize, requestid, and requestsize must not
conflict with each other. To be safe, we recommend that you either export data based on the save
information obtained by the nngxStopCmdl istSave function or use the values obtained by calling
the nngxGetCmdl istParameteri function twice: once for bufferoffset and requested, and
once for buffersize and requestsize.

Specify a pointer to a region used to store the exported data for data. Specify the size (in bytes) of
the data region for datasize. Nothing is exported when the data argument is set equal to 0. The
size (in bytes) of the exported data is returned.

You are expected to first call this function with data set equal to 0. Then, using the return value as
the required data size (for exporting), allocate a data region and call this function again. A
GL_ERROR_803C_DMP error is generated when the export data size is greater than datasize.

You can call the nngxImportCmdlist function to import and use the exported data.

A GL_ERROR_803D_DMP error is generated when bufferoffset, buffersize, requestid, and
requestsize specify a region without any accumulated commands. A GL_ERROR_803E_DMP error
is generated when bufferoffset or buffersize is not 8-byte aligned.

A GL_ERROR_803F_DMP error is generated when any of the command requests are 3D execution
commands added using the nngxUseSavedCmdl i st function without the copy method for the 3D
command buffer.

A GL_ERROR_8040_DMP error is generated when bufferoffset or buffersize have not properly
specified the 3D command buffer that is used to execute an exported 3D execution command.

The address of the 3D command buffer that begins the export must be specified within the region
used to execute the first 3D execution command that is exported.

The following figure is an example of how to export correctly. This exports the entire 3D command
buffer where the first 3D execution command (command 1) is executed.

Figure 5-4 First Example of Specifying an Export Correctly

™ bufferoffset
| | | | | 3D Command Buffer
0 1 2 3 4 3D Execution Commands to
Command Requests Export
requestid=1

The following figure is also an example of how to export correctly. You can shift buFferoffset as
long as it is within the region used to execute the first 3D execution command (command 1).

CTR-06-0006-001-D 56 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Figure 5-5 Second Example of Specifying an Export Correctly

™ bufferoffset
— | | | 3D Command Buffer
0 1 2 3 4 3D Execution Commands to
Command Requests Export
requestid=1

You must export all split commands run by 3D execution commands. The following figure is an

example of how to export incorrectly. The split command for the 3D command buffer, executed by
command 3, is not exported.

Figure 5-6 First Example of Specifying an Export Incorrectly

r\bufferoffset

| 3D Command Buffer

Commands to
Export

3D Execution
Command Requests

o1, 2| 3|4

requestid

I
-

As long as it does not contain any split commands, you can export the 3D command buffer past the
region where the last 3D execution command is executed. The following figure is an example of how
to export correctly. You can export the 3D command buffer until just before the split command
executed by command 4.

Figure 5-7 Third Example of Specifying an Export Correctly

r\bufferoffset
I | | | | |3D Command Buffer
0 1 2 3D Execution Commands to
Command Requests Export

I
Y

requestid

If you do not export any 3D execution commands, the exported command buffer cannot contain any
split commands. When you export data in a way that conflicts with this restriction, you will run into
incorrect behavior when you import and use the data even though you will be unable to detect any
errors. The following figure is an example of how to export correctly.

© 2009-2011 Nintendo 57
CONFIDENTIAL

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Figure 5-8 Fourth Example of Specifying an Export Correctly

™ bufferoffset
| i | | | 3D Command Buffer
0 1 2 3 4 3D Execution Commands to
Command Requests Export

requestsize=0

As mentioned before, this function exports a 3D command buffer whose content is not checked;
consequently, the exported data may not behave correctly and errors may not be detected.

5.4.5 Importing Command Lists

void nngxImportCmdlist(GLuint cmdlist, GLvoid* data, GLsizei datasize);

Imports data exported by the nngxExportCmdl ist function into a command list. Specify the
command list object to import for cmdlist. AGL_ERROR_8041_ DMP error is generated when
cmdlistis setto an invalid value.

Specify a pointer to the exported data for data. Specify the size (in bytes) of the exported data for
datasize. AGL_ERROR_8042 error is generated when data is a pointer to invalid data. A
GL_ERROR_8043 error is generated when datasize does not match the exported data size.

You can specify either the command list that is currently bound or an unbound command list for
cmdlist. The imported commands are added after any commands that have already been
accumulated in cmdlist. AGL_ERROR_8044_DMP error is generated when, by adding the imported
commands, you have exceeded the maximum capacity of the 3D command buffer or number of
command requests. If a 3D execution command is not the first command request that you import into
a command list, bind that command list as the current one and then call the

nngxSplitDrawCmdl ist function to add a split command before calling this function. A
GL_ERROR_8045_DMP error is generated when a 3D execution command is not the first command
request imported into a (command list's) 3D command buffer that has not been split.

Calls to this function sometimes cause dummy commands to be generated for padding in the 3D
command buffer of the command list into which you are importing data.

5.4.6 Getting Command List Information for Exported Data
void nngxGetExportedCmdlistlinfo(GLvoid* data,
GLsizei* buffersize, GLsizei* requestsize, GLuint* bufferoffset);

Gets the size of the 3D command buffer, the number of command requests, and the offset (in bytes)
to the address at which the command buffer is stored in exported data. Specify a pointer to data
exported by the nngxExportCmdlist function for data. The buffersize argument gets the size
(in bytes) of the 3D command buffer. The requestsize argument gets the number of command
requests. The bufferoffset argument gets the offset (in bytes) to the region at which the 3D

CTR-06-0006-001-D 58 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

command buffer is stored in data. AGL_ERROR_8046_DMP error is generated when data specifies
invalid data.

5.4.7 Copying Command Lists

void nngxCopyCmdlist(GLuint scmdlist, GLuint dcmdlist);

Copies the commands accumulated in a command list. Specify the command list to copy for
scmdlist and the destination command list for decmdl i st. Commands copied into the command list
overwrite any commands that have already been accumulated there.

A GL_ERROR_8047_DMP error is generated when demdlist is currently bound. A
GL_ERROR_8048_DMP error is generated when scmdl ist is an invalid value. A
GL_ERROR_8049 DMP error is generated when demdl ist is an invalid value. A
GL_ERROR_804A_DMP error is generated when scmdl ist and demdl ist are the same value. A
GL_ERROR_804B_DMP error is generated when demd 1 ist is currently executing. An error is not
generated if execution has finished or stopped. A GL_ERROR_804C_DMP error is generated when the
size of the commands accumulated in scmdlist exceeds the decmdlist maximums for the 3D
command buffer size or command requests.

5.4.8 Checking the DMPGL State and Generating Commands

void nngxValidateState (GLbitfield statemask, GLboolean drawelements);
Checks the DMPGL state and generates commands.

Commands are normally accumulated in the 3D command buffer when certain DMPGL 2.0 functions
are called. Most of these commands are generated by the glDrawElements and glDrawArrays
functions. DMPGL functions check the state and, if it is updated, generate the relevant commands.
This is called validation. Nearly all states are validated at once by the glDrawElements and
glDrawArrays functions, but you can validate particular groups of states with this function.

Specify a bitwise OR of the state flags to validate for statemask. For more details on state flags,
see section 5.5 State Flags. Specify GL_TRUE for drawelements when glDrawElements is called
and GL_FALSE when glDrawArrays is called for actual rendering. To validate within states, it is
sometimes necessary to know whether the glDrawElements or glDrawArrays function is used for
rendering.

The nngxVal idateState function generates commands when the specified states have been
updated. You can use this function in combination with the nngxUpdateState function, which
updates states, to generate complete commands related to states.

When you use this function to generate commands for individual states, the commands may not be
generated in the same order as they originally would have been using the glDrawElements and
glDrawArrays functions. Several state flags depend on others and must be specified accordingly.
For details, see section 5.5.2 State Flag Dependencies.

A GL_ERROR_8066_DMP error is generated when there is an overflow in the 3D command buffer. A
GL_ERROR_806C_DMP error is generated when verification causes various types of DMPGL errors.

© 2009-2011 Nintendo 59 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

The following conditions cause errors to occur during validation.

e Texture memory has not been allocated for a valid texture. You must call the gl TexImage?2D,
glCompressedTexImage2D, or glCopyTexImage2D function to allocate texture memory. All six
faces of a cube-map texture must be allocated.

e Atexture was bound with an invalid format. Either a texture in the GL_SHADOW_DMP format was
bound as Texture 1 or Texture 2, or a texture in the GL_GAS_DMP format was bound as a cube-map
texture.

e The six faces of a cube-map texture use different settings. All six faces of a cube-map texture must
have the same width, height, format, and number of mipmap levels.

e The six faces of a cube-map texture have addresses that do not share a common value in the most
significant 7 bits. The most significant 7 bits of every face’s address must be identical.

e Alookup table object has not been bound correctly or a lookup table number has not been specified
correctly. A valid lookup table object must be bound to the appropriate lookup table number for
fragment lighting, procedural textures, fog, and gas when they are configured to use lookup tables.
The uniforms that specify the lookup table numbers must also be set correctly.

e The region required for storing the value of the internal lookup table format failed to be allocated.

5.4.9 Updating the DMPGL State

void nngxUpdateState (GLbitfield statemask);

Updates the DMPGL state. Complete commands are generated during validation when you use this
function to update the state.

The gIDrawElements and glDrawArrays functions check the DMPGL state and, if it is updated,
generate the relevant commands. Commands are not usually generated when the state has not been
updated. Once you call this function, the state is updated and complete commands are configured to
be generated. This function does not itself generate commands. Commands are generated when a
function such as glDrawElements or glDrawArrays is called after this one.

After you call this function, complete commands are generated until the first call to the
glDrawElements or glDrawArrays functions. If you call the nngxVal idateState function
before the gIDrawElements or glDrawArrays function, complete commands cease to be
generated for each validated state flag.

Specify a bitwise OR of the state flags to update for statemask. For more information on state flags,
see section 5.5 State Flags.

You can use this function in combination with the nngxVal idateState function to generate
complete commands for individual state flags.

5.4.10 Setting the Command Output Mode

void nngxSetCommandGenerationMode(GLenum mode) ;

Sets the command output mode.

CTR-06-0006-001-D 60 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

If you specify NN_GX_ CMDGEN_MODE_CONDITIONAL for mode, commands are generated only for
states that have changed. If you specify NN_GX_CMDGEN_MODE_UNCONDITIONAL for mode,
commands are generated not only for states that have changed but also for functions that are called,
regardless of whether the state changed.

The mode is set to NN_GX_CMDGEN_MODE_CONDITIONAL by default.
The following settings are affected by the NN_GX_CMDGEN_MODE_UNCONDITIONAL mode.

e Uniform settings for the reserved fragment shader.

e Integer uniform settings for the vertex shader.

e Settings for lookup table data. If you set reserved uniform values that specify various lookup table
IDs, commands are generated during validation to load lookup tables. However, each lookup table
must be enabled. For details, see section 5.5.3 Lookup Table Command Generation.

e Functions other than glDrawArrays, glDrawElements, and nngxVal idateState that
generate commands. For details, see section 5.6 DMPGL Functions That Generate Commands.

A GL_ERROR_804D_DMP error is generated if an invalid value is specified for mode.

5.4.11 Getting the Command Output Mode

void nngxGetCommandGenerationMode(GLenum* mode) ;

Gets the currently set command output mode and returns it in the mode argument.

5.4.12 Adding 3D Commands

void nngxAdd3DCommand (

const GLvoid* bufferaddr, GLsizei buffersize, GLboolean copycmd);

Adds data from the specified region to the current 3D command buffer or adds a 3D execution
command that executes the specified region.

When copycmd is GL_TRUE, the data in the region specified by bufferaddr is copied to the current
3D command buffer. Specify the number of bytes to copy for buffersize. Behavior is not
guaranteed when a 3D command buffer with split commands is copied.

When copycmd is GL_FALSE, a 3D execution command is first generated with the region specified
by bufferaddr as its execution address and then added to the current command requests. Specify
the number of bytes in the 3D command buffer to execute for buffersize. If unsplit 3D commands
have accumulated in the current 3D command buffer, the nngxSplitDrawCmdl i st function is
called internally, and then a newly created 3D execution command is added. Behavior is not
guaranteed if the last command in the specified region is not a split command.

You must specify a positive value for buffersize. When copycmd is GL_TRUE, buffersize must
be a multiple of 4. When copycmd is GL_FALSE, buffersize must be a multiple of 16.

The following errors will be generated under the conditions specified.

© 2009-2011 Nintendo 61 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Error Generated When

GL_ERROR_804E_DMP A command list is not currently bound

GL_ERROR_804F DMP buffersize is an invalid value

GL_ERROR_8050_DMP copycmd is GL_TRUE and the current 3D command buffer size is insufficient

GL_ERROR_8051_DMP copycmd is GL_FALSE and the current command request size is insufficient

GL_ERROR_8052_DMP copycmd is GL_FALSE and bufferaddr is not a multiple of 16

When copycmd is GL_FALSE, this function flushes the cache in the area specified by bufferaddr.
If you do not need to flush the cache, you can omit the cache flush by using
nngxAdd3DCommandNoCacheFlush.

5.4.13 Adding 3D Commands (Without Cache Flush)
void nngxAdd3DCommandNoCacheFlush (

const GLvoid* bufferaddr, GLsizei buffersize);

Adds a 3D execution command to be executed in the specified region as 3D command buffer. It does
not flush the cache in the specified region. This function is the same as nngxAdd3DCommand when
copycmd is setto GL_FALSE, except that it does not flush the cache in the area specified by
bufferaddr.

A 3D execution command is first generated with the region specified by bufferaddr as its execution
address and then added to the current command requests. Specify the number of bytes in the 3D
command buffer to execute for buffersize. If unsplit 3D commands have accumulated in the
current 3D command buffer, the nngxSpl itDrawCmdl ist function is called internally, and then a
newly created 3D execution command is added. Behavior is not guaranteed if the last command in
the specified region is not a split command.

buffersize must be a positive value that is a multiple of 16. bufferaddr must be a multiple of 16.

Error Generated When

GL_ERROR_808C_DMP A command list is not currently bound

GL_ERROR_808D_DMP buffersize is an invalid value

GL_ERROR_808E_DMP bufferaddr is not a multiple of 16

GL_ERROR_808F_DMP The current command request size is insufficient

5.4.14 Adding a Copied Command List

void nngxAddCmdlist (GLuint cmdlist);

Adds all commands accumulated in the command list specified by cmdlist to the current command
list object. The commands are added after any commands that have already been accumulated in the
current command list object.

CTR-06-0006-001-D 62 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

If the current 3D command buffer has not just been split and a 3D execution command is not the first
command request to add, this function calls the nngxSpl itDrawCmdl i st function internally to split
the command buffer before adding commands.

If the current 3D command buffer has not just been split and a 3D execution command is the first
command request to add, this function adds dummy commands to the current command buffer as
necessary to adjust the alignment before adding commands.

The following errors will be generated under the conditions specified.

Error Generated When

GL_ERROR_8054_DMP An invalid value is specified for cmdlist

GL_ERROR_8055_DMP A command list is not currently bound

GL_ERROR_8056_DMP The command list specified by cmdl ist is the same as the current command list

GL_ERROR_8057_DMP The current command list is currently being executed

By adding a command buffer or command requests to the current command list,

GL_ERROR_8058_DWP the maximum buffer size has been exceeded.

The maximum size is checked when this function calls the nngxSpl itDrawCmdl ist function
internally, when dummy commands are added, and in other instances.

5.4.15 Getting the Updated DMPGL State

void nngxGetUpdatedState (GLbitfield* statemask);

Gets the updated DMPGL state.

Each of the DMPGL states is updated when DMPGL functions and the nngxUpdateState function
are called. When you call this function, any state flag that has currently been updated is setto 1 in
statemask. If you call this after the state has been validated by a function such as gIDrawArrays,
glDrawElemnts, or nngxVal idateState, the validated state flags are not set in statemask. This
function sets the NN_GX_STATE_OTHERS state flag only when it has been updated by the
nngxUpdateState function.

For more details on state flags, see section 5.5 State Flags.

5.4.16 Invalidating DMPGL State Updates

void nngxlnvalidateState (GLbitfield statemask);

Disables updates to the DMPGL state. For the statemask argument, specify the bitwise sum of the
state flags for which you want to disable updates.

Calling this function will prevent generation of commands related to the state flags specified in the
statemask argument, even if the state is updated.

For more details on state flags, see section 5.5 State Flags.

© 2009-2011 Nintendo 63 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.4.17 Moving the Command Buffer Pointer

void nngxMoveCommandbufferPointer (GLint offset);

Moves the current pointer position of the currently bound command buffer. Specify the number of
bytes to move the pointer in the offset argument. AGL_ERROR_8061_DMP error is generated if
there is no currently bound command buffer or if moving will place the pointer outside the command
buffer memory region.

5.5 State Flags

State flags consolidate settings by feature for DMPGL function calls. A single state corresponds to
one or more DMPGL functions or uniforms (and so on) and, when updated, causes relevant
commands to be generated. You must specify a bitwise OR of state flags as an argument to the
nngxUseSavedCmdlist, nngxVal idateState, and nngxUpdateState functions.

5.5.1 State Flag Types

Each type of state flag is related to different commands and has different DMPGL 2.0 functions that
cause it to be updated. Table 5-1 summarizes each of the state flag types.

Table 5-1 State Flag Types

State Flag Name Summary

The shader binary state. Commands are generated to load shader
assembly code.
NN_GX_STATE_SHADERB INARY This state is updated when the glUseProgram function switches the

program and the original and new program objects are linked to shader
objects that were loaded by separate calls to the glShaderBinary
function.

The shader program state. Commands are generated for settings that
include the composition of vertex attributes.

This state is updated when the glUseProgram function switches the

NN_GX_STATE_SHADERPROGRAM | Program object. _ _
Commands are generated only for registers whose settings have changed.

When this state is validated, its current settings are compared with its
settings when it was last validated; commands are generated only for the
settings that are different.

The shader mode state. Commands are generated to enable or disable the
geometry shader.

This state is updated when the glUseProgram function toggles the
geometry shader between enabled and disabled.

NN_GX_STATE_SHADERMODE

The shader floating-point state. Commands are generated to set floating-
point registers for which a def instruction has defined a value in shader
NN_GX_STATE_SHADERFLOAT assembly.

This state is updated when the glUseProgram function switches to a
program object with a different shader object attached.

The vertex shader uniform state. Commands are generated to set floating-
NN_GX_STATE_VSUNIFORM point registers, Boolean registers, and integer registers defined as uniforms
in shader assembly.

CTR-06-0006-001-D 64 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

State Flag Name Summary

This state is updated when the:
o glUseProgram function switches to a different program object.
e glUniform function sets the value of a vertex shader uniform.

The state is updated even if settings have not changed for floating-point
uniforms, but it is not updated if settings have not changed for integer
uniforms.

The reserved fragment shader uniform state. Commands are generated to
set registers specific to reserved fragment shader uniforms.
NN_GX_STATE_FSUNIFORM This state is updated when a uniform value is changed because the
glUseProgram function switched the program object or the glUniform
function set a fragment shader uniform.

The lookup table state. Commands are generated to set lookup tables.
This state is updated when the:

e content of a lookup table object bound by the gIBindTexture,
NN_GX_STATE_LUT glTexImagelD, or gl TexSublImagelD function changes.

o glDeleteTextures function deletes a bound lookup table object.

e glUseProgram or glUniform function changes the lookup table object
specifying the uniforms used to set each lookup table ID.

The texture state. Commands specific to texture units are generated. This
does not include commands specific to procedural textures.

This state is updated when the following functions are called.

e glBindTexture

e glTexImage2D

glCompressedTexlImage2D

glCopyTexImage2D

glCopyTexSublmage2D

e glTexParameter

This state is also updated when the:

o glDeleteTextures function deletes texture objects in use.

e glUseProgram or glUniform function changes the reserved fragment
uniform, dmp_Texture[i] -samplerType.

NN_GX_STATE_TEXTURE

The framebuffer information state. Commands specific to the framebuffer
format and buffer address are generated.

This state is updated when the following functions are called.
e glBindFramebuffer

o glBindFramebufferRenderbuffer

o glFramebufferTexture2D

o glDeleteFramebuffers

e glBindRenderbuffer

e glRenderbufferStorage

e glDeleteRenderbuffers

NN_GX_STATE_FRAMEBUFFER

© 2009-2011 Nintendo 65 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

State Flag Name Summary

The vertex attribute data state. Commands specific to vertex attribute data
are generated.

This state is updated when the following functions are called.
e glBindBuffer

e glBufferData

e glBufferSubData

NN_GX_STATE_VERTEX e glEnableVertexAttribArray

e glDisableVertexAttribArray

e glVertexAttribPointer

e glVertexAttrib

e glUseProgram

This state is also updated when the glDeleteBuffers function deletes
the current vertex buffer.

The polygon offset state. Commands specific to polygon offsets are
generated.

This state is updated when the:

NN_GX_STATE_TRIOFFSET e glEnable or glDisable function changes the
GL_POLYGON_OFFSET_FILL setting.

e glDepthRangef or glPolygonOffset function changes settings.
e glUseProgram function is called.

The framebuffer access method state. Commands are generated for the

framebuffer's R/W and other access methods.

This state is updated when the:

e glEnable or glDisable function changes the GL_COLOR_LOGIC_OP,
GL_BLEND, GL_DEPTH_TEST, GL_EARLY_DEPTH_TEST_DMP, or
GL_STENCIL_TEST setting.

e glDepthFunc, glEarlyDepthFuncDMP, glColorMask,
glDepthMask, or glStenci IMask function changes settings.

e gluUniform function sets the reserved fragment uniform
dmp_FragOperation.mode.

NN_GX_STATE_FBACCESS

A scissoring-related state. Commands specific to scissoring settings are
generated.

This state is updated when the:

NN_GX_STATE_SCISSOR e glEnable or glDisable function changes the GL_SCISSOR_TEST
setting.

e glScissor function changes settings.

o framebuffer size is changed with scissoring enabled.

This state flag represents a state related to commands generated by
NN_GX_STATE_OTHERS functions other than the glDrawElements and glDrawArrays functions.
For details, see section 5.6 DMPGL Functions That Generate Commands.

Commands are generated by the first call to the glDrawElements, glDrawArrays, or

nngxVal idateState function after any state represented by a state flag is updated. Commands are
also generated by a call to the glReadPixels or glClear function for the state flag
NN_GX_STATE_FRAMEBUFFER.

CTR-06-0006-001-D 66 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.5.2 State Flag Dependencies

Each state flag has commands related to it, some of which have dependencies on the order in which
they are specified. When you call the nngxVal idateState function, commands are generated in
the order that they were specified by the application. This sometimes conflicts with dependency
restrictions. The following table shows dependency restrictions that apply when the

nngxVal idateState function is called. Behavior is undefined when there is a conflict with these
restrictions.

Table 5-2 State Flag Dependencies

First Value Second Value
(Do Not Specify After the Second Value) | (Do Not Specify Before the First Value)

e NN_GX_STATE_FBACCESS

o NN_GX_STATE_FSUNIFORM
e NN_GX_STATE_TRIOFFSET - = -

o NN_GX_STATE_SHADERBINARY
o NN_GX_STATE_SHADERPROGRAM
e NN_GX_STATE_SHADERFLOAT
e NN_GX_STATE_VSUNIFORM

e NN_GX_STATE_SHADERMODE

e NN_GX_STATE_FRAMEBUFFER

o NN_GX_STATE_FBACCESS
o NN_GX_STATE_OTHERS

e NN_GX_STATE_FRAMEBUFFER e NN_GX_STATE_SCISSOR

5.5.3 Lookup Table Command Generation

Commands that update lookup table data are only generated for enabled lookup tables. Commands
are not generated for disabled lookup tables even if you call the nngxUseSavedCmdlist or
nngxUpdateState function while complete commands are configured to be generated for the state
flag NN_GX_STATE_LUT. The following table shows how to enable the various lookup tables.

Table 5-3 Conditions for Enabling Lookup Tables

Lookup Table Conditions to Enable

e dmp_FragmentLighting.enabledis GL_TRUE and
Fragment Light: Distribution 0 (D0) e dmp_LightEnv.config is configured to use DO and
e dmp_LightEnv.lutEnabledDO is GL_TRUE

e dmp_FragmentLighting.enabled is GL_TRUE and
Fragment Light: Distribution 1 (D1) e dmp_LightEnv.config is configured to use D1 and
e dmp_LightEnv.lutEnabledD1 is GL_TRUE

e dmp_FragmentLighting.enabled is GL_TRUE and

Fragment Light: Spotlight Attenuation | ® dmp_LightEnv.config is configured to use SP and
(SP) e dmp_FragmentLightSource[i].enabledis GL_TRUE and

e dmp_FragmentLightSource[i]-spotEnabled is GL_TRUE

Fragment Light: Fresnel Factor (FR) | e dmp_FragmentLighting.enabled is GL_TRUE and

© 2009-2011 Nintendo 67 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.6

Lookup Table

Conditions to Enable

dmp_LightEnv.config is configured to use FR and

dmp_LightEnv.fresnelSelector is not
GL_LIGHT_ENV_NO_FRESNEL_DMP

Fragment Light: Reflection Red (RR)

dmp_FragmentLighting.enabled is GL_TRUE and
dmp_LightEnv.config is configured to use RR and
dmp_LightEnv. lutEnabledRefl is GL_TRUE

Fragment Light: Reflection Green
(RG)

dmp_FragmentLighting.enabled is GL_TRUE and
dmp_LightEnv.config is configured to use RG and
dmp_LightEnv.lutEnabledRefl is GL_TRUE

Fragment Light: Reflection Blue (RB)

dmp_FragmentLighting.enabled is GL_TRUE and
dmp_LightEnv.config is configured to use RB and
dmp_LightEnv.lutEnabledRefl is GL_TRUE

Fragment Light Distance Attenuation

dmp_FragmentLighting.enabled is GL_TRUE and
dmp_FragmentLightSource[i].enabledis GL_TRUE and

dmp_FragmentLightSource[i].distanceAttenuationEnabled
is GL_TRUE

Procedural Textures:
RGB Mapping F Function

dmp_Texture[3] .samplerType is
GL_TEXTURE_PROCEDURAL_DMP

Procedural Textures:
Alpha Mapping F Function

dmp_Texture[3] .samplerType is
GL_TEXTURE_PROCEDURAL_DMP and

dmp_Texture[3].ptAlphaSeparate is GL_TRUE

Procedural Textures: Noise
Modulation Function

dmp_Texture[3] .samplerType is
GL_TEXTURE_PROCEDURAL_DMP and

dmp_Texture[3]-ptNoiseEnable is GL_TRUE

Procedural Texture Color

dmp_Texture[3] .samplerType is
GL_TEXTURE_PROCEDURAL_DMP

Fog

dmp_Fog.-mode is not GL_FALSE

Gas Shading

dmp_Fog.-mode is GL_GAS

DMPGL Functions That Generate Commands

There are functions other than gIDrawElements, glDrawArrays, and nngxVal idateState that,
when called, immediately generate commands for those functions’ settings. Table 5-4 shows the
functions that generate commands immediately.

CTR-06-0006-001-D
Released: May 13, 2011

68 © 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Table 5-4 Function List

Function Condition for Generating Commands
glBlendColor A setting value has changed.
glBlendEquation A setting value has changed.
glBlendEquationSeparate A setting value has changed.
glBlendFunc A setting value has changed.
glBlendFuncSeparate A setting value has changed.
glClearEarlyDepthDMP A setting value has changed.
glColorMask A setting value has changed.
glCullFace A setting value has changed.
glDepthFunc A setting value has changed.
glDepthMask A setting value has changed.

One of the following settings values have changed.
e GL_COLOR_LOGIC_OP

e GL_BLEND

e GL_DEPTH_TEST

glDisable
e GL_EARLY_DEPTH_TEST_DMP
e GL_STENCIL_TEST
e GL_CULL_FACE
Commands are not generated for any other settings.
glEarlyDepthFuncDMP A setting value has changed.
One of the following settings values have changed.
e GL_COLOR_LOGIC_OP
e GL_BLEND
glEnable e GL_DEPTH_TEST
e GL_EARLY_DEPTH_TEST_DMP
e GL_STENCIL_TEST
e GL_CULL_FACE
Commands are not generated for any other settings.
glFrontFace A setting value has changed.
glLogicOp A setting value has changed.
glRenderBlockModeDMP A setting value has changed.
glStencilFunc A setting value has changed.
glStenciIMask A setting value has changed.
glStencilOp A setting value has changed.
glViewport Always generated.

The functions in Table 5-4 generate commands according to the specified conditions.

© 2009-2011 Nintendo 69 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

All of these functions generate every relevant command together during validation (when the
glDrawElements or glDrawArrays function is called, or when the nngxVal idateState function
is called with statemask set to NN_GX_STATE_OTHERS) if statemask is set to
NN_GX_STATE_OTHERS in the nngxUseSavedCmdl i st and nngxUpdateState functions.

Although these functions generate commands according to the given conditions, commands are
always generated when the functions are called if the mode has been set to
NN_GX_CMDGEN_MODE_UNCONDITIONAL by the nngxSetCommandGenerationMode function,
regardless of the conditions in the table.

5.7 3D Command Buffer Specifications

This section describes 3D command buffer specifications. The 3D command buffer is a collection of
commands that write to PICA registers. By replacing the 3D command buffers of saved and exported
command lists according these specifications, you can change values that correspond to vertex
shader and reserved fragment shader uniforms.

5.7.1 Basic Specifications

The 3D command buffer is a contiguous set of 64-bit commands, each of which comprises a 32-hit
header and 32 bits of data. The amount of data varies with the content of the header.

The following table describes each of the 64 bits.

Table 5-5 Command Bit Structure

Bits Name Description

[31:0] DATA | 32 bits of data to write to a register.

[47:32] | ADDR | Address of the register to write to.

Byte enable.
Each bit corresponds to a byte of data, which is only written if that bit is set to 1.
[51:48] |BE (Even if a command has a byte enable value of 0, the command itself is still sent to the

module being set and can therefore be used as a dummy command to make internal
timing adjustments, among other things. You must be careful, though, because the act of
writing itself has meaning for some registers.)

Data count - 1.
[59:52] | SIZE | If these bits have a value of 0, they indicate single access.
If they have a value of 1 or greater, they indicate burst access.

Indicates the burst access mode.
[63:63] | SEQ If this bit is 0, data is written to a single register.
If this bit is 1, data is written to consecutive registers.

Note: These bits use little-endian notation.

All commands are 64-bit aligned. The value of the S1ZE bits indicates either single or burst access. In
burst access mode, the SEQ bits determine whether data is written to a single register or to
consecutive registers.

CTR-06-0006-001-D 70 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.7.2 Single Access

When the SIZE bits have a value of 0, commands are single-access. One unit of data (32 bits) is
written once to a single register. The ADDR bits indicate the address of the register to write to. The
DATA bits are the data to write. Each byte is only updated if its corresponding BE bit is set to 1. (A
command does not write to a register where the BE bits are 0.) The SEQ bit is ignored. The 64 bits of
data that follow a command represent the next command.

Consider the sample command, 0x000¥011012345678. SIZE is O, BE is Oxf, ADDR is 0x110,
and DATA is 0x12345678. This is single-access because the S1ZE bits have a value of 0. This
command writes 0x12345678 to register 0x110.

5.7.3 Burst Access

When the SIZE bits have a value of 1 or greater, SIZE+1 units of data are written to registers. You
can set values up to 255 for the S1ZE bits. The DATA bits are written first, followed by the data stored
in the next 64 bits. The least significant 32 bits are written before the most significant 32 bits.

Figure 5-9 Command Structure for Burst Access

63 32 31 _ 0

| Header | Data 1 |

63 _ 32 31 e 0

| Data 3 | Data 2 |

63 . 32 31 _ 0

| Data 5 | Data 4]
—

Because SI1ZE+1 units of data are written, an even number of pieces are written when the S1ZE bits
have an odd value. In this case, the most significant 32 bits of the last 64 bits of data are ignored.
(The next command always starts at an address that is 64-bit aligned.) The BE bits' byte enable
settings are applied to all writes uniformly.

If the SEQ bit is 0, data is written to a single register. If the SEQ bit is 1, data is written to consecutive
registers.

5.7.3.1 Writing to a Single Register

Multiple units of data are written consecutively to a single register. The ADDR bits indicate the address
of the register to write to. The DATA bits are written first, followed by the data stored in the next 64 bits.

The least significant 32 bits are written before the most significant 32 bits. The number of data units
written is one greater than the value of the SI1ZE bits.

Consider the following sample command.

e (0x004f008011111111
e 0x3333333322222222
e 0x5555555544444444

© 2009-2011 Nintendo 71 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

In this command, SIZE is 4, BE is OxFf, ADDR is 0x80, DATAis 0x11111111, and SEQis 0.
Because SIZE is 4 and SEQ is 0, five units of data are written consecutively to the same register. In
other words, 0x11111111, 0x22222222, 0x33333333, 0x44444444, and 0x55555555 are written
to the register at address 0x80.

5.7.3.2 Writing to Consecutive Registers

Different values are written one at a time to multiple consecutive registers. The ADDR bits give the
address of the first register to write. The DATA bits are written to the first register and then the
following 64-bit data is written, starting with the least significant 32 bits, to addresses that increment
by one with each write. SIZE+1 units of data are written to SIZE+1 registers.

Consider the following sample command.

e 0x805f028011111111
e 0x3333333322222222
e 0x5555555544444444
o OX7777777766666666

In this command, SIZE is 5, BE is OxF, ADDR is 0x28, DATA is 0x11111111, and SEQ is 1. Because
SIZE is 5 and SEQ is 1, six units of data are written to consecutive registers. In other words,
0x11111111 is written to register 0x280; 0x22222222 is written to register 0x281; 0x33333333 is
written to register 0x282; 0x44444444 is written to register 0x283; 0x55555555 is written to
register 0x284; and 0x66666666 is written to register 0x285. The most significant 32 bits
(Ox77777777 in this example) of the last 64 bits of data are not used because the SIZE bit has an
odd value. The next command is the 64 bits of data following OX7777777766666666.

5.8 PICA Register Information

This section describes PICA register information corresponding to specific features. The register
information includes the register address, configuration method, value format, and so on. Using the
information in this section, you can change the values set for a feature by searching for and replacing
3D command buffer locations that write to the corresponding registers.

5.8.1 Render Start Registers

If a value of 1 is written to register O0x22F or 0x22e, the glDrawElements or glDrawArrays
function starts rendering using the vertex buffer, respectively. If a value of OxF is written to register
0x232, the gIDrawElements or glDrawArrays function starts rendering without using the vertex
buffer.

5.8.2 Vertex Shader Floating-Point Registers

There are 96 floating-point registers for the vertex shader. Each one comprises four components: x, Yy,
z, and w. These are written as cO through c95 in shader assembly. You can use two methods to
define either uniforms or constants with the def instruction. Internally, PICA uses 24-bit floating-point

CTR-06-0006-001-D 72 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

numbers with a 16-bit mantissa, 7-bit exponent, and 1-bit sign in order from the least significant to the
most significant bit.

You can set either 24-bit or 32-bit PICA floating-point numbers. The DMPGL driver uses 24 bits to
define a constant with def and 32 bits to define a uniform. The only difference between setting a 24-
bit floating-point number and a 32-bit floating-point number is an increase in the number of
commands to process. There is no processing overhead associated with a conversion between
floating-point formats.

The 32-bit floating-point numbers mentioned here use the IEEE 754 single-precision format. When
you set 32-bit values, PICA automatically converts them to 24 bits internally.

5.8.2.1 Address Information

Bits [7:0] of register 0x2cO0 set the floating-point register index. (This is 0 for cO and Ox0a for c10.)
When 1 or 0 is simultaneously written to bit [31:31], floating-point numbers are input in 32-bit or 24-bit
mode, respectively.

Data is written to the xyzw components of a floating-point register between 0x2c1 and 0x2c8.
Writing a value anywhere between 0x2c1 and 0x2c8 has the same effect. After you write an index to
0x2c0, data is written from 0x2c1 to 0x2c8.

5.8.2.2 How to Set the Input Mode for 32-Bit Floating-Point Numbers

When floating-point numbers are entered in 32-bit mode, 32 bits of data are written four times in wzyx
order to any register between 0x2c1 and 0x2c8. Once data is written four times, the index of the
next floating-point register to write is automatically incremented by one.

Code 5-1 Sample 32-Bit Floating-Point Input
0x2c0 <= 0x80000023 // [31] = 1 for 32-bit input mode and [7:0] = 35
0x2cl <= 0x40800000 // The value of c35.w

0x2c2 <= 0x40400000 // The value of c35.
0x2c3 <= 0x40000000 // The value of c35.
0x2c4 <= 0x3f800000 // The value of c35.
0x2cl <= 0x40800000 // The value of c36.
0x2c2 <= 0x40400000 // The value of c36.
0x2c3 <= 0x40000000 // The value of c36.
0x2c4 <= 0x3f800000 // The value of c36.

X < N = X K N

If you set register values as shown here, c35.xyzw and 36.xyzw will be {1.f, 2., 3.f, 4.f}.
5.8.2.3 How to Set the Input Mode for 24-Bit Floating-Point Numbers

When floating-point numbers are entered in 24-bit mode, the w, z, y, and x components are converted
into a 24-bit format and then packed into 32 bits of data, which is then written three times to any
register between 0x2c1 and 0x2c8. For details on how values are converted into 24-bit floating-point
numbers, see section 5.9.1 Converting from float32 to float24. The following figure shows the 24-bit
data layout.

© 2009-2011 Nintendo 73 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Figure 5-10 How to Set 24-Bit Floating-Point Numbers

31 8 7 0
Data 1 | w[23:0] | 2[23:16] |
31 1615 0
Data 2 | 2[15:0] | y[23:8] |
31 2423 0
Data 3 [y[7:0] | x[23:0] |

Data 1, Data 2, and Data 3 in the figure are written in that order. Once data is written three times, the
index of the next floating-point register to write is automatically incremented by one.

Code 5-2 Sample 24-Bit Floating-Point Input
0x2c0 <= 0x00000023 // [31] = 0 for 24-bit input mode and [7:0] = 35

0x2cl <= 0x41000040 // [31:8] = w[23:0] and [7:0] = z[23:16]
0x2c2 <= 0x80004000 // [31:16] = z[15:0] and [15:0] = y[23:8]
0x2c3 <= 0x003f0000 // [31:24] = y[7:0] and [23:0] = x[23:0]

When registers are set this way, the following values are set.

e c35.x = 0x3f0000
e c35.y = 0x400000
e c35.z = 0x408000
e c35.w = 0x410000

The value of c35.xyzw is therefore {1.f, 2.f, 3.f, 4.f}.

5.8.3 Vertex Shader Boolean Registers

There are 16 Boolean registers for the vertex shader. These are written as b0-b15 in shader
assembly. You can use these to define either uniforms or constants with the defb instruction.

Bits [15:0] of register 0x2b0 correspond to the vertex shader Boolean registers. Bits 0-15 correspond
to b0-b15, respectively. A value of 1 is equivalent to true, 0 is equivalent to false.

5.8.4 Vertex Shader Integer Registers

There are 4 integer registers for the vertex shader. Each integer register comprises three
components: X, y, and z. These are written as 10-13 in shader assembly. You can use these to define
either uniforms or constants with the defi instruction.

The 0x2b1, 0x2b2, 0x2b3, and 0x2b4 registers correspond to 10, i1, i2, and i3, respectively. For
each register, bits [7:0] correspond to the x component, bits [15:8] correspond to the y component,
and bits [23:16] correspond to the z component.

5.8.5 Vertex Shader Starting Address Setting Registers

Bits [15:0] of register Ox2ba set the starting address of the vertex shader. This specifies the address
of the main label defined in shader assembly.

CTR-06-0006-001-D 74 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.8.6 Registers That Set the Number of Input Vertex Attributes

Bits [3:0] of registers 0x2b9 and 0x242 each set a value that is one less than the number of vertex
attributes input to the vertex shader.

5.8.7 Registers That Set the Number of Output Registers Used by the Vertex
Shader

These set the number of output registers written by the vertex shader. The specified value is the
number of output registers defined by #pragma output_map in shader assembly. When #pragma
output_map defines multiple attributes to be packed into a single output register, count those
attributes as a single output register.

Bits [2:0] of register Ox4f set the number of output registers to use. Bits [3:0] of registers 0x24a,
0x25e, and 0x251 each set a value that is one less than the number of output registers to use.

5.8.8 Registers That Set the Vertex Shader Output Mask

These use a bitmask to specify the output registers written by the vertex shader. Bits [15:0] of register
0x2bd correspond to each of the 16 output registers (bit [0:0] corresponds to 00, bit [1:1]
corresponds to 01, and bit [15:15] corresponds to 015).

Abit is set (1) if it corresponds to an output register defined by #pragma output_map in shader
assembly. A bit is cleared (0) if it corresponds to an undefined output register.

5.8.9 Registers That Set Vertex Shader Output Attributes

These configure the vertex attributes output by the vertex shader. Data written to the output registers
defined by #pragma output_map is output starting with the smallest index (so that 00, 01, 02, and
03 are output in order and nothing is output for an output register that is not defined by output_map).
Data attributes output by the vertex shader are specified one by one in registers, starting with data for
the first register. The following table indicates register information.

Table 5-6 Registers That Set Output Attributes from the Vertex Shader

Setting Register Description

Attribute for the x-component of the first set of output data.
e 0x00: Vertex coordinate x

e 0Ox01: Vertex coordinate y

e 0x02: Vertex coordinate z

e 0x03: Vertex coordinate w

L] e 0x04: Quaternion x

0x50: bits [4:0] e 0x05: Quaternion y
e 0x06: Quaternion z
e 0x07: Quaternion w
e 0x08: Vertex color R
e 0x09: Vertex color G

e 0OxOa: Vertex color B

© 2009-2011 Nintendo 75 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Register

Description

e 0xOb: Vertex color A

e 0OxOc: Texture coordinate O, u
e 0x0d: Texture coordinate 0, v
e 0OxOe: Texture coordinate 1, u
e OxOf: Texture coordinate 1, v
e 0x10: Texture coordinate 0, w
e 0x12: View vector x

e 0x13: View vector y

o 0x14: View vector z

e 0x16: Texture coordinate 2, u
e 0x17: Texture coordinate 2, v
e Ox1f: Invalid

0x50: bits [12:8]

The same settings as bits [4:0] of register 0x50 for the y-component
attribute of the first set of output data.

0x50: bits [20:16]

The same settings as bits [4:0] of register 0x50 for the z-component
attribute of the first set of output data.

0x50: bits [28:24]

The same settings as bits [4:0] of register 0x50 for the w-component
attribute of the first set of output data.

0x51: bits [4:0], [12:8], [20:16], [28:24]

The same settings as register 0x50 for the second set of output data
attributes.

0x52: bits [4:0], [12:8], [20:16], [28:24]

The same settings as register 0x50 for the third set of output data
attributes.

0x53: bits [4:0], [12:8], [20:16], [28:24]

The same settings as register 0x50 for the fourth set of output data
attributes.

0x54: bits [4:0], [12:8], [20:16], [28:24]

The same settings as register 0x50 for the fifth set of output data
attributes.

0x55: bits [4:0], [12:8], [20:16], [28:24]

The same settings as register 0x50 for the sixth set of output data
attributes.

0x56: bits [4:0], [12:8], [20:16], [28:24]

The same settings as register 0x50 for the seventh set of output data
attributes.

0x64: bit [0:0]

Set equal to 1 when texture coordinates are output by the vertex
shader and 0 when they are not.

For example, consider the following vertex shader definitions.

Code 5-3 Sample Vertex Shader Definitions

#pragma output _map(position, 00)

#pragma output_map(color, ol)

#pragma output _map(textureO, 02.xy)

#pragma output _map(textureOw, 02.z)

#pragma output _map(texturel, 03.xy)

CTR-06-0006-001-D
Released: May 13, 2011

76 © 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

The registers are set as follows.

e 0Ox50 <- 0x03020100

e 0x51 <- 0x0b0a0908

e 0x52 <- 0x1f100dOc (w is invalid)

e 0x53 <- Ox1f1f0OfOe (zw are invalid)

e 0x54 <- Ox1F1F1FLf (the fifth attribute is invalid)

e 0x55 <- Ox1F1F1fF1f (the sixth attribute is invalid)

o 0Ox56 <- Ox1Ff1f1fif (the seventh attribute is invalid)

5.8.10 Clock Control Setting Registers for Vertex Shader Output Attributes

The attributes output by the vertex shader cause the clock control register settings to change. When
the bit that corresponds to an attribute is set equal to 0, the clock supply for the related module is
stopped; this is effective in decreasing power consumption. The following table shows the registers
that correspond to each attribute.

Table 5-7 Clock Control Setting Registers for Vertex Shader Output Attributes

Setting Register Description

0x6F: bit [0:0 ¢ 1 when vertex coordinate z is output
x6T: bit [0: . .
[0:01 o 0 when vertex coordinate z is not output

¢ 1 when the vertex color is output

Ox6T: bit [1:1
[1:1] e 0 when the vertex color is not output

¢ 1 when texture coordinate 0 is output

Ox6T: hit [8:8
% it [8:8] e 0 when texture coordinate 0 is not output

¢ 1 when texture coordinate 1 is output

Ox6T: bit [9:9
[5:9] e 0 when texture coordinate 1 is not output

¢ 1 when texture coordinate 2 is output

0x6T: bit [10:10
[] e 0 when texture coordinate 2 is not output

¢ 1 when the w component of texture coordinate 0O is output

Ox6T: bit [16:16
[] e 0 when the w component of texture coordinate 0 is not output

¢ 1 when the view vector and quaternions are output

Ox6T: hit [24:24
[] e 0 when the view vector and quaternions are not output

5.8.11 Vertex Shader Program Code Setting Registers

The following table shows registers that set the program code executed by the vertex shader.

© 2009-2011 Nintendo 77 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Table 5-8 Vertex Shader Program Code Setting Registers

Setting Register Description

Ox2cb: bits [11:0] Sets the load address for program code.

0x2cc—-0x2d3: bits [31:0] | Sets program code data.

When data is set in bits [31:0] of registers 0x2cc—0x2d3, program data is loaded into the load
address set by bits [11:0] of register Ox2cb. Each time data is written to bits [31:0] of registers
0x2cc—0x2d3, the load address is automatically incremented by 1. (The address advances by a
single instruction in program code, or 32 bits.) Behavior is the same regardless of where the register
between Ox2cc and 0x2d3 is written.

After the program code is updated, some command must write a value of 1 to any bit in register
0x2bf to send a notification that the program update is complete.

In addition to the program code just described, swizzle pattern data must be loaded. The following
table shows the registers that set swizzle patterns.

Table 5-9 Vertex Shader Swizzle Pattern Setting Registers

Setting Register Description

0x2d5: bits [11:0] Sets the load address for swizzle patterns.

0x2d6-0x2dd: bits [31:0] | Sets swizzle pattern data.

When data is set in bits [31:0] of registers 0x2d6—0x2dd, swizzle patterns are loaded into the load
address set by bits [11:0] of register 0x2d5. Each time data is written to bits [31:0] of registers
0x2d6-0x2dd, the load address is automatically incremented by 1. (The address advances by one
set of data, or 32 bits.) Behavior is the same regardless of where the register between 0x2d6 and
0x2dd is written.

5.8.12 Registers That Map Vertex Attributes to Input Registers

These configure which input registers of the vertex shader are used to store input vertex attribute
data and are shown in the following table.

Table 5-10 Registers That Map Vertex Attributes to Input Registers

Setting Register Description
0x2bb: bits [3:0] Index of the input register in which to store the 1st input vertex attributes.
0x2bb: bits [7:4] Index of the input register in which to store the 2nd input vertex attributes.

Ox2bb: bits [11:8] | Index of the input register in which to store the 3rd input vertex attributes.

Ox2bb: bits [15:12] | Index of the input register in which to store the 4th input vertex attributes.

Ox2bb: bits [19:16] | Index of the input register in which to store the 5th input vertex attributes.

CTR-06-0006-001-D 78 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting Register Description

0x2bb: bits [23:20] | Index of the input register in which to store the 6th input vertex attributes.

0x2bb: bits [27:24] | Index of the input register in which to store the 7th input vertex attributes.

O0x2bb: bits [31:28] | Index of the input register in which to store the 8th input vertex attributes.

0x2bc: bits [3:0] Index of the input register in which to store the 9th input vertex attributes.

0x2bc: bits [7:4] Index of the input register in which to store the 10th input vertex attributes.

0x2bc: bits [11:8] Index of the input register in which to store the 11th input vertex attributes.

Ox2bc: bits [15:12] | Index of the input register in which to store the 12th input vertex attributes.

The input register indices are set so that index 0 corresponds to vO, index 1 corresponds to v1, and
so on up to index 15, which corresponds to v15. Vertex attributes are not input to the vertex shader in
an order that corresponds to index in the gIBindAttribLocation function. The input order
instead corresponds to the internal vertex attribute numbers described in section 5.8.14 Registers for
Vertex Attribute Array Settings. Please refer to that section together with this one.

5.8.13 Registers That Set Fixed Vertex Attribute Values

The fixed vertex attribute values set by the glVertexAttrib4f function and other functions are
converted into 24-bit floating-point numbers and sent to the hardware. To do so, a value is first written
to bits [3:0] of register 0x232 indicating the order in which vertex attributes are input to the vertex
shader. Next, the fixed vertex attribute value is converted into three 24-bit floating-point numbers that
are stored as 32-bit values and written to registers 0x233, 0x234, and 0x235.

The values that are converted into 24-bit floating-point numbers and stored as 32-bit data follow the
same data creation method as the one described in section 5.8.2.3 How to Set the Input Mode for 24-
Bit Floating-Point Numbers. Vertex attributes are not input to the vertex shader in an order that
corresponds to index in the glBindAttribLocation function. The input order instead
corresponds to the internal vertex attribute numbers described in section 5.8.14 Registers for Vertex
Attribute Array Settings. Please refer to that section together with this one.

Although these fixed vertex attribute settings are applied individually to each numbered internal vertex
attribute, if an internal vertex attribute is switched to be used as a vertex array by the settings
described in section 5.8.14 Registers for Vertex Attribute Array Settings, the fixed vertex attribute
value configured for it by this setting is invalidated. Therefore, if a vertex array is changed back to a
fixed vertex attribute, you must set its fixed vertex attribute value again.

Hardware specifications do not allow all the vertex attributes to be used as fixed vertex attributes, with
no vertex arrays used at all. At least one vertex array must be used.

© 2009-2011 Nintendo 79 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.8.14 Registers for Vertex Attribute Array Settings

This section describes registers that set the address, type, and other information for vertex attribute
arrays when vertex buffers are in use. The register-setting commands explained in this section are
generated by NN_GX_STATE_VERTEX validation. The registers are shown in the following table.

Table 5-11 Registers for Vertex Attribute Array Settings

Name Register Description

The common base address for all vertex arrays. This

Base address 0x200, bits [28:1] is specified as a 128-bit address.

Specifies the type of internal vertex attribute 0. The
following list shows combinations of size and type
to the glVertexAttribPointer function when it is

called on a GL attribute number corresponding to
internal vertex attribute 0.

e Ox0: size 1, type = GL_BYTE
e Ox1: size = 1, type = GL_UNSIGNED_BYTE
type = GL_SHORT
type = GL_FLOAT
type = GL_BYTE
type = GL_UNSIGNED_BYTE
type = GL_SHORT
type = GL_FLOAT
type = GL_BYTE
type = GL_UNSIGNED_BYTE
type = GL_SHORT
type = GL_FLOAT
type = GL_BYTE
type = GL_UNSIGNED_BYTE
type = GL_SHORT
type = GL_FLOAT

e 0Ox2: size =

e Ox3: size =

e Ox4: size =

e Ox5: size =

Type of internal vertex attribute 0 | 0x201, bits [3:0] _
e OX6: size =

e OX7: size =

e 0Ox8: size =

e 0x9: size =
e Oxa: size =

e Oxb: size =

e OXxc: size =

e Oxd: size =

e Oxe: size =

A A DA D OWOWWWNDNMNDNNLERELPR

e OxF: size =

Sets internal vertex attribute 1 in the same way as

Type of internal vertex attribute 1 | 0x201, bits [7:4] internal vertex attribute 0

Sets internal vertex attribute 2 in the same way as

Type of internal vertex attribute 2 | 0x201, bits [11:8] internal vertex attribute O

Sets internal vertex attribute 3 in the same way as

Type of internal vertex attribute 3 | 0x201, bits [15:12] internal vertex attribute 0

Sets internal vertex attribute 4 in the same way as

Type of internal vertex attribute 4 | 0x201, bits [19:16] internal vertex attribute 0

Sets internal vertex attribute 5 in the same way as

Type of internal vertex attribute 5 | 0x201, bits [23:20] internal vertex attribute 0

Sets internal vertex attribute 6 in the same way as

Type of internal vertex attribute 6 | 0x201, bits [27:24] internal vertex attribute O

Sets internal vertex attribute 7 in the same way as

Type of internal vertex attribute 7 | 0x201, bits [31:28] internal vertex attribute 0

CTR-06-0006-001-D 80 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Name

Register

Description

Type of internal vertex attribute 8

0x202, bits [3:0]

Sets internal vertex attribute 8 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 9

0x202, bits [7:4]

Sets internal vertex attribute 9 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 10

0x202, bits [11:8]

Sets internal vertex attribute 10 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 11

0x202, bits [15:12]

Sets internal vertex attribute 11 in the same way as
internal vertex attribute 0.

Fixed vertex attribute mask

0x202, bits [27:16]

Sets the internal vertex attribute mask for fixed vertex
attributes.

Vertex attribute count

0x202, bits [31:28]

Sets a number that is one less than the total vertex
attribute count (this is one less than the total number
of fixed vertex attributes and vertex attribute arrays).

Load array N address offset

0x203+Nx3,
bits [27:0]

The address of load array N. (N=0, 1, ..., 11) Sets an
offset (in bytes) from the base address.

1st component of load array N

0x204+Nx3,
bits [3:0]

Sets the first component of load array N.
e 0xO0: Internal vertex attribute 0
e Ox1: Internal vertex attribute 1
e 0x2: Internal vertex attribute 2
e 0x3: internal vertex attribute 3
e 0x4: Internal vertex attribute 4
e 0x5: Internal vertex attribute 5
e 0x6: Internal vertex attribute 6
e 0X7:internal vertex attribute 7
e 0x8: Internal vertex attribute 8
e 0x9: Internal vertex attribute 9
e Oxa: Internal vertex attribute 10
o Oxb: internal vertex attribute 11
e 0Oxc: 4-byte padding

e Oxd: 8-byte padding

e Oxe: 12-byte padding

o Oxf: 16-byte padding

2nd component of load array N

0X204+Nx3,
bits [7:4]

Sets the 2nd component of load array N in the same
way as the 1st component.

3rd component of load array N

0x204+Nx3,
bits [11:8]

Sets the 3rd component of load array N in the same
way as the 1st component.

4th component of load array N

0X204+Nx3,
bits [15:12]

Sets the 4th component of load array N in the same
way as the 1st component.

5th component of load array N

0X204+Nx3,
bits [19:16]

Sets the 5th component of load array N in the same
way as the 1st component.

© 2009-2011 Nintendo
CONFIDENTIAL

81

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Name Register Description

0x204+Nx3, Sets the 6th component of load array N in the same
6th component of load array N .

bits [23:20] way as the 1st component.

0x204+Nx3, Sets the 7th component of load array N in the same
7th component of load array N .

bits [27:24] way as the 1st component.

0x204+Nx3, Sets the 8th component of load array N in the same
8th component of load array N .

bits [31:28] way as the 1st component.

0x205+Nx3, Sets the 9th component of load array N in the same
9th component of load array N .

bits [3:0] way as the 1st component.

0x205+Nx3, i
10th component of load array N : Sets the 10th component of load array N in the same

bits [7:4] way as the 1st component.

0x205+Nx3, Sets the 11th component of load array N in the same
11th component of load array N .

bits [11:8] way as the 1st component.

0x205+Nx3, Sets the 12th component of load array N in the same
12th component of load array N bits [15:12] way as the 1st component.

0x205+Nx3, . .
Byte count for load array N X Number of bytes for a single vertex in load array N.

bits [23:16]

0x205+Nx3, .
Load array N component count X The number of components in load array N.

bits [31:28]
Index array address offset 0x227, bits [27:0] The address of the index array. This is an offset (in

bytes) from the base address.

There are settings for the base address, vertex attribute types, a fixed vertex attribute mask, the total
number of vertex attributes, the byte offset to each load array, information on load array components,
the number of load array components, the load array byte count, and the index array offset.

5.8.14.1 Base Address

The addresses of all vertex arrays and the vertex index array are set as offsets from a 128-bit base
address (the byte address divided by 16), which is itself specified in bits [28:1] of register 0x200.

The base address is 16-byte aligned and is smaller than the addresses of all vertex arrays and of the
index array. When the vertex arrays and index array use a range of addresses that has been fixed in
advance, commands to this register do not need to be re-set for each vertex array combination.

5.8.14.2 Internal Vertex Attributes

Internal vertex attributes are vertex attribute numbers that are determined internally and used by
PICAto load vertex arrays. Although they differ from GL vertex attribute numbers, which are the
vertex attribute numbers specified as index to the glEnableVertexAttribArray function,
internal vertex attribute numbers and GL vertex attribute numbers have a one-to-one correspondence.

Vertex arrays enabled by the glEnableVertexAttribArray function are assigned continuously in
ascending order starting at internal vertex attribute 0. For example, when vertex arrays are enabled
for the GL vertex attribute numbers 0 and 3, they are assigned to the internal vertex attributes 0 and 1.

© 2009-2011 Nintendo
CONFIDENTIAL

CTR-06-0006-001-D 82
Released: May 13, 2011

DMPGL 2.0 System API Specifications

However, GL vertex attribute number 0 does not necessarily correspond to internal vertex attribute 0.
The assignment of internal vertex attributes is driver implementation-dependent. The current
implementation sorts vertex array addresses in ascending order and then assigns GL vertex attributes
one by one starting with the first attribute, which is assigned to internal vertex attribute 0. (Because
this is dependent on the driver implementation, it may change in the future.)

The vertex shader’s input vertex attribute data is ordered according to the internal vertex attributes.
See section 5.8.12 Registers That Map Vertex Attributes to Input Registers for more information.

Bits [31:0] of register 0x201 and bits [15:0] of register 0x202 specify the internal vertex attribute
types; for each internal vertex attribute, a value is set for the combination of size and type given to
the glVertexAttribPointer function for the corresponding GL vertex attribute.

5.8.14.3 Fixed Vertex Attribute Mask

As many vertex attributes are enabled as are defined by #pragma bind_symbol in the vertex
shader assembly code, but if any of those enabled vertex attributes have a disabled vertex array
(either because the gIDisableVertexAttribArray function has been called on this vertex
attribute or the glEnableVertexAttribArray function has not been called on it), a fixed vertex
attribute is used in its place.

Fixed vertex attributes are assigned to internal vertex attributes in the same way as vertex arrays are
assigned. Continuous internal numbers are assigned in ascending order following the numbers
assigned to vertex arrays.

Bits [27:16] of register 0x202 set a mask for assigned internal vertex attributes. Bit [16+1:16+1]
corresponds to internal vertex attribute 1 and is set to 1 if it is assigned to a fixed vertex attribute.

Hardware specifications do not allow all the vertex attributes to be used as fixed vertex attributes, with
no vertex arrays used at all. At least one vertex array must be used.

If an internal vertex attribute has had its vertex array toggled between enabled and disabled or vice
versa, configuring this register setting will disable the fixed vertex attribute value previously set for
that vertex attribute, and the value must be reset. See section 5.8.13 Registers That Set Fixed Vertex
Attribute Values for details.

5.8.14.4 Vertex Attribute Count

Bits [31:28] of register 0x202 set a value that is one less than the total number of fixed vertex
attributes and vertex attributes that use vertex arrays.

5.8.14.5 Load Arrays

Aload array is an internally managed data array unit that PICA uses to load vertex attributes. PICA
loads data from 12 load arrays. (There is a register for each load array. The register address notation
“0x203+Nx3" indicates that there are 12 registers corresponding to values of N between 0 and 11.)

The 12 load arrays each comprise up to 12 components. A load array component is either vertex
array data that makes up that load array or padding in 4-byte units. Basically, when vertex data is
defined as an array of structures with multiple vertex attributes (called an interleaved array), a single
interleaved array corresponds to a single load array. On the other hand, when vertex data is defined

© 2009-2011 Nintendo 83 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

as a single vertex attribute array (called an independent array), that single vertex attribute
corresponds to a single load array.

Because hardware performance improves as the number of used load arrays decreases, the DMPGL
driver is configured to be able to load data with a small number of load arrays.

Bits [31:0] of registers 0x204+Nx3 and bits [15:0] of register 0x205 specify the components that
make up each load array in order from the first component. When bits [3:0] of register 0x204 specify
0, for example, the first component of load array 0 becomes internal vertex attribute 0 and the data
placed at the start of load array 0 is placed according to internal vertex attribute 0’s type, which is set
by bits [3:0] of register 0x201.

Bits [23:16] of registers 0x205+Nx3 set the number of bytes in a single vertex for each load array. A
load array with elements of more than one type may be automatically padded. The number of bytes
per vertex must be set to the correct value that includes padding. Behavior is undefined if this setting
does not match the total size of the load array elements.

Bits [31:28] of registers 0x205+Nx3 set the number of components in each load array. A load array is
not used when 0 is specified.

To find the actual address of a vertex attribute array, add the offset specified by ptr in the
glVertexAttribPointer function to the address allocated by the glBufferData function. Bits
[27:0] of registers 0x203+Nx3 are set so that this actual address is equal to

(base address x 16 + load array address offset}_

Similarly, the vertex index array’s address offset is set in bits [27:0] of register 0x227 as an offset
from the base address. See section 5.8.38 Settings Registers Specific to the Rendering API for more
information.

Consider the following example of an interleaved array.

Code 5-4 Sample Interleaved Array
struct vertex_t {

float position[3];

float color[4];

float texcoord[2];
} vertex[NUM_VERTEX];

Vertex data created with this structure uses the following vertex array settings.

Code 5-5 Vertex Array Settings for an Interleaved Array

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(struct vertex t), 0);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof(struct vertex t), 12);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(struct vertex t), 28);

The three GL vertex attributes 0, 1, and 2 are components of a single load array. If a total of four
vertex attributes are used—the three in Code 5-5 and one fixed vertex attribute—vertex attributes 0, 1,

CTR-06-0006-001-D 84 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

and 2 correspond to internal vertex attributes 0, 1, and 2 and the fixed vertex attribute corresponds to
internal vertex attribute 3. Consequently, the relevant registers are set as follows.

0x201 <- 0x000007fb

Internal vertex attributes 0, 1, and 2 are of type FLOAT_VEC3, FLOAT_VEC4, and FLOAT_VEC2,
respectively.

0x202 <- 0x30080000

There are a total of four vertex attributes; internal vertex attribute 3 is a fixed vertex attribute.
0x203 <- 0x00000000

Because we are only using one load array, the base address is set equal to the actual address.
0x204 <- 0x00000210

The components of load array 0 are internal vertex attributes 0, 1, and 2.

0x205 <- 0x30240000

Load array O uses 36 bytes (Floatx9) per vertex and has three components.

0x206—-0x226 <- 0x00000000

Other load arrays are not used.

Now consider the following example of an independent array.

Code 5-6 Sample Independent Array

#define NUM_VERTEX (3)
struct attributeO_t {

float position[3];

} attributeO[NUM_VERTEX];
struct attributel t {

float color[4];

} attributel[NUM_VERTEX];

struct attribute2_t {

float tex[2];

} attribute2[NUM_VERTEX];

Vertex data created with this structure uses the following vertex array settings (a single vertex buffer

object is shared and data is placed in order).

Code 5-7 Vertex Array Settings for an Independent Array
glBindBuffer(GL_ARRAY_BUFFER, 1);

glBufferData(GL_ARRAY_BUFFER,

sizeof(attributel)+sizeof(attributel)+sizeof(attribute2), 0, GL_STATIC_DRAW);

glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(attributeQ), attributeO);

© 2009-2011 Nintendo 85 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

glBufferSubData(GL_ARRAY_BUFFER,

sizeof(attribute0), sizeof(attributel), attributel);
glBufferSubData(GL_ARRAY_BUFFER,

sizeof(attribute0)+sizeof(attributel), sizeof(attribute2), attribute2);

glVertexAttribPointer(0, 3, GL_FLOAT, GL _FALSE, 0, 0);

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, O,
(GLvoid*) (sizeof(attribute0)));

glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, O,
(GLvoid*) (sizeof(attribute0)+sizeof(attributel)));

GL vertex attributes 0, 1, and 2 are each separate load array components that correspond to internal
vertex attributes 0, 1, and 2. The relevant registers settings are as follows.

e 0x201 <- 0x000007fb

Internal vertex attributes 0, 1, and 2 are of type FLOAT _VEC3, FLOAT_VEC4, and FLOAT_VEC2,
respectively.

e 0x202 <- 0x20000000

There are a total of three vertex attributes and no fixed vertex attributes.
e 0x203 <- 0x00000000

Load array O is placed at the beginning.
e 0x204 <- 0x00000000

Load array 0 has a single component: internal vertex attribute 0.
e 0x205 <- 0x100c0000

Load array 0 uses 12 bytes (Floatx3) per vertex and has one component.
e 0Ox206 <- 0x00000024

The offset of load array 1 is sizeof(attribute0).
e 0Ox207 <- 0x00000001

Load array 1 has a single component: internal vertex attribute 1.
e 0Ox208 <- 0x10100000

Load array 1 uses 16 bytes (Floatx4) per vertex and has one component.
e 0Ox209 <- 0x00000054

Load array 2 has an offset of sizeof(attributeO)+sizeof(attributel).
e 0Ox20a <- 0x00000002

Load array 2 has a single component: internal vertex attribute 2.

CTR-06-0006-001-D 86 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

e 0x20b <- 0x10080000
Load array 2 uses 8 bytes (Floatx2) per vertex and has one component.
e 0x20c—0x226 <- 0x00000000

Other load arrays are not used.
5.8.14.6 Padding Components and Automatic Padding for the Load Array

Bits [31:0] of registers 0x204+Nx3 and bits [15:0] of register 0x205 have four load array component
values for padding: Oxc, 0xd, Oxe, and OxF. These are used in load arrays with unused regions.

Consider vertex data created with the following structure.

Code 5-8 Sample Vertex Data Structure with Padding Components

struct vertex_t

{
float position[3];
float color[4];
float texcoord[2];

} vertex[NUM_VERTEX];

Assume that texcoord is not used as a vertex attribute. Because the size of a single vertex is
Ffloatx9, the last Floatx2 bytes are unused. Internal vertex attributes are specified as the first and
second components of the load array corresponding to this vertex data, but Oxd (8-byte padding) is
specified as the third component.

You cannot specify a padding element as the first element. Operation is undefined in such cases.
Adjust the load array address offset so that the first element is not a padding element.

If the components of a single load array are vertex attributes with multiple different data types
(GL_FLOAT, GL_SHORT, GL_BYTE, and GL_UNSIGNED_BYTE), less than four bytes of padding may
automatically be inserted even if it is not specified in the load array components. Each component
that makes up a load array is either a 4-byte type (corresponding to an internal vertex attribute type of
GL_FLOAT or padding), a 2-byte type (corresponding to an internal vertex attribute type of
GL_SHORT), or a 1-byte type (corresponding to an internal vertex attribute type of GL_BYTE or
GL_UNSIGNED_BYTE). Each component in a load array is automatically padded to the alignment of
the component type in that load array.

For example, consider vertex data with the following structure.

Code 5-9 Sample Vertex Data Structure with Automatic Padding

struct vertex_t

{
GLfloat position[3];
GLubyte color[3];
GLfloat texcoord[2];

} vertex[NUM_VERTEX];

© 2009-2011 Nintendo 87 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Assume that the load array’s components are the three vertex attributes position, color, and
texcoord. Although color uses 3 bytes, texcoord is 4-byte aligned because it is a GLfloat. In
other words, a single byte of padding is automatically inserted immediately after color.

If a single load array’s elements comprise vertex attributes of multiple data types (GL_FLOAT,
GL_SHORT, GL_BYTE, and GL_UNSIGNED_BYTE), padding is automatically added at the end of each
vertex’s data to align it with the size of the load array element that has the largest data type.

For example, consider vertex data with the following structure.

Code 5-10 Another Sample Vertex Data Structure with Automatic Padding
struct vertex_t
{
GLubyte color[3];
GLFfloat position[3];
GLubyte param;
} vertex[NUM_VERTEX];

The load array can be thought to have three vertex attributes—color, position, and param—as
elements. The largest of these three attributes is a GLFloat, which uses four bytes. Consequently,
vertex[0], vertex[1], and so on through vertex[NUM_VERTEX-1] are all 4-byte aligned. In
other words, three bytes of padding are automatically inserted immediately after param.

When padding is automatically inserted, the per-vertex size that includes this padding must be set in
bits [23:16] of registers 0x205+Nx3.

5.8.14.7 Setting the Load Array and Performance

The load performance for vertex data depends on factors such as the size of the load array being
used and factors such as the type of array elements.

The GPU accesses memory in units of load arrays, and there is no cache. The load cost is the same
whether accessing multiple load arrays from the same address or from different addresses.

To load one vertex array into multiple vertex shader input registers, you can either load that vertex
array from multiple load arrays, or duplicate the vertex array and create an interleaved array from
those duplicates to load the whole as one load array. The latter approach can produce better runtime
performance, but at the expense of greater data sizes.

Performance is also affected by the number of elements in the load arrays, even if the total number of
data items is the same. For example, loading one load array with six float-type data elements will
produce better performance than loading two load arrays each with three float-type elements. Note
that performance in both cases will also be affected by the vertex index ordering and by any FCRAM
access by other modules. The performance difference between these two cases declines when the
vertex index ordering is optimized (such that indices are as sequential as possible). In our example
here, and assuming no FCRAM access collisions between the GPU and another module, it will take
between 30% and 100% longer to load the two load arrays than the single load array. Note that this
performance gap will disappear when allocating the vertex arrays in VRAM.

CTR-06-0006-001-D 88 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.8.15 Other Setting Registers Related to the Vertex Shader

See section 5.8.39 Settings Registers Specific to the Geometry Shader when you use the geometry
shader. Even if you only use the vertex shader, section 5.8.39.13 Miscellaneous Registers mentions

register settings that are required when the geometry shader is not in use.

5.8.16 Texture Address Setting Registers

This section describes registers that set texture data addresses. You must update the registers
described in this section when a texture object is changed or placed at a different address.

Table 5-12 Texture Data Address Setting Registers

Texture Unit Target Registers

Texture 0 GL_TEXTURE_2D 0x8S, bits [27:0]

Texture 0 GL_TEXTURE_CUBE_MAP_POSITIVE_X | 0x8S, bits [27:0]

Texture 0 | GL_TEXTURE_CUBE_MAP_NEGATIVE x | 280, bits [21:0]
B - T T —" | 0x85, bits [27:22]

Texture 0 GL_TEXTURE_CUBE_MAP POSITIVE y | 2X&7: bits [21:0]
B - T T — | 0x85, bits [27:22]

Texture O | GL_TEXTURE_CUBE_MAP_NEGATIVE_y | OX88. bits [21:0]
0x85, bits [27:22]

Texture 0 GL_TEXTURE_CUBE_MAP_POSITIVE_z | 2X89 bits [21:0]
B - T T —~ | 0x85, bits [27:22]

Texture 0 GL_TEXTURE_CUBE_MAP_NEGATIVE z | 2X8& Dits [21:0]
B - T T —~ | 0x85, bits [27:22]

Texture 1 GL_TEXTURE_2D 0x95, bits [27:0]

Texture 2 GL_TEXTURE_2D 0x9d, bits [27:0]

All texture memory addresses are set as 8-byte physical addresses. (This value is the physical
address divided by 8.) The six cube map faces have 28-bit texture addresses. The most significant 6
bits of every address share bits [27:22] in register 0x85.

Using the information in this section, you can change texture data addresses to adjust texture data
placement. The texture resolution, filter mode, number of mipmap levels, and other information are
not expected to change.

5.8.17 Render Buffer Setting Registers

This section shows register settings related to the render buffer. The register setting commands
described in this section are generated by NN_GX_STATE_FRAMEBUFFER validation.

© 2009-2011 Nintendo

CONFIDENTIAL

89

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Table 5-13 Block Format Setting Registers

Setting Setting Register

Setting Value

Color buffer address 0x11d, bits [27:0]

Sets a value equal to the color buffer’s byte address
divided by 8.

Depth buffer address 0Ox11c, bits [27:0]

Sets a value equal to the depth buffer’s byte address
divided by 8.

Color buffer pixel size 0x117, bits [1:0]

¢ 0 when the color buffer format has a 16-bit pixel size

e 2 when the color buffer format has a 32-bit pixel size

Color buffer format 0x117, bits [18:16]

0: GL_RGBA8_OES or GL_GAS_DMP
2: GL_RGB5_A1

3: GL_RGB565
4

: GL_RGBA4

Depth buffer format 0x116, bits [1:0]

o

: GL_DEPTH_COMPONENT16
: GL_DEPTH_COMPONENT24_OES
3: GL_DEPTH24_STENCIL8_EXT

N

Ox11e, bits [10:0]

Color and depth buffer width
Ox6e, bits [10:0]

Sets the color and depth buffer width in pixels.

Ox11e, bits [21:12]

Color and depth buffer height

Ox6e, bits [21:12]

Sets the color and depth buffer height in pixels. This
value is one less than the actual height.

5.8.18 Texture Combiner Setting Registers

This section describes registers related to reserved fragment shader uniforms with dmp_TexEnv[i]
in their names. The following table shows the texture combiner registers.

Table 5-14 Texture Combiner Setting Registers

Uniform Register

Setting Value

Starting register + 0

Rgb: 1st t
srcRgb: 1st componen bits [3:0]

e OxO : GL_PRIMARY_COLOR

e Ox1 : GL_FRAGMENT_PRIMARY_COLOR_DMP

e 0x2 : GL_FRAGMENT_SECONDARY_COLOR_DMP
e Ox3 : GL_TEXTUREO

e Ox4 : GL_TEXTURE1

e Ox5 : GL_TEXTUREZ2

e Ox6 : GL_TEXTURE3

e Oxd : GL_PREVIOUS BUFFER_DMP

o Oxe : GL_CONSTANT

e Oxf : GL_PREVIOUS

Starting register + 0

Rgb: 2nd t
srcRgb: 2nd componen bits [7:4]

Same as the 1st component of srcRgb.

srcRgb: 3rd component Starting register + 0

Same as the 1st component of srcRgb.

CTR-06-0006-001-D
Released: May 13, 2011

90

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Uniform

Register

Setting Value

bits [11:8]

srcAlpha: 1st component

Starting register + 0
bits [19:16]

Same as the 1st component of srcRgb.

srcAlpha: 2nd component

Starting register + 0
bits [23:20]

Same as the 1st component of srcRgb.

srcAlpha: 3rd component

Starting register + 0
bits [27:24]

Same as the 1st component of srcRgb.

operandRgb: 1st component

Starting register + 1
bits [3:0]

e 0Ox0
e Ox1
o Ox2
e 0x3
o Ox4
e Ox5
e 0Ox8
e 0x9
e Oxc
e Oxd

GL_SRC_COLOR
GL_ONE_MINUS_SRC_COLOR
GL_SRC_ALPHA
GL_ONE_MINUS_SRC_ALPHA
GL_SRC_R_DMP
GL_ONE_MINUS_SRC_R_DMP
GL_SRC_G_DMP
GL_ONE_MINUS_SRC_G_DMP
GL_SRC_B_DMP
GL_ONE_MINUS_SRC_B_DMP

operandRgb: 2nd component

Starting register + 1
bits [7:4]

Same as the 1st component of operandRgb.

operandRgb: 3rd component

Starting register + 1
bits [11:8]

Same as the 1st component of operandRgb.

operandAlpha: 1st component

Starting register + 1
bits [14:12]

e 0OxO0
o Ox1
e Ox2
e 0x3
o Ox4
e Ox5
e 0Ox6
o OX7

GL_SRC_ALPHA
GL_ONE_MINUS_SRC_ALPHA
GL_SRC_R_DMP
GL_ONE_MINUS_SRC_R_DMP
GL_SRC_G_DMP
GL_ONE_MINUS_SRC_G_DMP
GL_SRC_B_DMP
GL_ONE_MINUS_SRC_B_DMP

operandAlpha: 2nd component

Starting register + 1
bits [18:16]

Same as the 1st component of operandAlpha.

operandAlpha: 3rd component

Starting register + 1
bits [22:20]

Same as the 1st component of operandAlpha.

© 2009-2011 Nintendo
CONFIDENTIAL

91

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

bits [19:16]

Uniform Register Setting Value
e OxO : GL_REPLACE
e Ox1 : GL_MODULATE
e Ox2 : GL_ADD
e Ox3 : GL_ADD_SIGNED
i} Starting register + 2 | ® 0x4 = GL_INTERPOLATE
combineRgb >
bits [3:0] e 0Ox5 : GL_SUBTRACT
e Ox6 : GL_DOT3_RGB
e OX7 : GL_DOT3_RGBA
e Ox8 : GL_MULT_ADD_DMP
e 0x9 : GL_ADD_MULT_DMP
e OxO : GL_REPLACE
e Ox1 : GL_MODULATE
e Ox2 : GL_ADD
e Ox3 : GL_ADD_SIGNED
combineAlpha Starting register + 2 | ® 0x4 - GL_INTERPOLATE

e Ox5 : GL_SUBTRACT
e 0x6 : GL_DOT3_RGB

e Ox7 : GL_DOT3_RGBA

e Ox8 : GL_MULT_ADD_DMP
e 0x9 : GL_ADD_MULT_DMP

constRgba: 1st component

Starting register + 3
bits [7:0]

Floating-point number between 0 and 1 that was
mapped to an integer value between 0 and 255. For
details on how this value is converted, see section
5.9.16 Converting a 32-Bit Floating-Point Number (0—
1) into an 8-Bit Unsigned Integer.

constRgba: 2nd component

Starting register + 3
bits [15:8]

Same as the 1st component of constRgba.

constRgba: 3rd component

Starting register + 3
bits [23:16]

Same as the 1st component of constRgba.

constRgba: 4th component

Starting register + 3

Same as the 1st component of constRgba.

bits [31:24]
. . e OXO - 1.0
scaleRgb Startlng register +4 | oxl - 2.0
bits [1:0]
e Ox2 = 4.0
Starting register + 4
scaleAlpha S leRgb.
p bits [17:16] ame as scaleRg
A floating-point number between 0 and 1 that was
Ox0Fd mapped to an integer between 0 and 255. For details
bufferColor: 1st component bits [7:0 on how this value is converted, see section 5.9.16
its [7:0] Converting a 32-Bit Floating-Point Number (0-1) into
an 8-Bit Unsigned Integer.
Ox0fd
bufferColor: 2nd component bits [15:8] Same as the 1st component of bufferColor.
CTR-06-0006-001-D 92 © 2009-2011 Nintendo

Released: May 13, 2011

CONFIDENTIAL

DMPGL 2.0 System API Specifications

Uniform Register Setting Value
bufferColor: 3rd component 0x0fd Same as the 1st component of bufferColor
u : P bits [23:16] P u '
bufferColor: 4th component oxofd Same as the 1st component of bufferColor
' P bits [31:24] P '
0x0e0

bit [7+1:7+1]
bufferi 1 (i corresponds to | e 0: GL_PREVIOUS_BUFFER_DMP
ufferlinput: 1st component theiin o 1:GL PREVIOUS
dmp_TexEnv[i] -
and can have a
value of 1, 2, 3, or 4)

0x0e0
bit [11+1:11+1]

bufferl - and (i corresponds to | e 0: GL_PREVIOUS_BUFFER_DMP
ufferInput: 2nd component theiin e 1:GL PREVIOUS
dmp_TexEnv[i] -
and can have a
value of 1, 2, 3, or 4)

The names in the Uniform column of the table are preceded by “dmp_TexEnv[i]." The "starting
register" in the Register column varies with the texture combiner number (this corresponds to the i in
dmp_TexEnv[i], but there is only one register for bufferColor because it can only be set when
1=0).

The following table shows the address of the starting register.

Table 5-15 Texture Combiner Numbers and Starting Registers

Combiner Number | Starting Register
0 0x0cO
1 0x0c8
2 0x0dO
3 0x0d8
4 0x0f0
5 0x0f8

5.8.19 Registers That Set Fragment Lighting

This section describes registers related to reserved fragment shader uniforms with
dmp_FragmentLighting, dmp_FragmentMaterial, dmp_FragmentLightSource[i], or
dmp_LightEnv in their names.

5.8.19.1 Enabling and Disabling Lighting

The following table shows register settings that enable and disable lighting.

© 2009-2011 Nintendo 93 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Table 5-16 Registers That Enable or Disable Lighting

Uniform Setting Register Setting Value

e 0:GL_TRUE

0x1c6, bits [0:0] e 1:GL FALSE

dmp_FragmentLighting.enabled

e 0:GL_FALSE

0x8T, bhits [0:0] e 1:GL TRUE

This sets a value that is one less than the
number of enabled light sources. This is
set equal to 0 when all light sources are
disabled.

0x1c2, bits [2:0]

0x1d9, bits [2:0] The ID of the 1st enabled light source

0x1d9, bits [6:4] The ID of the 2nd enabled light source

dmp_FragmentLightSource[i].enabled 0x1d9, bits [10:8] The ID of the 3rd enabled light source

0x1d9, bits [14:12] | The ID of the 4th enabled light source

0x1d9, bits [18:16] | The ID of the 5th enabled light source

0x1d9, bits [22:20] | The ID of the 6th enabled light source

0x1d9, bits [26:24] | The ID of the 7th enabled light source

0x1d9, bits [30:28] | The ID of the 8th enabled light source

The IDs of the enabled light sources are specified in 0x1d9 in ascending order (starting at light
source 0). For example, when light sources 0, 1, 3, and 5 are enabled
(dmp_FragmentLightSource[0].enabled, dnp_FragmentLightSource[1l].enabled,
dmp_FragmentLightSource[3]-enabled, and dmp_FragmentLightSource[5]-enabled
are all GL_TRUE), 0x1d9 is set equal to 0x00005310. When all light sources are enabled, a value of
0x76543210 is set. When all light sources are disabled, a value of 0 is set.

5.8.19.2 Global Ambient Settings

This section describes global ambient settings. Before each RGB component is set in a register, it is
first calculated as dmp_FragmentMaterial _.emission + dmp_FragmentMaterial .ambient x
dmp_FragmentLighting.ambient, clamped to a value between 0 and 1, and then mapped to an
unsigned, 8-bit integer between 0 and 255. Bits [29:20], [19:10], and [9:0] of register 0x1cO set the R,
G, and B components, respectively. For information on how to convert a floating-point number
clamped between 0 and 1 into an 8-bit integer between 0 and 255, see section 5.9.16 Converting a
32-Bit Floating-Point Number (0-1) into an 8-Bit Unsigned Integer. Although settings values are set in
the lower 8 bits of every 10 bits of register 0x1cO (bits [29:20], [19:10], and [9:0]), make absolutely
sure the upper two bits of every 10 bits are set to 0. Operations are undefined if these bits are set to a
value other than O.

CTR-06-0006-001-D 94 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

If light source 0 is not enabled, O will be applied as the global ambient term of the primary color, even
if something is set for it in this settings register.

When lighting is enabled and all light sources are disabled (dmp_FragmentLighting.enabled is
setto GL_TRUE and dmp_FragmentLightSource[i]-enabled is set to GL_FALSE for all light
sources), only the global ambient is applied to the primary color. Because enabling lighting also
always enables one light source (due to the fact that bits [2:0] of register Ox1c2 set the number of
light sources minus one), the DMPGL driver generates a command that sets 0x140, 0x141, 0x142,
and 0x143 to 0. This command sets all light source colors for light source 0 to black (0.0, 0.0,
0.0, 0.0).

The driver also generates two commands: one that enables light source 0 by taking the first enabled
light source as light source 0 (setting bits [2:0] of register 0x1d9 to 0), and one that improves
performance by setting dmp_LightEnv.configto GL_LIGHT _ENV_LAYER_CONFIGO_DMP (setting
bits [7:4] of register 0x1c3 to 0).

5.8.19.3 Per-Light Settings

This section describes how to configure individual light sources.

Register addresses and bits corresponding to per-light settings are calculated from light source
numbers. A light source number corresponds to i in the uniform name,
dmp_FragmentLightSource[i] - XXX.

When dmp_FragmentLightSource[0].enabled and
dmp_FragmentLightSource[3].enabled are set equal to GL_TRUE, for example, light sources 0
and 3 are enabled. The light source colors (explained later under Light Source Color Settings)
dmp_FragmentSource[0] -specular0 and dmp_FragmentSource[3] -specularO0 affect
registers 0x140 and 0x170, respectively.

Light Source Color Settings

There are ambient, diffuse, specular 0, and specular 1 settings for each enabled light source. The
following table shows the registers that set each component.

Table 5-17 Registers That Set Each Color Component

Setting Value

Component Setting Register i el [FXC) G

0x140 + (light source #) x | dmp_FragmentMaterial .specular0 x

Specular 0 0x10 dmp_FragmentLightSource[i] -specular0

When dmp_LightEnv. lutEnabledRef1 is GL_FALSE:

dmp_FragmentMaterial .specularl x
0x140 + (light source #) x | dmp_FragmentLightSource[i].specularl

Specular 1 0x10 + 1
When dmp_LightEnv. lutEnabledRef1 is GL_TRUE:
dmp_FragmentLightSource[i]-specularl
Diff 0x140 + (light source #) x | dmp_FragmentMaterial .diffuse x
use 0x10 + 2 dmp_FragmentLightSource[i] -diffuse
© 2009-2011 Nintendo 95 CTR-06-0006-001-D

CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Value

Component Setting Register T el (2002 e

0x140 + (light source #) x | dmp_FragmentMaterial .ambient x

Ambient 0x10 + 3 dmp_FragmentLightSource[i].-ambient

The specular 0, specular 1, diffuse, and ambient RGB components are calculated as shown in

Table 5-17 to produce floating-point numbers between 0 and 1, which are then mapped to integers
between 0 and 255 and set in the corresponding registers. Bits [29:20], [19:10], and [9:0] are used for
the R, G, and B components, respectively. For information on how to convert floating-point values into
integer values, see section 5.9.16 Converting a 32-Bit Floating-Point Number (0-1) into an 8-Bit
Unsigned Integer.

Setting Light Source Positions

The reserved uniform dmp_FragmentLightSource[i].position specifies the light source
positions. The X, y, and z coordinates specified by the uniform are converted into 16-bit floating-point
numbers before they are set as register values. For information on how to convert these humbers,
see section 5.9.2 Converting from float32 to float16.

The following table shows the registers that set each component.

Table 5-18 Registers That Set Individual Components of Light Source Coordinates

Coordinate

Component Setting Register Bits Setting Value
X 0x140 + (light source #) x 0x10 + 4 [15:0] | 16-bit floating-point number
Y 0x140 + (light source #) x 0x10 + 4 [31:16] | 16-bit floating-point number
z 0x140 + (light source #) x 0x10 + 5 [15:0] | 16-bit floating-point number

1 when the fourth component of
w 0x140 + (light source #) x 0x10 + 9 [0:0] dmp_FragmentLightSource[i]-
position is 0 and O otherwise.

Setting the Spotlight Direction

The reserved uniform dmp_FragmentLightSource[i].spotDirection specifies the spotlight
direction. The x, y, and z components specified by the register are first negated, then converted into
13-bit signed fixed-point numbers with 11 fractional bits, and finally set as register values. For each of
these values, the most significant bit indicates the sign and is followed by a single integer bit and 11
fractional bits, respectively. Negative values are represented in two’s complement. For information on
how to convert these numbers, see section 5.9.9 Converting a 32-Bit Floating-Point Number into a
13-Bit Signed Fixed-Point Number with 11 Fractional Bits.

The following table shows the registers that set each component.

CTR-06-0006-001-D 96 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Table 5-19 Registers That Set Individual Components of the Spotlight Direction

Component Setting Register Bits Setting Value
X 0x140 + (light source #) x 0x10 + 6 [12:0] | 13-bit fixed-point number
Y 0x140 + (light source #) x 0x10 + 6 [28:16] | 13-hit fixed-point number
Z 0x140 + (light source #) x 0x10 + 7 [12:0] | 13-bit fixed-point number

Bias and Scale Settings for Distance Attenuation

The reserved uniforms dmp_FragmentLightSource[i]-distanceAttenuationBias and
dmp_FragmentLightSource[i].distanceAttenuationScale specify the bias and scale
values for distance attenuation, respectively. The values set for each of these registers are converted

into 20-bit floating-point numbers and set in the registers. For more information on this conversion,
see section 5.9.4 Converting from float32 to float20. The following table shows the registers to set.

Table 5-20 Setting Registers for the Bias and Scale with Distance Attenuation

Component Setting Register Bits Setting Value
Bias 0x140 + (light source #) x 0x10 + Ox0a [19:0] 20-bit floating-point number
Scale 0x140 + (light source #) x 0x10 + Ox0b [19:0] 20-bit floating-point number

Miscellaneous Settings for Individual Lights

The following table shows registers used by other miscellaneous settings for individual light sources.

Table 5-21 Registers Used by Other Miscellaneous Settings for Individual Light Sources

Uniform Setting Register Setting Value
dmp_FragmentLightSource[i]. | Ox1c4, bit e 0:GL_TRUE
shadowed [(light source #) :(light source #)] e 1:GL_FALSE

e 0:GL_TRUE

dmp_FragmentLightSource[i]-
spotEnabled

0x1c4, bit [8 + (light source #) :8 +
(light source #)]

e 1:GL_FALSE

dmp_FragmentLightSource[i]. | Ox1c4, bit[24 + (light source #) 24 + e 0:GL_TRUE
distanceAttenuationEnabled (light source #)] e 1:GL_FALSE
dmp_FragmentLightSource[i]. | 0x140 + (light source #) x 0x10 + 9, bit * 0:GL_FALSE
twoSideDiffuse [1:1] e 1:GL_TRUE

dmp_FragmentLightSource[i].
geomFactorO

0x140 + (light source #) x 0x10 +
90x140, bit [2:2]

e 0:GL_FALSE
e 1:GL_TRUE

dmp_FragmentLightSource[i]-
geomFactoril

0x140 + (light source #) x 0x10 +
90x140, bit [3:3]

e 0: GL_FALSE
e 1:GL_TRUE

© 2009-2011 Nintendo
CONFIDENTIAL

97

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.8.19.4 Lookup Table Settings

This section describes settings for the reserved uniforms

dmp_FragmentMaterial .sampler{RR,RG,RB,D0O,D1,SP,FR},
dmp_FragmentLightSource[i]-samplerSP, and
dmpFragmentLightSource[i]-samplerDA. Each type of lookup table for fragment lighting has
256 data elements. The following table shows the registers used for each setting.

Table 5-22 Registers That Configure Lookup Tables for Fragment Lighting

Setting Register Description

0x1c5, bits [7:0] Specifies the index at which to set data in the lookup table.

Specifies the type of lookup table for which to set data.

e 0:dmp_FragmentMaterial .samplerDO

e 1:dmp_FragmentMaterial .samplerD1l

e 3:dmp_FragmentMaterial .samplerFR

0x1ch5, bits [12:8] e 4:dmp_FragmentMaterial .samplerRB

e 5:dmp_FragmentMaterial .samplerRG

e 6:dmp_FragmentMaterial .samplerRR

e 8+i: dmp_FragmentLightSource[i]-samplerSP
e 16+i: dmp_FragmentLightSource[i].samplerDA

0x1c8-0x1cf, bits [23:0] | Sets the lookup table data.

Use bits [12:8] of 0x1c5 to select the type of lookup table to configure. Before configuring more than
one type of lookup table, you need to switch the table type with the same register. Use bits [7:0] of
0x1c5 to specify the index of the data to set. An index value of 0 indicates the start of the lookup
table and 255 indicates the end.

Set lookup table data anywhere between 0x1c8 and Ox1cf. When data is written, it updates the
content of the lookup table at the specified index. The index is incremented by one for each data
element that is written.

The i™ element and the (a+ 256)’th element of the 512 data elements loaded by the
glTexImagelD function are packed into a value that is written to index i of the lookup table object
bound to the lookup table number specified by the uniform value. Convert the i data element into a
12-bit unsigned fixed-point number with 12 fractional bits and write it to bits [11:0] of any register
between 0x1c8 and Ox1cf. Convert the (i+256) ™ data element into a 12-bit signed fixed-point
number with 11 fractional bits and write it to bits [11:0] of any register between 0x1c8 and Ox1cf.

Results are the same regardless of where you write data between 0x1c8 and Ox1cT.

For information on how to convert 12-bit unsigned fixed-point numbers with 12 fractional bits, see
section 5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point Number
with 12 Fractional Bits.

For a 12-bit signed fixed-point number with 11 fractional bits, the most significant bit indicates the sign
and is followed by 11 fractional bits that specify an absolute value (negative values are not

CTR-06-0006-001-D 98 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

represented in two’s complement). For more details on converting into this format, see section 5.9.6
Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11

Fractional Bits.

5.8.19.5 Setting the Range of Lookup Table Arguments

The following table shows register settings specific to the range of lookup table arguments.

Table 5-23 Registers That Set the Range of Lookup Table Arguments

Uniform Setting Register Setting Value
dmp_LightEnv.absLutInputDO | 0x1dO, bit [1:1] * 0-GLTRUE
e 1:GL_FALSE

dmp_LightEnv.absLutlnputDl | 0x1dO, bit [5:5] Same as dmp_LightEnv.absLutlnputDO.
dmp_LightEnv.absLutlnputSP | 0x1dO, bit [9:9] Same as dmp_LightEnv.absLutlnputDO.
dmp_LightEnv.absLutInputFR | 0x1dO, bit [13:13] | Same as dmp_LightEnv.absLutlnputDO.
dmp_LightEnv.absLutInputRB | 0x1dO, bit[17:17] | Same as dmp_LightEnv.absLutlnputDO.
dmp_LightEnv.absLutInputRG | 0x1dO, bit [21:21] | Same as dmp_LightEnv.absLutlnputDO.
dmp_LightEnv.absLutInputRR | 0x1dO, bit [25:25] | Same as dmp_LightEnv.absLutlnputDO.

5.8.19.6 Setting Lookup Table Input Values

The following table shows register settings specific to lookup table input values.

Table 5-24 Registers That Set Lookup Table Input Values

Uniform

Setting Register

Setting Value

e 0:GL_LIGHT_ENV_NH_DMP

e 1:GL_LIGHT_ENV_VH_DMP

dmp_LightE lutl tDO 0x1d1, bits [2:0 * 2 GL_LIGHT_ENV_NV_DNP

m nv. n :

p_Lrghtenv. futinpu x1d1,bits [20] | | 5.) | 1GHT_ENV_LN_DMP

e 4:GL_LIGHT_ENV_SP_DMP

e 5:GL_LIGHT_ENV_CP_DMP
dmp_LightEnv. lutinputDl 0x1d1, bits [6:4] Same as dmp_LightEnv. lutlnputDO.
dmp_LightEnv. lutlnputSP 0Ox1d1, bits [10:8] | Same as dmp_LightEnv. lutinputDO.
dmp_LightEnv. lutinputFR 0Ox1d1, bits [14:12] | Same as dmp_LightEnv. lutinputDO.
dmp_LightEnv. lutinputRB 0Ox1d1, bits [18:16] | Same as dmp_LightEnv. lutinputDO.
dmp_LightEnv. lutlnputRG 0x1d1, bits [22:20] | Same as dmp_LightEnv. lutinputDO.
dmp_LightEnv. lutlnputRR 0x1d1, bits [26:24] | Same as dmp_LightEnv. lutinputDO.

5.8.19.7 Setting the Output Scaling for Lookup Tables

The following table shows the register settings specific to output scaling for lookup tables.

© 2009-2011 Nintendo
CONFIDENTIAL

99

CTR-06-0006-001-D

Released: May 13, 2011

DMPGL 2.0 System API Specifications

Table 5-25 Registers That Set the Output Scaling for Lookup Tables

Uniform Setting Register Setting Value
e 0:1.0
e 1:2.0
i} e 2:4.0

dmp_LightEnv.lutScaleDO 0x1d2, bits [2:0] 38.0

e 3:8.

e 6:0.25

e 7:0.5
dmp_LightEnv._lutScaleD1 0x1d2, bits [6:4] Same as dmp_LightEnv. lutScaleDO.
dmp_LightEnv._lutScaleSP 0x1d2, bits [10:8] | Same as dmp_LightEnv. lutScaleDO.
dmp_LightEnv.lutScaleFR 0x1d2, bits [14:12] | Same as dmp_LightEnv. lutScaleDO.
dmp_LightEnv._lutScaleRB 0x1d2, bits [18:16] | Same as dmp_LightEnv. lutScaleDO.
dmp_LightEnv.lutScaleRG 0x1d2, bits [22:20] | Same as dmp_LightEnv. lutScaleDO.
dmp_LightEnv. lutScaleRR 0x1d2, bits [26:24] | Same as dmp_LightEnv. lutScaleDO.

5.8.19.8 Shadow Attenuation Settings

The following table shows register settings specific to shadow attenuation.

Table 5-26 Registers for Shadow Attenuation Settings

Uniform Setting Register Setting Value

: GL_TEXTUREO
: GL_TEXTURE1
: GL_TEXTUREZ2
: GL_TEXTURE3

dmp_LightEnv.shadowSelector 0x1c3, bits [25:24]

°
wWw N B O

.
o

: GL_FALSE

dmp_LightEnv.shadowPrimary 0x1c3, bit [16:16] e 1:GL TRUE

e 0:GL_FALSE

dmp_LightEnv.shadowSecondary | 0x1c3, bit [17:17] e 1:GL TRUE

e 0: GL_FALSE

dmp_LightEnv. invertShadow 0x1c3, bit [18:18] e 1:GL TRUE

e 0:GL_FALSE

dmp_LightEnv.shadowAlpha 0x1c3, bit [19:19] e 1:GL TRUE

1 when any of the following are equal to
GL_TRUE and 0 when all of the following
are equal to GL_FALSE.

e dmp_LightEnv.shadowPrimary
e dmp_LightEnv.shadowSecondary

Common 0x1c3, bit [0:0]

e dmp_LightEnv.shadowAlpha

CTR-06-0006-001-D 100 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.8.19.9 Miscellaneous Settings

The following table shows register settings specific to other miscellaneous fragment lighting.

Table 5-27 Registers for Other Miscellaneous Fragment Lighting Settings

Uniform

Setting Register

Setting Value

dmp_LightEnv.
config

0x1c3, bits [7:4]

:GL_LIGHT_ENV_LAYER_CONFIGO_DMP
:GL_LIGHT_ENV_LAYER_CONFIG1_DMP
:GL_LIGHT_ENV_LAYER_CONFIG2_DMP
:GL_LIGHT_ENV_LAYER_CONFIG3_DMP
:GL_LIGHT_ENV_LAYER_CONF1G4_DMP
:GL_LIGHT_ENV_LAYER_CONFIG5_DMP
:GL_LIGHT_ENV_LAYER_CONFIG6_DMP
:GL_LIGHT_ENV_LAYER_CONFIG7_DMP

0 o ol A W N PP O

dmp_LightEnv.
fresnelSelector

0x1c3, bits [3:2]

:GL_LIGHT_ENV_NO_FRESNEL_DMP
:GL_LIGHT_ENV_PRI_ALPHA_FRESNEL_DMP
:GL_LIGHT_ENV_SEC_ALPHA_FRESNEL_DMP
:GL_LIGHT_ENV_PRI_SEC_ALPHA_FRESNEL_DMP

w N B O

Ox1c4, bit [19:19]

o

- Not GL_LIGHT_ENV_NO_FRESNEL_DMP
:GL_LIGHT_ENV_NO_FRESNEL_DMP

[En

0: GL_TEXTUREO
dmp_LightEny. _ _ 1: GL_TEXTURE1
bumpSelector 0x1c3, bits [23:22] 2: GL_TEXTURE2
3: GL_TEXTURE3
) 0: GL_LIGHT_ENV_BUMP_NOT_USED_DMP
dmp_LightEnv. 0x1c3, bits [29:28] 1: GL_LIGHT_ENV_BUMP_AS_BUMP_DMP

bumpMode

2: GL_LIGHT_ENV_BUMP_AS_TANG_DMP

dmp_LightEnv.

0x1c3, bit [30:30]

0 when dmp_L ightEnv_bumpRenorm is GL_TRUE or
dmp_LightEnv.bumpMode is

bumpRenorm GL_LIGHT_ENV_BUMP_NOT_USED
1 otherwise

A 0: GL_FALSE
dmp_LightEnv . 0x1c3, bit [27:27] -
clampHighlights 1: GL_TRUE
dmp_LightEnv. .) 0: GL_TRUE
lutEnabledDO 0x1c4, bit [16:16] 1: GL_FALSE
dmp_LightEnv. .] 0: GL_TRUE
lutEnabledDl Ox1c4, bit [17:17] 1: GL_FALSE
dmp_LightEnv. .] 0: GL_TRUE
lutEnabledRefl | OX1C4, bits [22:20] 7: GL_FALSE

Note: The dmp_LightEnv.config settings, specifically the values set in bits [7:4] of register

0x1c3, change the number of cycles used for per-pixel operations. This setting has an effect
even when lighting is disabled. For performance reasons, if you disable lighting at any point,

© 2009-2011 Nintendo 101
CONFIDENTIAL

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

at that point arrange to configure dmp_LightEnv.config so that the number of cycles is 1.
The DMPGL driver sets bits [7:4] of register 0x1c3 to 0 when lighting is disabled.

5.8.20 Texture Setting Registers

This section describes registers related to general texture parameters and reserved uniforms with
dmp_Texture[i] in their names. Also see section 5.8.16 Texture Address Setting Registers. The
register-setting commands for texture parameters described in this section are generated during
NN_GX_STATE_TEXTURE validation.

5.8.20.1 Shadow Texture Settings

The following table shows register settings specific to reserved uniforms for shadow textures.

Table 5-28 Shadow Texture Setting Registers

Uniform Setting Register Setting Value
) e 0:GL_TRUE
dmp_Texture[0] . perspectiveShadow | 0x8b, bit [0:0]
e 1:GL_FALSE
dmp_Texture[0] .shadowZBias 0x8b, bits [23:1] The_ uniforrr_l value _converted into a 23-bit,
unsigned, fixed-point number.
dmp_Texture[0] . shadowzScale 0x8b, bits [31:24] An 8-bit integer that represents the index -127

from the 32-bit floating-point uniform value

The setting value of dmp_Texture[0] -shadowZBias is converted into a 24-bit fixed-point number,
of which the most significant 23 bits are set in the register. For information on converting to a 24-bit
fixed-point number, see section 5.9.14 Converting a 32-Bit Floating-Point Number into a 24-Bit
Unsigned Fixed-Point Number with 24 Fractional Bits.

5.8.20.2 Setting the Texture Sampler Type

The following table shows register settings specific to reserved uniforms for the texture sampler type.

Table 5-29 Registers That Set the Texture Sampler Type

Uniform Setting Register Setting Value

0: GL_FALSE

0x80, bit [0:0 .
[0:0] e 1: Asetting other than GL_FALSE

: GL_TEXTURE_2D

: GL_TEXTURE_CUBE_MAP

: GL_TEXTURE_SHADOW_2D_MAP

: GL_TEXTURE_PROJECTION_DMP
: GL_TEXTURE_SHADOW_CUBE_MAP

dmp_Texture[0] .samplerType .
0x83, bits [30:28] |

A W DN PR O

°
o

: GL_FALSE

dmp_Texture[1].samplerType | 0x80, bit [1:1] e 1:GL TEXTURE 2D

e 0: GL_FALSE

dmp_Texture[2].samplerType | 0x80, bit [2:2] e 1:GL TEXTURE 2D

CTR-06-0006-001-D 102 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Uniform

Setting Register

Setting Value

dmp_Texture[3]-samplerType

0x80, hit [10:10]

e 0:GL_FALSE
e 1: GL_TEXTURE_PROCEDURAL_DMP

Note: Note that commands to set the setting registers for dmp_Texture[0] -samplerType,
dmp_Texture[1l].samplerType, and dmp_Texture[2].samplerType are generated
not when the state flag is NN_GX_ STATE_FSUNIFORM but when the glDrawElements or
glDrawArrays function is called.

5.8.20.3 Setting the Texture Coordinate Selection

The following table shows register settings specific to reserved uniforms for texture coordinate

selection.

Table 5-30 Registers for Texture Coordinate Selection

Uniform Setting Register

Setting Value

dmp_Texture[2] . texcoord | 0x80, bit [13:13]

0: GL_TEXTUREZ2
1: GL_TEXTURE1

dmp_Texture[3].texcoord | 0x80, bits [9:8] °

0: GL_TEXTUREO
1: GL_TEXTURE1
2: GL_TEXTURE2

5.8.20.4 Procedural Texture Settings

The following table shows register settings specific to reserved uniforms for procedural textures.

Table 5-31 Registers for Procedural Texture Settings

Uniform

Setting Register Setting Value

dmp_Texture[3] - ptRgbMap

0x0a8, bits [9:6]

: GL_PROCTEX_U_DMP
: GL_PROCTEX_U2_DMP

: GL_PROCTEX_V_DMP

: GL_PROCTEX_V2_DMP

: GL_PROCTEX_ADD_DMP

: GL_PROCTEX_ADD2_DMP

: GL_PROCTEX_ADDSQRT2_DMP
: GL_PROCTEX_MIN_DMP

: GL_PROCTEX_MAX_DMP

: GL_PROCTEX_RMAX_DMP

[]
© 00O N O ol A W N PP O

dmp_Texture[3] - ptAlphaMap

0x0a8, bits [13:10] | Same as dmp_Texture[3] -ptRgbMap

dmp_Texture[3].ptAlphaSeparate

0x0a8, bit [14:14]

e 0:GL_FALSE
e 1:GL_TRUE

© 2009-2011 Nintendo
CONFIDENTIAL

103

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Uniform

Setting Register

Setting Value

dmp_Texture[3]-ptClampU

0x0a8, bits [2:0]

e 0:GL_CLAMP_TO_ZERO_DMP

e 1:GL_CLAMP_TO_EDGE

e 2:GL_SYMMETRICAL_REPEAT DMP
e 3:GL_MIRRORED_REPEAT

e 4:GL_PULSE_DMP

dmp_Texture[3]-ptClampV

0x0a8, bits [5:3]

Same as dmp_Texture[3] -ptClampU

dmp_Texture[3] .ptShiftU

0x0a8, bits [17:16]

e 0: GL_NONE_DMP
e 1:GL_ODD_DMP
e 2:GL_EVEN_DMP

dmp_Texture[3].ptShiftV

0x0a8, bits [19:18]

Same as dmp_Texture[3] -ptShiftU

dmp_Texture[3]-ptMinFilter

0Ox0ac, bits [2:0]

e 0: GL_NEAREST

:GL_LINEAR

: GL_NEAREST_MIPMAP_NEAREST
: GL_LINEAR_MIPMAP_NEAREST

: GL_NEAREST_MIPMAP_LINEAR

: GL_LINEAR_MIPMAP_LINEAR

°
a A W N PP O

dmp_Texture[3] .ptTexOffset

0x0ad, bits [7:0]

Sets the uniform value

dmp_Texture[3] .ptTexWidth

Ox0ac, bits [18:11]

Sets the uniform value

dmp_Texture[3] .ptTexBias

0x0a8, bits [27:20]

Sets the least significant 8 bits of the uniform
value after it is converted into a 16-bit floating-
point number

Ox0ac, bits [26:19]

Sets the most significant 8 bits of the uniform
value after it is converted into a 16-bit floating-
point number

dmp_Texture[3]-ptNoiseEnable

0x0a8, bit [15:15]

e 0:GL_FALSE
e 1:GL_TRUE

dmp_Texture[3] -ptNoiseU

0x0a9, bits [31:0]

Bits [31:16] are set equal to a 16-bit floating-
point number converted from the second
component of the uniform.

Bits [15:0] are set equal to a 16-bit fixed-point
number, signed with 12 decimal bits, converted
from the third component of the uniform.

0x0ab, bits [15:0]

The first uniform component, converted into a
16-bit floating-point number.

dmp_Texture[3].ptNoiseV

0x0aa, bits [31:0]

Bits [31:16] are set with the second uniform
component, converted into a 16-bit floating-point
number.

Bits [15:0] are set with the third uniform
component, converted into a signed, 16-bit
fixed-point number with 12 decimal bits.

CTR-06-0006-001-D
Released: May 13, 2011

104

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Uniform Setting Register Setting Value

The first uniform component, converted into a

0x0ab, bits [31:16] 16-hit floating-point number.

For details on converting the first and second uniform component of dmp_Texture[3] .ptTexBias,
dmp_Texture[3].ptNoiseU, and dmp_Texture[3].ptNoiseV, see section 5.9.2 Converting
from float32 to float16.

The third uniform component of dmp_Texture[3] .ptNoiseU and dmp_Texture[3] -ptNoiseV

is converted into a 16-bit fixed-point number in which the most significant bit indicates the sign and is
followed by three integer bits and 12 fractional bits, respectively. Negative values are represented in

two’s complement. For details on converting into this format, see section 5.9.10 Converting a 32-Bit

Floating-Point Number into a 16-Bit Signed Fixed-Point Number with 12 Fractional Bits.

5.8.20.5 Lookup Table Settings for Procedural Textures

This section describes settings specific to the reserved uniforms
dmp_Texture[3].ptSampler{RgbMap,AlphaMap,NoiseMap,R,G,B,A}. There are four types
of lookup table data for procedural textures: RGB-mapping F functions, alpha-mapping F functions,
noise-modulation functions, and color. Each table has a different number of elements. The following
table shows the registers used for each setting.

Table 5-32 Registers That Configure Lookup Tables for Procedural Textures

Setting Register Description

0xO0af, bits [7:0] Specifies the index at which to set data in the lookup table.

Specifies the type of lookup table for which to set data.
¢ 0: Noise-modulation functions

e 2: RGB-mapping F functions

3: Alpha-mapping F functions

4: Color (color values)

5: Color (difference values)

OxO0af, bits [11:8]

0x0b0-0x0b7, bits [31:0] | Sets the lookup table data.

Use bits [11:8] of Ox0af to select the type of lookup table to configure. If you want to configure more
than one type of lookup table, you must change the table type in this same register each time before
setting data in each individual table. Use bits [7:0] of Ox0af to specify the index of the data to set. An
index value of 0 indicates the start of the lookup table and 1 indicates the second element.

Although only the three bits [10:8] of OxOaf are needed to specify values from 0 through 5, you must
always specify O for bit [11:11] because this bit is enabled by the hardware implementation. The
lookup table cannot be set correctly if the value of bit [11:11] is 1.

Set lookup table data anywhere between 0x0b0 and Ox0b7. When data is written, it updates the
content of the lookup table at the specified index. The index is incremented by one for each data
element that is written. Results are the same regardless of where you write data between 0x0b0 and
0x0b7. A value of 1 must be written to bit [10:10] of register 0x80 (to enable procedural textures)

© 2009-2011 Nintendo 105 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

when you set a value in registers 0xOb0—0x0b7. If bit [10:10] of register 0x80 is 0, attempts to set
registers 0xOb0O-0x0b7 are ignored.

The format and size of data to write to the lookup table varies with the lookup table type.

Lookup Tables for RGB-Mapping F Functions, Alpha-Mapping F Functions, and Noise
Modulation Functions

The lookup table for RGB-mapping F functions uses data loaded by the gl TexImagelD function for
the lookup table object bound to the lookup table number specified by
dmp_Texture[3] .ptSamplerRgbMap.

Similarly, the lookup table for alpha-mapping F functions uses data from the lookup table object
specified by dmp_Texture[3] -ptSamplerAlphaMap, and the lookup table for noise modulation
functions uses data from the lookup table object specified by

dmp_Texture[3] -ptSamplerNoiseMap. There are 128 data items in the lookup table, and the
index in OxO0af bits [7:0] can specify values from 0 to 127.

The data to write to index i of the lookup table is a value that packs the "™ and (i+128)"h element of
the 256 data elements loaded by the gl TexImagelD function. Convert the i"™" data element into a
12-bit unsigned fixed-point number with 12 fractional bits and write it to bits [11:0]. Convert the
(i+128)’th data element into a 12-bit signed fixed-point number with 11 fractional bits and write it to

bits [23:12].

For details on converting 12-bit unsigned fixed-point numbers with 12 fractional bits, see section
5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point Number with 12
Fractional Bits.

For a 12-bit signed fixed-point number with 11 fractional bits, the most significant bit indicates the sign
and is followed by 11 fractional bits. Negative values are represented in two’s complement. For more
details on converting into this format, see section 5.9.7 Converting a 32-Bit Floating-Point Number
into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits (Alternate Method).

Color Lookup Tables

Color lookup tables use data loaded by the gl TexImagelD function on the lookup table object bound
to the lookup table number specified by dmp_Texture[3] -ptSampler{R,G,B,A}. The color value
and delta value halves of lookup tables both contain 256 data items, and the index in OxOaf bits [7:0]
can specify values from 0 to 255.

A packed value (the color value) is written to index i of a color lookup table using the i data

element (of a maximum of 512) loaded by the gl TexImagelD function for each RGBA color channel.
The first 256 elements (of 512) are used. The it floating-point number between 0 and 1 is mapped
to an integer between 0 and 255, and then data is written with the R, G, B, and A components in bits
[7:0], [15:8], [23:16], and [31:24], respectively. For more details on this conversion, see section 5.9.16
Converting a 32-Bit Floating-Point Number (0-1) into an 8-Bit Unsigned Integer.

yth

A packed value (the delta value) is written to index 1 of a color lookup table using the (256+1)"" data

element (of a maximum of 512) loaded by the gl TexImagel1D function for each RGBA channel. The

CTR-06-0006-001-D 106 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

last 256 elements (of 512) are used. The (i+256) o floating-point number is converted into an 8-bit
signed fixed-point number with 7 fractional bits and then data is written with the R, G, B, and A
components in bits [7:0], [15:8], [23:16], and [31:24], respectively. For each of these values, the most
significant bit indicates the sign and is followed by 7 fractional bits. Negative values are represented
in two’s complement. For details on this conversion, see section 5.9.5 Converting a 32-Bit Floating-
Point Number into an 8-Bit Signed Fixed-Point Number with 7 Fractional Bits.

5.8.20.6 Texture Resolution

The following table shows registers that set the width and height of textures.

Table 5-33 Registers That Set the Texture Resolution

Setting Register

Description

0x82, bits [26:16]

Texture 0's width

0x82, bits [10:0]

Texture 0’s height

0x92, bits [26:16]

Texture 1's width

0x92, bits [10:0]

Texture 1's height

0x9a, bits [26:16]

Texture 2's width

0x9a, bits [10:0]

Texture 2’s height

5.8.20.7 Texture Formats

The following table shows registers that set the texture format.

Table 5-34 Registers for Texture Format Settings

Setting Register

Description

0x83, hits [5:4]

Configures texture 0’s format using the following values.
e 0: Any value except GL_ETC1_RGB8_NATIVE_DMP
e 2:GL_ETC1_RGB8_ NATIVE_DMP

0x93, hits [5:4]

Configures texture 1's format using the same values as bits [5:4] of 0x83.

0x9b, bits [5:4]

Configures texture 2’s format using the same values as bits [5:4] of 0x83.

0x8e, bits [3:0]

Sets the following values corresponding to the Format and type arguments to the

glTexImage2D function and the internal format argument to the
glCompressedTexImage2D function for texture 0.

e 0:GL_RGBA and GL_UNSIGNED_BYTE; GL_SHADOW_DMP and GL_UNSIGNED_INT; or

GL_GAS_DMP and GL_UNSIGNED_SHORT
e 1:GL_RGB, GL_UNSIGNED_BYTE
e 2:GL_RGBA, GL_UNSIGNED_SHORT 5 5 5 1
e 3:GL_RGB, GL_UNSIGNED_SHORT 5 6 5
e 4:GL_RGBA, GL_UNSIGNED_SHORT 4 4 4 4
e 5:GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE

© 2009-2011 Nintendo
CONFIDENTIAL

107

CTR-06-0006-001-D

Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Register

Description

e 6:GL_HILOS DMP, GL_UNSIGNED_BYTE

e 7:GL_LUMINANCE, GL_UNSIGNED_BYTE

e 8:GL_ALPHA, GL_UNSIGNED_BYTE

e 9:GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE_4_4 DMP
e 10: GL_LUMINANCE, GL_UNSIGNED_4BITS_DMP

e 11: GL_ALPHA, GL_UNSIGNED_4BITS_DMP

e 12:GL_ETC1_RGB8_NATIVE_DMP

e 13:GL_ETC1_ALPHA_RGBS_ A4 NATIVE_DMP

(The native formats use the same setting values as the corresponding non-native formats
above.)

0x96, bits [3:0]

Configures texture 1's format using the same values as bits [3:0] of Ox8e.

0x9e, bits [3:0]

Configures texture 2's format using the same values as bits [3:0] of Ox8e.

5.8.20.8 Texture WRAP Modes

The following table shows registers that set texture WRAP modes.

Table 5-35 Registers for Texture WRAP Mode Settings

Setting Register

Description

0x83, hits [14:12]

Sets the following values for texture 0's GL_TEXTURE_WRAP_S parameter.
e 0:GL_CLAMP_TO_EDGE

e 1:GL_CLAMP_TO_BORDER

e 2:GL_REPEAT

3: GL_MIRRORED_REPEAT

0x83, bits [10:8]

Sets a value for texture 0's GL_TEXTURE_WRAP_T parameter using the same settings as
bits [14:12] of 0x83.

0x93, hits [14:12]

Sets a value for texture 1's GL_TEXTURE_WRAP_S parameter using the same settings as
bits [14:12] of 0x83.

0x93, bits [10:8]

Sets a value for texture 1's GL_TEXTURE_WRAP_T parameter using the same settings as
bits [14:12] of 0x83.

0x9b, bits [14:12]

Sets a value for texture 2's GL_TEXTURE_WRAP_S parameter using the same settings as
bits [14:12] of 0x83.

0x9b, bits [10:8]

Sets a value for texture 2's GL_TEXTURE_WRAP_T parameter using the same settings as
bits [14:12] of 0x83.

5.8.20.9 Texture Filter Modes

The following table shows registers that set texture filter modes.

CTR-06-0006-001-D
Released: May 13, 2011

108 © 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Table 5-36 Registers for Texture Filter Mode Settings

Setting Register

Description

0x83, bit [1:1]

Sets the following values for texture 0's GL_TEXTURE_MAG_FILTER parameter.
e 0: GL_NEAREST
e 1:GL_LINEAR

0x83, hit [2:2]

Sets the following values for texture 0's GL_TEXTURE_MIN_FILTER parameter.
e 0: GL_NEAREST, GL_NEAREST_MIPMAP_XXX
e 1:GL_LINEAR, GL_LINEAR_MIPMAP_XXX

0x83, hit [24:24]

Sets the following values for texture 0's GL_TEXTURE_MIN_FILTER parameter.
e 0: GL_NEAREST, GL_LINEAR, GL_XXX_MIPMAP_NEAREST
e 1: GL_XXX_MIPMAP_LINEAR

0x93, bit [1:1]

Sets a value for texture 1's GL_TEXTURE_MAG_FILTER parameter using the same settings
as bit [1:1] of 0x83.

0x93, hit [2:2]

Sets a value for texture 1's GL_TEXTURE_MIN_FILTER parameter using the same settings
as hit [2:2] of 0x83.

0x93, hit [24:24]

Sets a value for texture 1's GL_TEXTURE_MIN_FILTER parameter using the same settings
as bit [24:24] of 0x83.

0x9Db, bit [1:1]

Sets a value for texture 2's GL_TEXTURE_MAG_FILTER parameter using the same settings
as bit [1:1] of Ox83.

0x9b, hit [2:2]

Sets a value for texture 2's GL_TEXTURE_MIN_FILTER parameter using the same settings
as hit [2:2] of 0x83.

0X9b, bit [24:24]

Sets a value for texture 2's GL_TEXTURE_MIN_FILTER parameter using the same settings
as bit [24:24] of 0x83.

5.8.20.10 Texture Level of Detail

The following table shows registers that configure texture level of detail (LOD) settings.

Table 5-37 Registers for Texture LOD Settings

Setting Register

Description

0x84, bits [27:24]

Sets the minimum LOD for texture 0.

This is 0 when the GL_TEXTURE_MIN_FILTER parameter is configured to not use LOD
(GL_LINEAR or GL_NEAREST).

This is the value of GL_TEXTURE_MIN_LOD (or O if GL_TEXTURE_MIN_LOD < 0) when the
GL_TEXTURE_MIN_FILTER parameter is configured to use LOD (GL_XXX_MIPMAP_XXX).

0x84, bits [19:16]

Sets the maximum LOD for texture O.

This is 0 when the GL_TEXTURE_MIN_FILTER parameter is configured to not use LOD
(GL_LINEAR or GL_NEAREST).

This is one less than the number of mipmap levels loaded by the gl TexImage2D or
glCompressedTexImage2D function when the GL_TEXTURE_MIN_FILTER parameter is
configured to use LOD (GL_XXX_MIPMAP_XXX).

0x94, bits [27:24]

This sets the minimum LOD for texture 1 in the same way as bits [27:24] of 0x84.

© 2009-2011 Nintendo
CONFIDENTIAL

109 CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Register

Description

0x94, bits [19:16]

This sets the maximum LOD for texture 1 in the same way as bits [19:16] of 0x84.

0x9c, hits [27:24]

This sets the minimum LOD for texture 2 in the same way as bits [27:24] of 0x84.

0x9c, hits [19:16]

This sets the maximum LOD for texture 2 in the same way as bits [19:16] of 0x84.

5.8.20.11 Texture Border Color

The following table shows registers that set the texture border color.

Table 5-38 Registers for Texture Border Color Settings

Setting Register

Description

0x81, bits [31:0]

Sets the border color for texture 0. Each value set by the GL_TEXTURE_BORDER_COLOR
parameter is first converted according to the method described in section 5.9.17 Alternate
Conversion from a 32-Bit Floating-Point Number (0-1) into an 8-Bit Unsigned Integer. The
red, green, blue, and alpha components are then set in bits [7:0], [15:8], [23:16], and
[31:24], respectively.

0x91, bits [31:0]

Sets the border color for texture 1 in the same way as bits [31:0] of 0x81.

0x99, bits [31:0]

Sets the border color for texture 2 in the same way as bits [31:0] of 0x81.

5.8.20.12 Registers for Texture LOD Bias Settings

The following table shows registers that set texture LOD biases.

Table 5-39 Registers for Texture LOD Bias Settings

Setting Register

Description

0x84, bits [12:0]

Sets the LOD bias for texture 0. This is converted from the value set for the
GL_TEXTURE_LOD_BIAS parameter according to the method described in section 5.9.8
Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 8
Fractional Bits.

0x94, bits [12:0]

Sets the LOD bias for texture 1 in the same way as bits [12:0] of 0x84.

0x9c, bits [12:0]

Sets the LOD bias for texture 2 in the same way as bits [12:0] of 0x84.

5.8.20.13 Shadow Texture Settings

When shadow textures are in use, GL_ TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T apply the
GL_CLAMP_TO_BORDER setting for 2D textures and the GL_CLAMP_TO_EDGE setting for cube map
textures, regardless of the values set by the gl TexParameter function. GL_TEXTURE_MAG_FILTER
and GL_TEXTURE_MIN_FILTER apply the GL_L INEAR setting for both 2D textures and cube map
textures. Shadow textures cannot use mipmaps.

Bit [20:20] of register 0x83 is also set equal to 1 (the same bit is 0 for formats other than shadow

textures).

CTR-06-0006-001-D
Released: May 13, 2011

110

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.8.20.14 Gas Texture Use Settings

When gas textures are in use, GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T apply the
GL_CLAMP_TO_EDGE setting regardless of the values set by the gl TexParameter function.
GL_TEXTURE_MAG_FILTER and GL_TEXTURE_MIN_FILTER apply the GL_NEAREST setting. Gas
textures cannot use mipmaps.

5.8.20.15Clearing the Texture Caches

All texture caches (both Level 1 and Level 2) are cleared when 1 is written to bit [16:16] of register
0x80. The caches must be cleared when texture unit settings are changed but they do not need to be
cleared when textures continue to be used with the same settings.

The texture caches must be cleared when any of the registers 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a,
0x95, or 0x9d are modified (these registers set texture addresses), and when texture data has been
loaded. The caches must also be cleared when the texture format is modified, even if the texture
address and data itself does not change.

Each texture unit has a Level 1 (L1) texture cache. To clear it, the texture unit must be enabled. In
other words, texture units must be enabled by bits [2:0] of register 0x80 before a value of 1 is written
to bit [16:16] of register 0x80.

Even though register 0x80 holds the bits that are used to enable and disable texture units as well as
the bit that is used to clear the texture caches, a single command cannot both enable texture units
that are disabled and properly clear the texture caches. A separate command must be set to enable
textures before the command that clears the texture caches.

If texture units are already enabled, however, a single command can disable those texture units and
properly clear the texture caches.

5.8.21 Registers for Gas Settings

This section describes settings registers specific to gas features.
5.8.21.1 Gas-Related Reserved Uniform Settings

The following table shows register settings specific to gas reserved uniforms.

Table 5-40 Registers for Gas Settings

Uniform Setting Register Setting Value

Each uniform component is converted into an 8-bit
integer between 0 and 255. The first, second, and
third components are written to bits [7:0], [15:8], and
[23:16], respectively.

dmp_Gas. lightXY 0x120, bits [23:0]

Each uniform component is converted into an 8-bit

. . integer between 0 and 255. The first, second, and

) 0x121, bits [23:0] third components are written to bits [7:0], [15:8], and
dmp_Gas.lightZ [23:16], respectively.

The fourth uniform component is converted into an

0x122, bits [7:0] 8-bit integer between 0 and 255 before it is set.

© 2009-2011 Nintendo 111 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Uniform Setting Register Setting Value

The uniform value is converted into a 24-bit
dmp_Gas.deltaZ 0x126, bits [23:0] | unsigned fixed-point number with 8 fractional bits
before it is set.

The uniform value is converted into a 16-bit floating-

dmp_Gas . acchax 0x0e5, bits [15:0] point number before it is set.
dmp_Gas.attenuation 0x0e4, bits [15:0] Thg uniform value is pqnverted into a 16-bit floating-
point number before it is set.
e GL_GAS_DENSITY_DMP
dmp_Gas.colorLutlnput 0x122, bit [8:8]

GL_GAS_LIGHT _FACTOR_DMP

GL_GAS_PLAIN_DENSITY_DMP

dmp_Gas.shadingDensitySrc 0x0e0, bit [3:3] e GL GAS DEPTH DENSITY DMP

This setting is cleared to 0 before density
information is rendered and is updated by
dmp_Gas.autoAcc 0x125, bits [15:0] | nngxSetGasAutoAccumulationUpdate after
density information is rendered. For details, see the
description of this uniform following the table.

The uniform values for dmp_Gas. IightXY and dmp_Gas. lightZ are floating-point numbers
between 0 and 1; they are converted (mapped) into 8-bit integers between 0 and 255 before they are
set. For more information on how to convert these numbers, see section 5.9.16 Converting a 32-Bit
Floating-Point Number (0-1) into an 8-Bit Unsigned Integer.

The value of the dmp_Gas . deltaZ uniform is converted into a 24-bit unsigned fixed-point number
with 8 fractional bits before it is set. For more information on how to convert these numbers, see
section 5.9.15 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number
with 8 Fractional Bits.

The uniform values for dmp_Gas .accMax and dmp_Gas.attenuation are converted into 16-bit
floating-point numbers (with a 1-bit sign, 5-bit exponent, and 10-bit mantissa) before they are set. For
more information on how to convert these numbers, see section 5.9.2 Converting from float32 to
float16.

The value of dmp_Gas.autoAcc must be set differently from other formats. To implement
dmp_Gas.autoAcc, set bits [15:0] of register 0x0e5 equal to the maximum value for the additive
blend result D1, which is automatically calculated when gas density information is rendered. The
maximum value of the additive blend result D1 is cleared to 0 before density information is rendered.
You can clear this value by writing 0 to bits [15:0] of register 0x125 (the value is initialized by the
contents of this register). After density information has been rendered, use the
nngxSetGasAutoAccumulationUpdate function to apply the maximum value of the additive blend
result D1, which is automatically calculated, to bits [15:0] of register 0x0e5. For more details, see
section 3.3.24 Updating Additive Blend Results Rendered with Gas Density Information.

5.8.21.2 Shading Lookup Table Settings

This section describes shading lookup table settings. The shading lookup table has 16 data elements.
Data loaded by the gl TexImagelD function is set in the lookup table objects bound to the lookup

CTR-06-0006-001-D 112 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

table numbers specified by the reserved uniforms dmp_Gas.sampler{TR, TG, TB} for each RGB
channel. The following table shows the registers used to set values.

Table 5-41 Registers That Set the Shading Lookup Table

Setting Register Description

0x123, bits [15:0] | Specifies the lookup table index for which to set data.

0x124, bits [31:0] | Sets the lookup table data.

Bits [15:0] of register 0x123 specify the lookup table index. There are 16 data elements in the lookup
table, so valid specifiable index values range from 0 to 15.

Lookup table data is set by 0x124. When data is written, it updates the content of the lookup table at
the specified index. The index is incremented by one for each data element that is written. The first
and last eight elements of the lookup table are set differently.

For the first eight elements, a packed value is written to index i (i < 8) using the (i+8)"h of 16 data
units loaded by the gl TexImagelD function for each RGB channel. Data is converted into an 8-bit
signed integer for each RGB component. The R, G, and B components are written to bits [7:0], [15:8],
and [23:16], respectively. For more information on how to convert these numbers, see section 5.9.18
Converting a 32-Bit Floating-Point Number [-1, 1] into an 8-Bit Signed Integer.

For the last eight elements, a packed value is written to index i (i >= 8) using the (i —8)’th of 16 data
units loaded by the gl TexImagelD function for each RGB channel. The RGB components are
multiplied by 255 and then converted into 8-bit unsigned fixed-point numbers with no fractional bits.
The R, G, and B components are written to bits [7:0], [15:8], and [23:16], respectively. For more
information on how the numbers are converted after they are multiplied by 255, see section 5.9.11
Converting a 32-Bit Floating-Point Number into an 8-Bit Unsigned Fixed-Point Number with No
Fractional Bits.

Dummy commands are sometimes required before commands that set the gas shading lookup table.
Specifically, 45 dummy commands are necessary before the gas shading lookup table can be set
immediately following a command that sets registers 0x100—-0x13T, registers 0x0—-0x35, or any
other register address not mentioned in this document. Any command that sets a register other than
the ones just mentioned can be used as a dummy command. A single dummy command that uses a
byte enable setting of 0 is also required for register 0x100 following a command that sets the shading
lookup table.

A value of 7 must have been written to bits [2:0] of register 0x0e0 when you set register 0x124.
Attempts to set register 0x124 are ignored when bits [2:0] of register 0x0e0 have a value other
than 7.

© 2009-2011 Nintendo 113 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.8.22 Fog Setting Registers

This section describes register settings specific to fog features.
5.8.22.1 Fog-related Reserved Uniform Settings

The table below shows the register settings specific to reserved uniforms for fog.

Table 5-42 Fog Setting Registers

Uniform Setting Register Setting Value

dmp_Fog.mode | ox0e0, bits [2:0] e 0:GL_FALSE
e 5:GL_FOG
e 7:GL_GAS_DMP

dmp_Fog.color | oxpe1, bits [23:0] Each element of the uniform is converted to an 8-bit integer value
from O to 255, with the first element stored in bits [7:0], the second
element in bits [15:8], and the third element in bits [23:16].

dmp_Fog.-zFlip | ox0e0, bits [16:16] |* O:GL_FALSE
e 1:GL_TRUE

The dmp_Fog.color uniform value is set by mapping the floating point values in the [0, 1] range to
8-bit integers in the [0, 255] range. See section 5.9.16 Converting a 32-Bit Floating-Point Number (0—
1) into an 8-Bit Unsigned Integer for details on the conversion method.

5.8.22.2 Fog Lookup Table Settings

This section describes the fog lookup table settings. The fog lookup table contains 128 pieces of data.
The data loaded by the gl TexImagelD function is set to the lookup table object bound to the lookup
table number specified by the dmp_Fog.sampler reserved uniform. The table below shows the
registers used for these settings.

Table 5-43 Fog Lookup Table Setting Registers

Setting Register Description

0x0e6, bits [15:0] Specifies the index of the lookup table to which data is set.

0x0e8-0x0ef, bits [23:0] | Sets lookup table data.

Set the lookup table index in register 0x0e6, bits [15:0]. There are 128 data values in the lookup table,
so valid specifiable index values range from 0 to 127.

Set the lookup table data anywhere in registers 0x0e8 through 0x0e¥f. Writing the data updates the
location within the lookup table pointed to by the index. The index is incremented by one every time a
unit of data is written. Data may be written anywhere in registers 0x0e8 through 0x0ef.

The data written to index i is the ith data unit of the 256 units of data loaded by the gl TexImagelD
function packed together with the (i + 128)th data unit. The ith data unit is converted to an 11-bit
unsigned fixed-point with 11 fractional bits, which is then written to bits [23:13], while the (i + 128)th
data unit is converted to a 13-bit signed fixed-point with 11 fractional bits, which is then written to bits
[12:0].

CTR-06-0006-001-D 114 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

See section 5.9.12 Converting a 32-Bit Floating-Point Number into an 11-Bit Unsigned Fixed-Point
Number with 11 Fractional Bits for details on conversion to an 11-bit unsigned fixed-point number with
11 fractional bits.

For a 13-bit signed fixed-point number with 11 fractional bits, the most significant bit indicates the sign
and is followed by 1 integer bit and 11 fractional bits, respectively. See section 5.9.9 Converting a 32-
Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 11 Fractional Bits for details
on conversion to a 13-bit signed fixed-point number with 11 fractional bits.

5.8.23 Fragment Operation Setting Registers

The table below shows the register settings specific to reserved uniforms for fragment operations.

Table 5-44 Fragment Operation Setting Registers

Setting

Ul o Register

Setting Value

dmp_FragOperation.mode | 0x100, bits [1:0] | ¢ O: GL_FRAGOP_MODE_GL_DMP
e 1:GL_FRAGOP_MODE_GAS_ACC_DMP
e 3:GL_FRAGOP_MODE_SHADOW_DMP

The values described in section 5.8.28 Framebuffer Access Control Setting Registers must also be
changed when register values are changed for this uniform.

5.8.24 Shadow Attenuation Factor Setting Registers

The table below shows the register settings for reserved uniforms specific to shadow attenuation
factors.

Table 5-45 Shadow Attenuation Factor Setting Register

Uniform Register Settings

dmp_FragOperation.penumbraScale | gx130, bits [31:0] | The sign for
dmp_FragOperation.penumbraScale is
reversed, then that value is converted to a 16-bit
floating-point value (with 1 bit as the sign, 5 bits
as the exponent, and 10 bits as the significand),
which is then written to bits [31:16].

dmp_FragOperation.penumbraBias
The sum of

dmp_FragOperation.penumbraScale and
dmp_FragOperation.penumbraBias is
converted to a 16-bit floating-point value (with the
same format as above), which is then written to
bits [15:0].

See section 5.9.2 Converting from float32 to float16 for details on conversion to a 16-bit floating-point
value.

© 2009-2011 Nintendo 115 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.8.25 w Buffer Setting Registers

The following table shows the register settings specific to reserved uniforms for the w buffer.

Table 5-46 w Buffer Setting Registers

Uniform Register Settings

0x6d, bits [0:0] If uniform value is O, value set to 1; if uniform value is not
0, value set to 0.

0x4d, bits [23:0] | These bits set the scale value for the z clip coordinate;
they are configured by the uniform value and the
glDepthRangef setting. For more details, see the

dmp_FragOperation.wScale explanation following this table.

Ox4e, bits [23:0] | These bits set the bias value for the z clip coordinate;
they are configured by the uniform value and the
glDepthRangef and glPolygonOffset settings. For
more details, see the explanation following this table.

The value set in bits [23:0] of register 0x4d has its sign reversed when the
dmp_FragOperation._wScale uniform value is nonzero. These bits are set equal to (zNear -
zFar), using the zNear and zFar arguments to the g IDepthRangef function, when the
dmp_FragOperation.wScale uniform value is 0. The actual values set in the registers are first
converted into 24-bit floating-point numbers (with a single sign bit, a 7-bit exponent, and a 16-bit
mantissa).

Bits [23:0] of register Ox4e are set equal to 0 when the dmp_FragOperation.wScale uniform
value is nonzero. These bits are set equal to the zNear argument to the glDepthRangef function
when the dmpFragOperation.wScale uniform value is 0. If polygon offset is enabled (g1Enable
is called with GL_POLYGON_OFFSET_FILL as an argument), the offset calculated from the units
argument to the glPolygonOffset function is added to the value set in bits [23:0] of register Ox4e.
The value added by the polygon offset depends on the depth buffer format: it is units/65535 for a
16-bit depth buffer and units/16777215 for a 24-bit depth buffer. These values are converted into
24-bit floating-point numbers (with a single sign bit, 7-bit exponent, and 16-bit mantissa) before being
set in the register.

See section 5.9.1 Converting from float32 to float24 for details on conversion to a 24-bit floating-point
value.

CTR-06-0006-001-D 116 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.8.26 User Clip Setting Registers

The table below shows the register settings specific to reserved uniforms for user clipping.

Table 5-47 User Clip Setting Registers

Setting

Ul o Register

Setting Value

dmp_FragOperation.enableClippingPlane 0x47, bits [0:0] e 0:GL_FALSE
e 1:GL_TRUE

0x48, bits [23:0] | Value is the first element of the uniform
converted to a 24-bit floating-point
value.

0x49, bits [23:0] | Value is the second element of the
uniform converted to a 24-bit floating-
point value.

dmp_FragOperation.clippingPlane
Ox4a, bits [23:0] | Value is the third element of the uniform
converted to a 24-bit floating-point
value.

Ox4b, bits [23:0] | Value is the fourth element of the
uniform converted to a 24-bit floating-
point value.

See section 5.9.1 Converting from float32 to float24 for details on conversion to a 24-bit floating-point
value.

5.8.27 Alpha Test Setting Registers

The table below shows the register settings specific to reserved uniforms for alpha tests.

Table 5-48 Alpha Test Setting Registers

Uniform Setting Register Setting Value

dmp_FragOperation.enableAlphaTest 0x104, bits [0:0] e 0:GL_FALSE
e 1:GL_TRUE

dmp_FragOperation.alphaTestFunc 0x104, bits [6:4] e 0: GL_NEVER

: GL_ALWAYS

: GL_EQUAL

- GL_NOTEQUAL
:GL_LESS

: GL_LEQUAL

: GL_GREATER

- GL_GEQUAL

[]
~N o ok WN PP O

dmp_FragOperation.alphaRefValue | 0x104, bits [15:8] | Value is the uniform value mapped to an 8-
bit integer in the [0, 255] range.

See section 5.9.16 Converting a 32-Bit Floating-Point Number (0-1) into an 8-Bit Unsigned Integer for
details on the dmp_FragOperation.alphaRefValue conversion method.

© 2009-2011 Nintendo 117 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.8.28 Framebuffer Access Control Setting Registers

This section describes the registers for setting the framebuffer read-write access controls. These
might need to be changed when changing other registers specific to certain functions and reserved
uniforms.

Table 5-49 Framebuffer Access Control Setting Registers

Setting

Register Setting Value

0x112, bits [3:0] | Value set to OxOf if color buffer reads are required, and set to 0 if reads are not required.
Color buffer reads are required if any of the following conditions are met.

e Avalue other than GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode
reserved uniform.

e The glColorMask function defines one or more components as writable, and the
glEnable function has enabled GL_BLEND.

e The glColorMask function defines one or more components as writable, and one or
more components as not writable.

e The glColorMask function defines one or more components as writable, and the
glEnable function has enabled GL_COLOR_LOGIC_OP.

0x113, bits [3:0] | Value set to 0xOf if color buffer writes are required, and set to 0 if writes are not required.
Color buffer writes are required if any of the following conditions are met.

e Avalue other than GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode
reserved uniform.

e The glColorMask function defines one or more components as writable.

0x114, bits [1:0] | Bit [1:1] set to 1 if depth buffer reads are required, and bit [0:0] set to 1 if stencil buffer reads
are required. Set to O if not required.

Depth buffer reads are required if any of the following conditions are met.

e GL_FRAGOP_MODE_GAS_ACC_DMP is set in the dmp_FragOperation.mode reserved
uniform.

e GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform,
the glEnable function has enabled GL_DEPTH_TEST, and GL_TRUE was set for the
glDepthMask function.

e GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform,
the glEnable function has enabled GL_DEPTH_TEST, and the glColorMask function
defines one or more components as writable.

Stencil buffer reads are required if any of the following conditions are met.

e GL_FRAGOP_MODE_GAS_ACC_DMP is set in the dmp_FragOperation.mode reserved
uniform.

e GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform,
the glEnable function has enabled GL_STENCIL_TEST, and a value other than 0 was
set for the gl Stenci IMask function.

e GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform,
the glEnable function has enabled GL_STENCIL_TEST, and the glColorMask function
defines one or more components as writable.

0x115, bits [1:0] | Bit [1:1] set to 1 if depth buffer writes are required, and bit [0:0] set to 1 if stencil buffer writes
are required. Set to O if not required.

Depth buffer writes are required if all of the following conditions are met.
e GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform.
e The glEnable function has enabled GL_DEPTH_TEST.

CTR-06-0006-001-D 118 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting
Register

Setting Value

e GL_TRUE was set for the glDepthMask function.

Stencil buffer writes are required if all of the following conditions are met.
e GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform.

e The glEnable function has enabled GL_STENCIL_TEST.
e Avalue other than 0 is set for the gl Stenci IMask function.

The hardware does not support certain combinations of read and write access to the color, depth, and
stencil buffers. Behavior is undefined if any of these unsupported combinations are set. See the

following table for more information on which combinations are supported.

Table 5-50 Combinations of Framebuffer Access Control Setting Registers

0x112, Bits [3:0] 0x113, Bits [3:0] 0x114, Bits [1:0] 0x115, Bits [1:0] Supported?
0 0 0 0 No
Nonzero 0 0 0 No
0 Nonzero 0 0 Yes
Nonzero Nonzero 0 0 Yes
0 0 Nonzero 0 No
Nonzero 0 Nonzero 0 No
0 Nonzero Nonzero 0 Yes
Nonzero Nonzero Nonzero 0 Yes
0 0 0 Nonzero No
Nonzero 0 0 Nonzero No
0 Nonzero 0 Nonzero No
Nonzero Nonzero 0 Nonzero No
0 0 Nonzero Nonzero Yes
Nonzero 0 Nonzero Nonzero No
0 Nonzero Nonzero Nonzero Yes
Nonzero Nonzero Nonzero Nonzero Yes

When access to the color, depth, and stencil buffers is needed, set the bits of registers 0x112, 0x113,
0x114, and 0x115 shown above to 1, and when access is not needed, clear these bits to 0. Because

memory access is limited when these bits are 0, performance should improve. Accordingly, we
recommend setting these bits to 0 whenever possible.

The settings for the various per-fragment operations determine whether or not access to the buffers is
needed. The following table describes the conditions that must be met by the per-fragment operations

© 2009-2011 Nintendo
CONFIDENTIAL

119

CTR-06-0006-001-D

Released: May 13, 2011

DMPGL 2.0 System API Specifications

register settings in order to set the bits above to 0 and disable read and/or write access to the various

buffers.

Table 5-51 Conditions for Disabling Access to the Framebuffer

Setting Register

Conditions Under Which It Is Possible to Set These Bits to O

0x112, bits [3:0]

(color buffer read
access)

Either Conditions 1 or 2 must be met, and Conditions 3 and 4 must always both
be met.

Condition 1: If bit [8:8] of 0x100 is 1, the settings for bits [19:16], [23:20],
[27:24], and [31:28] of 0x101 must be among the following:
0x0: GL_ZERO

Ox1: GL_ONE

0x2: GL_SRC_COLOR

0x3: GL_ONE_MINUS_SRC_COLOR

0Ox6: GL_SRC_ALPHA

Ox7: GL_ONE_MINUS_SRC_ALPHA

OxA: GL_CONSTANT_COLOR

OxB: GL_ONE_MINUS_CONSTANT_COLOR

OXxC: GL_CONSTANT_ALPHA

OxD: GL_ONE_MINUS_CONSTANT_ALPHA

OXE: GL_SRC_ALPHA SATURATE

(If blending is enabled, the DST color is not looked up.)

Condition 2: If bit [8:8] of 0x100 is 0, the setting for bits [3:0] of 0x102 must be
among the following:

0x0: GL_CLEAR

0x3: GL_COPY

Ox4: GL_SET

O0x5: GL_COPY_INVERTED

(If logical operations are enabled, the DST color is not looked up.)

Condition 3: Bits [11:8] of 0x107 must be 0 or OxT.
(The color write mask is all Os or all 1s.)

Condition 4: Bits [1:0] of 0x100 must be O.

(The per-fragment operations mode is
GL_FRAGOP_MODE_GL_DMP.)

0x113, bits [3:0]

(Color buffer write
access)

Conditions 1 and 2 must always both be met.

Condition 1: Bits [11:8] of 0x107 must be O.
(The color write mask is all 0s.)

Condition 2: Bits [1:0] of 0x100 must be O.

(The per-fragment operations mode is
GL_FRAGOP_MODE_GL_DMP.)

0x114, bit [1:1]

(Depth buffer read
access)

Either Conditions 1 or 2 must be met, and Condition 3 must be met.
Alternatively, Condition 4 (by itself) must be met.

Condition 1: Bit [0:0] of 0x107 must be 0.
(Depth testing is disabled.)

Condition 2: The settings for bits [6:4] of 0x107 must be among the following:
0x0: GL_NEVER

CTR-06-0006-001-D
Released: May 13, 2011

120 © 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting Register Conditions Under Which It Is Possible to Set These Bits to O
Ox1: GL_ALWAYS
(The depth test function does not need the depth buffer value.)

Condition 3: Bits [1:0] of 0x100 must be 0.

(The per-fragment operations mode is
GL_FRAGOP_MODE_GL_DMP.)

Condition 4: Bits [1:0] of 0x100 must be set to 3.
(The per-fragment operations mode is GL_FRAGOP_MODE_SHADOW_DMP.)

0x114, bit [0:0] Conditions 1, 2, or 3 must be met, and Condition 4 must be met.
(Stencil buffer read Alternatively, Condition 5 (by itself) must be met.
access)

Condition 1: Bit [0:0] of 0x105 must be 0.
(Stencil testing is disabled.)

Condition 2: The settings for bits [6:4] of 0x105 must be among the following:
0x0: GL_NEVER

Ox1: GL_ALWAYS

(The stencil test function does not need the stencil buffer value.)

Condition 3: Bits [31:24] of 0x105 must be 0.

(During the stencil test, the mask used in a bitwise AND operation with the
stencil value is 0. As a result, the stencil buffer values are not used.)

Condition 4: Bits [1:0] of 0x100 must be 0.

(The per-fragment operations mode is
GL_FRAGOP_MODE_GL_DMP.)

Condition 5: Bits [1:0] of 0x100 must be set to 3.
(The per-fragment operations mode is GL_FRAGOP_MODE_SHADOW_DMP.)

When Condition 4 above is met and the combination of settings for bits [6:4],
[23:16], and [31:24] of 0x105 causes the stencil buffer value to have no effect on
the stencil test results, it is possible to disable read access.

Example: Bits [6:4] of 0x105 are set to 5 and bits [23:16] of 0x105 are 0 (the
func argument of the gl Stenci IFunc function is GL_LEQUAL and the ref
argument is 0).

0x115, bit [1:1] Conditions 1, 2, or 3 must be met.
(Depth buffer write
access) Condition 1: Bit [0:0] of 0x107 must be 0.

(Depth testing is disabled.)

Condition 2: Bit [12:12] of 0x107 must be 0.
(Depth mask is GL_FALSE.)

Condition 3: Bits [1:0] of 0x100 must be set to a nonzero value.
(The per-fragment operations mode is not GL_FRAGOP_MODE_GL_DMP.)

0x115, bit [0:0] Conditions 1, 2, 3, or 4 must be met.
(Stencil buffer write
access) Condition 1: Bit [0:0] of 0x105 must be 0.
© 2009-2011 Nintendo 121 CTR-06-0006-001-D

CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Register Conditions Under Which It Is Possible to Set These Bits to O
(Stencil testing is disabled.)

Condition 2: Bits [15:8] of 0x105 must be 0.
(The stencil mask is 0.)

Condition 3: Bits [2:0], [6:4], and [10:8] of 0x106 are all 0: GL_KEEP.
(Stencil buffer value does not change as a result of the stencil test.)

Condition 4: Bits [1:0] of 0x100 must be set to a nonzero value.
(The per-fragment operations mode is not GL_FRAGOP_MODE_GL_DMP.)

When making settings in line with the above conditions, you must use the supported combinations
that are shown in Table 5-50 Combinations of Framebuffer Access Control Setting Registers.

Even if the various fragment operations are set to generate buffer writes, if the buffer’s write access is
disabled, the buffer writes will not occur. Likewise, even if the various fragment operations are set to
generate buffer reads, if the buffer’s read access is disabled, the value that is read will be undefined.

5.8.29 Viewport Setting Registers

The following table shows register settings specific to the viewport.

Table 5-52 Viewport Setting Registers

Setting

Function Setting Register Setting Value
. . The result of dividing width by 2 as a floating-point number and then
Ox41, bits [23:0] converting the quotient into a 24-bit floating-point number.
. . The result of dividing 2 by width, converting the quotient into a 31-bit
0x42, bits [31:0] floating-point number, and finally shifting the value left by 1 bit.
0x43, bits [23:0] The result of dividing height by 2 as a floating-point number and then
glViewport ’ ' converting the quotient into a 24-bit floating-point number.

The result of dividing 2 by height, converting the quotient into a 31-bit

Ox44, bits [31:0] floating-point number, and finally shifting the value left by 1 bit.

0x68, bits [9:0] Sets x.

0x68, bits [25:16] Sets y.

For details on the conversion used for setting registers 0x41 and 0x43, see section 5.9.1 Converting
from float32 to float24. For details on the conversion used for setting registers 0x42 and 0x44, see
section 5.9.3 Converting from float32 to float31.

When changing these settings, you may also need to change Scissoring Setting Registers (see
section 5.8.35) in the same way.

5.8.30 Depth Test Setting Registers

The following table shows register settings related to depth tests.

CTR-06-0006-001-D 122 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Table 5-53 Depth Test Setting Registers

Setting Function

Setting Register

Setting Value

glEnable/glDisable
(GL_DEPTH_TEST);

0x107, bit [0:0]

e 0: Disable depth tests
e 1: Enable depth tests

glDepthFunc

0x107, bits [6:4]

Corresponds to the func argument:

e 0:GL_NEVER

o 1:GL_ALWAYS

: GL_EQUAL

: GL_NOTEQUAL
:GL_LESS

: GL_LEQUAL

: GL_GREATER
: GL_GEQUAL

~N o O~ WON

0x126, bits [25:24]

Corresponds to the func argument:

e 0: GL_NEVER

e 1:GL_ALWAYS

e 2: GL_GREATER or GL_GEQUAL
e 3: Other

glDepthMask

0x107, bit [12:12]

Corresponds to the flag argument:

e 0:GL_FALSE
e 1:GL_TRUE

Bits [25:24] of register 0x126 affect the additive blending distribution D2 when rendering gas density

information. Bits [25:24] of register 0x126 do not affect the behavior of the standard depth test.

When changing these settings, you may also need to change the Framebuffer Access Control Setting
Registers (see section 5.8.28) in the same way.

5.8.31 Logical Operation and Blend Setting Registers

Logical operations and blending share setting registers. The following table shows register settings

specific to logical operations and blending.

Table 5-54 Logical Operation and Blend Setting Registers

Setting Function

Setting Register

Setting Value

glEnable/glDisable
(GL_COLOR_LOGIC_OP);

glEnable/glDisable
(GL_BLEND);

0x100, bit [8:8]

e 1: Enable blending

o 0: Enable logical operations

You cannot enable both logical operations and
blending. Logical operations are given priority when
both are enabled by the glEnable function. This is set
equal to 1 when both are disabled.

© 2009-2011 Nintendo
CONFIDENTIAL

123

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Function Setting Register Setting Value

When blending is disabled, this is set equal to 1. When
blending is enabled, the following values are set by the
sfactor or srcRGB argument.

e 0:GL_ZERO

: GL_ONE

: GL_SRC_COLOR

: GL_ONE_MINUS_SRC_COLOR
:GL_DST_COLOR

: GL_ONE_MINUS_DST_COLOR

: GL_SRC_ALPHA2

: GL_ONE_MINUS_SRC_ALPHA

- GL_DST_ALPHA

: GL_ONE_MINUS_DST_ALPHA

e 10: GL_CONSTANT_COLOR

e 11: GL_ONE_MINUS_CONSTANT_COLOR
glBlendFuncSeparate o 12: GL_CONSTANT_ALPHA

e 13: GL_ONE_MINUS_CONSTANT_ALPHA
e 14: GL_SRC_ALPHA_SATURATE

0x101, bits [19:16] |

[]
© 0 N O 0o A W N P

glBlendFunc

When blending is disabled, this is set equal to 0. When
blending is enabled, the dfactor or dstRGB
argument sets a value in the same way as bits [19:16]
of 0x101.

0x101, bits [23:20]

When blending is disabled, this is set equal to 1. When
blending is enabled, the sfactor or srcAlpha
argument sets a value in the same way as bits [19:16]
of 0x101.

0x101, bits [27:24]

When blending is disabled, this is set equal to 0. When
blending is enabled, the dfactor or dstAlpha
argument sets a value in the same way as bits [19:16]
of 0x101.

0x101, bits [31:28]

When blending is disabled, this is set equal to 0. When
blending is enabled, the following values are set by the
mode and modeRGB arguments.

e 0: GL_FUNC_ADD

0x101, bits [20] |4 1:GL_FUNC_SUBTRACT
giBlendEquation e 2:GL_FUNC_REVERSE_SUBTRACT
glBlendEquationSeparate e 3:GL_MIN
o 4:GL_NAX

When blending is disabled, this is set equal to 0. When
blending is enabled, the mode or modeAlpha
argument sets a value in the same way as bits [2:0] of
0x101.

0x101, bits [10:8]

CTR-06-0006-001-D 124 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting Function

Setting Register

Setting Value

glBlendColor

0x103, bits [7:0]

The value set for the red argument is clamped
between 0 and 1 and then the floating-point number is
mapped to an integer between 0 and 255. For more
details on this conversion, see section 5.9.16
Converting a 32-Bit Floating-Point Number (0-1) into
an 8-Bit Unsigned Integer.

0x103, bits [15:8]

The green argument sets a value in the same way as
bits [7:0] of 0x103.

0x103, bits [23:16]

The blue argument sets a value in the same way as
bits [7:0] of 0x103.

0x103, bits [31:24]

The alpha argument sets a value in the same way as
bits [7:0] of 0x103.

glLogicOp

0x102, bits [3:0]

Corresponds to the opcode argument.
e 0:GL_CLEAR

: GL_AND

: GL_AND_REVERSE

: GL_COPY

:GL_SET

: GL_COPY_INVERTED
: GL_NOOP

. GL_INVERT

: GL_NAND

:GL_OR

e 10: GL_NOR

e 11:GL_XOR

e 12:GL_EQUIV

e 13: GL_AND_INVERTED
e 14:GL_OR_REVERSE

e 15: GL_OR_INVERTED

[]
© 00 N O OB~ WN P

When changing these settings, you may also need to change the Framebuffer Access Control Setting
Registers (see section 5.8.28) in the same way. Attempts to set register 0x101 are ignored when

logical operations are enabled.

5.8.32 Early Depth Test Setting Registers

The following table shows register settings specific to early depth tests.

Table 5-55 Early Depth Test Setting Registers

Setting Function

Setting Register

Setting Value

glEnable/glDisable

(GL_EARLY_DEPTH_TEST_DMP);

0x62, hit [0:0]

0: Disable early depth tests
1: Enable early depth tests

0x118, bit [0:0]

0: Disable early depth tests
1: Enable early depth tests

© 2009-2011 Nintendo
CONFIDENTIAL

125

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Function

Setting Register Setting Value

Corresponds to the func argument:

e 0:GL_GEQUAL
glEar lyDepthFuncDMP 0x61, bits [1:0] e 1:GL_GREATER
e 2:GL_LEQUAL
e 3:GL_LESS
glClearEarlyDepthDMP Ox6a, bits [23:0] | Sets the value of the depth argument unchanged.
gIClear 0x63, bit [0:0] Set when GL_EARLY_DEPTH_BUFFER_BIT_DMP is

cleared.

When changing these settings, you may also need to change the Depth Test Setting Registers (see
section 5.8.30) and Framebuffer Access Control Setting Registers (see section 5.8.28) in the same

way.

5.8.33 Stencil Test Setting Registers

The following table shows register settings specific to stencil tests.

Table 5-56 Stencil Test Setting Registers

Setting Function

Setting Register

Setting Value

glEnable/glDisable
(GL_STENCIL_TEST);

0x105, bit [0:0]

e 0: Disable stencil tests
e 1: Enable stencil tests

glStenci IMask

0x105, bits [15:8]

Sets the least significant 8 bits of the mask argument.

glStencilFunc

0x105, bits [6:4]

Corresponds to the func argument:
0:
: GL_ALWAYS

: GL_EQUAL

: GL_NOTEQUAL
:GL_LESS

: GL_LEQUAL

: GL_GREATER

: GL_GEQUAL

~N o g b~ WN P

GL_NEVER

0x105, bits [23:16]

Sets the value of the ref argument unchanged.

0x105, bits [31:24]

Sets the value of the mask argument unchanged.

CTR-06-0006-001-D
Released: May 13, 2011

126

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting Function Setting Register Setting Value

Corresponds to the fai l argument:
e 0: GL_KEEP

: GL_ZERO

: GL_REPLACE

:GL_INCR

: GL_DECR

: GL_INVERT

: GL_INCR_WRAP

: GL_DECR_WRAP

.
[]
0x106, bits [2:0] o
.
.

glStencilOp

~N OO oA WN P

The zfai |l argument sets a value in the same way as bits

0x106, bits [6:4] [2:0] of 0x106.

The zpass argument sets a value in the same way as bits

0x106, bits [10:8] [2:0] of 0x106.

When changing these settings, you may also need to change the Framebuffer Access Control Setting
Registers (see section 5.8.28) in the same way.

5.8.34 Culling Setting Registers

The following table shows register settings specific to culling.

Table 5-57 Culling Setting Registers

Setting Function Setting Register Setting Value
When culling is disabled, a value of 0 is set.
glEnable/glDisable When culling is enabled, a value of 2 is set in either of the
(GL_CULL_FACE); following cases and a value of 1 is set otherwise.
0x40, bits [1:0] e The glCullFace function is GL_FRONT and the
glcullFace glFrontFace function is GL_CW
glFrontFace e The glCul IFace function is GL_BACK and the

glFrontFace function is GL_CCW

5.8.35 Scissoring Setting Registers

The following table shows register settings specific to scissoring.

Table 5-58 Scissoring Setting Registers

Setting Function Setting Register Setting Value
glEnable/glDisable) ' ¢ 0: Disable scissoring
(GL_SCISSOR_TEST); | 0X6% bits [1:0] e 3: Enable scissoring
© 2009-2011 Nintendo 127 CTR-06-0006-001-D

CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Function Setting Register Setting Value

When scissoring is disabled, a value of 0 is set.

When scissoring is enabled, the value of the x argument is
0x66, bits [9:0] set. When x is greater than or equal to the current color buffer
width, however, a value that is one less than the color buffer
width is set. When X is negative, a value of 0 is set.

When scissoring is disabled, a value of 0 is set.

When scissoring is enabled, the value of the y argument is
0x686, bits [25:16] | set. When y is greater than or equal to the current color buffer
height, however, a value that is one less than the color buffer
height is set. When y is negative, a value of 0 is set.

When scissoring is disabled, one less than the current color
buffer width is set.

; . When scissoring is enabled, (x+width-1) is set. When that
0x67, bits [9:0] .)
value is greater than or equal to the current color buffer width,

however, a value that is one less than the color buffer width is
set. When (x+width-1) is negative, a value of O is set.

glScissor

When scissoring is disabled, one less than the current color
buffer height is set.

When scissoring is enabled, (y+height-1) is set. When
0x67, bits [25:16] | that value is greater than or equal to the current color buffer
height, however, a value that is one less than the color buffer
height is set. When (y+height-1) is negative, a value of 0
is set.

5.8.36 Color Mask Setting Registers

The following table shows register settings specific to color masks.

Table 5-59 Color Mask Setting Registers

Function Register Values

Corresponds to the red argument:
0x107, bit [8:8] e 0: GL_FALSE
e 1:GL_TRUE

Corresponds to the green argument:
0x107, bit [9:9] e 0:GL_FALSE

e 1:GL_TRUE
glColorMask

Corresponds to the blue argument:
0x107, bit [10:10] | e O0: GL_FALSE
e 1:GL_TRUE

Corresponds to the alpha argument:
0x107, bit [11:11] | e O0: GL_FALSE
e 1:GL_TRUE

When changing these settings, you may also need to change the Framebuffer Access Control Setting
Registers (see section 5.8.28) in the same way.

CTR-06-0006-001-D 128 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.8.37 Block Format Setting Registers

The following table shows register settings specific to the block format for rendering.

Table 5-60 Block Format Setting Registers

Setting

Setting Function Register

Setting Value

e 0: GL_RENDER_BLOCK8_MODE_DMP

glRenderBlockModeDMP | Ox11b, bit [0:0] e 1:GL RENDER BLOCK32 MODE DMP

5.8.38 Settings Registers Specific to the Rendering API

The rendering functions, glDrawElements and glDrawArrays, validate every state and thus
generate register-setting commands related to each state. In addition to generating commands during
validation, the rendering functions set registers required for rendering itself. The following sections
explain these register settings.

5.8.38.1 With the Vertex Buffer in Use

This section describes the registers set by the rendering APl when the vertex buffer is in use. All
commands must be set before the rendering kick command unless you have some reason to set
them in a different order.

Table 5-61 Register Settings Related to the Rendering API (if the Vertex Buffer Is in Use)

Setting Setting Register Setting Value

Set to 1 if the mode argument to the glDrawElements
and/or gIDrawArrays functions is GL_TRIANGLE_STRIP,
to 2 ifitis GL_TRIANGLE_FAN, and to 3 ifitis
GL_GEOMETRY_PRIMITIVE_DMP.

0x25e, bits [9:8] Set to 0 if the mode argument to glDrawArrays is
GL_TRIANGLES. Set to 3 if the mode argument to
glDrawElements is GL_TRIANGLES.

This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.

Rendering mode Set to 1 when both the gIDrawElements function is in use
and the mode argument is GL_TRIANGLES. Cleared to O
0x229, bit [8:8] otherwise. This does not need to be set per every rendering
operation. It need only be reset when the setting has
changed.

Set to 1 when both the gIDrawElements function is in use
and the mode argument is GL_TRIANGLES. Clearedto O
0x253, bit [8:8] otherwise. This does not need to be set per every rendering
operation. It need only be reset when the setting has
changed.

© 2009-2011 Nintendo 129 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Setting Register Setting Value

Cleared to 0 when the gIDrawElements function is the
rendering function and set to 1 when the gIDrawArrays
function is the rendering function. This bit is cleared to O
when nngxInitialize is called, so thisis only setto 1
Rendering function indicator | 0x253, bit [0:0] before a rendering kick when glDrawArrays is used, and
immediately after the kick it is cleared to 0.

When this bit is set to 1, register settings outside of register
ranges 0x200 through 0x254 and 0x280 through Ox2df
are sometimes not properly executed.

Specifies the address offset of the vertex index array. This
is the offset from the common vertex array base address
set by bits [28:1] of register 0x200. This register’s value is
configured so that when it is added to the product of 16 and
the value of bits [28:1] of register 0x200, it is equal to the
sum of the vertex buffer address allocated by the
glBufferData function and the indices argument to the
glDrawElements function.

When glDrawArrays is in use, 0x20 is written here if
either of the following conditions are met.

If bits [31:0] of register 0x228 have a value larger than

Vertex index address 0x227, bits [27:0] 0x10, the condition that must be met is:

((bits [31:0] of 0x228 - 0x10) x2 + (bits [28:1] of
0x200«4)) &0xfff 2 0xfel

If bits [31:0] of register 0x228 have a value of 0x10 or
smaller, the condition that must be met is:

(bits [28:1] of 0x200«4) &0xfff = 0xfeOl

A value of 0 is written here in all other cases.

This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.

Set to 1 when the type argument to the glDrawElements
function is GL_UNSIGNED_SHORT and 0 when the same
argument is GL_UNSIGNED_BYTE.

Set to 1 when the gIDrawArrays is in use.

This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.

Vertex index type 0x227, bit [31:31]

Sets the number of vertices to render.

Vertex count 0x228, bits [31:0] | This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.

Sets the value of the First argument for the
glDrawArrays function.

Starting vertex offset 0x22a, bits [31:0] .]]
This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.
CTR-06-0006-001-D 130 © 2009-2011 Nintendo

Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting Setting Register Setting Value

Writing a value of 1 to this bit resets the information that
indicates each vertex’s index (0, 1, or 2) in the triangles that
it forms.

No settings are required when the rendering mode is
GL_GEOMETRY_PRIMITIVE_DMP.

No settings are required when the glDrawElements
function is called in GL_TRIANGLES mode. A reset is not
required for consecutive calls—except for the first—to the
Vertex information reset 0x25fF, bit [0:0] glDrawArrays function in GL_TRIANGLES mode if and
only if the gIDrawElements function is not called and the
number of rendered vertices is a multiple of 3. However, a
reset is required after rendering in some other mode, after
rendering with the glDrawElements function, and when
the gIDrawArrays function is called for the first time after
the nngxInitialize function.

In GL_TRIANGLE_STRIP or GL_TRIANGLE_FAN mode, a
reset is required per each rendering kick command.

Writes a value of 1 to an arbitrary bit when rendering starts

0x22e with the gIDrawArrays function.

Rendering kick command
Writes a value of 1 to an arbitrary bit when rendering starts

Ox22F with the gIDrawE lements function.

Writes a value of 1 to an arbitrary bit immediately after a
Post-vertex cache clear 0x231 rendering kick command. Must be set per each rendering
kick command.

Writes a value of 1 immediately after a rendering kick
Framebuffer cache flush 0x111, bit [0:0] command. See Clearing the Framebuffer Cache for details
on the setting conditions.

Set to 1 for the texture to enable immediately before a
rendering kick command, then set to 0 immediately after the
rendering kick command. Setting to 0 helps reduce power
consumption, so this process ensures that the value is set
Texture enabling 0x80, bits [2:0] to O at all times when not rendering.

Leaving the value always set to 1 for an enabled texture
does not cause any operation problems. See section
5.8.20.2 Setting the Texture Sampler Type for details on
each bit.

Set to 1 when the nngxInitialize function is called.
Rendering is not performed properly when this is set to 1.
When this is 0, settings commands to registers 0x2b0—
0x2df are not applied correctly.

Both the gIDrawElements and glDrawArrays functions
0x245, bit [0:0] generate commands to clear this bit to 0 immediately before
the rendering kick command and then return it to 1

Other registers immediately afterward.

If no settings commands to registers 0x2b0-0x2df are
used after the rendering kick command, it causes no
problems to leave this bit cleared to 0.

_ These bits require two commands to clear them to 0
0x25e, bits [31:24] | immediately after rendering kick commands. This is
required per each rendering kick command. These

© 2009-2011 Nintendo 131 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Setting Register Setting Value

commands are dummy commands and the exact value they
set has no meaning.

Write these bits to a value of Ox7FFF after a rendering kick
command. Running this command just after rendering
completes helps to reduce power consumption. Not setting
these bits does not cause any operation problems.

Set byte enable with Oxc, so as to have no effect on bits
[15:0].

Bit [0:0] of register 0x245 must be set to 1 before this
command.

0Ox2ba, bits [31:16]

Write these bits to a value of Ox7FFT after a rendering kick
command. Running this command just after rendering
completes helps to reduce power consumption. Not setting
these bits does not cause any operation problems.

Set byte enable with Oxc, so as to have no effect on bits
0x28a, bits [31:16] | [15:0].

When the pipeline is set not to use geometry shaders (bit
[0:0] of register 0x244 is 0 and bits [1:0] of register 0x229
are 0), the setting of bits [31:16] of register Ox2ba includes
this command’s setting, making this command
unnecessary.

Note: Cautions About Command Dependencies:

Bits [31:16] of register Ox2ba must be set only after bit [0:0] of register 0x245 is set. When bit
[0:0] of register 0x253 has been set to 1, register settings outside of register ranges 0x200
through 0x254 and 0x280 through Ox2d¥ are sometimes not properly executed. Set the
registers in these ranges only while bit [0:0] of register 0x253 has been set to 0. However, this
restriction does not apply to the dummy commands for bits [31:24] of register 0x25e.

There are several other commands that must always be set immediately after a rendering kick
command, but these other commands have no ordering dependencies.

5.8.38.2 Without the Vertex Buffer in Use

When the vertex buffer is not used, the vertex data is itself input through registers. The following table
shows how register settings change when the vertex buffer is not used. Vertex attribute data
commands are handled the same way as rendering kick commands. All commands must be set
before the vertex attribute data command unless you have some reason to use a different order.

Table 5-62 Register Settings Related to the Rendering API (when the Vertex Buffer Is Not in

Use)

Setting Setting Register Setting Value
Set to 0 if the mode argument to the glDrawElements
or glDrawArrays function is GL_TRIANGLES, to 1 if it

. . . is GL_TRIANGLE_STRIP, to 2 ifitis
Rendering mode Ox25e, bits [9:8] GL_TRIANGLE_FAN, or to 3 if it is
GL_GEOMETRY_PRIMITIVE_DMP.
This does not need to be set per every rendering
CTR-06-0006-001-D 132 © 2009-2011 Nintendo

Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting Setting Register Setting Value

operation. It need only be reset when the setting has
changed.

Set to 0. This does not need to be set per every

0x229, bit [8:8] rendering operation.

Set to 0. This does not need to be set per every

0x253, bit [8:8] rendering operation.

Whether the function called was gIDrawElements or
glDrawArrays, this bit is set to 1 before a vertex
attribute data command and then cleared to O after the
command.

This bit is cleared to 0 when nngxInitializeis
Rendering function indicator | 0x253, bit [0:0] called, so this is set to 1 before a vertex attribute data
command, and immediately after the vertex attribute
data command it is cleared to O.

When this bit is set to 1, register settings outside of
register ranges 0x200 through 0x254 and 0x280
through Ox2df are sometimes not properly executed.

Vertex index address 0x227, bits [27:0] This setting is ignored.
Vertex index type 0x227, bit [31:31] This setting is ignored.
This setting is ignored. The number of vertices to
Vertex count 0x228, bits [31:0] process is determined by the number of vertex attribute
data items.
Starting vertex offset 0x22a, bits [31:0] This setting is ignored.

When rendering in GL_TRIANGLES mode without
using a vertex buffer, if either the glDrawElements or
glDrawArrays function is called repeatedly and the
number of rendered vertices is a multiple of 3, reset is
not required after the first call. However, reset is
required when rendering in GL_TRIANGLES mode for
the first time without using a vertex buffer in the
Vertex data reset 0x257, bit [0:0] following situations: (1) after rendering in another
mode, (2) after glDrawElements is called using a
vertex buffer, or (3) after nngxInitialize is called.
The behavior of the other rendering modes
(GL_GEOMETRY_PRIMITIVE_DMP,
GL_TRIANGLE_STRIP, and GL_TRIANGLE_FAN) is
the same in this situation as the behavior of
GL_TRIANGLES when using a vertex buffer.

0x22e This setting is prohibited.
Rendering kick command
0x22f This setting is prohibited.
Enable slave input 0x232, bits [3:0] Set to OxF.
© 2009-2011 Nintendo 133 CTR-06-0006-001-D

CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Setting Register Setting Value

Sets vertex attribute data. This command is set after
OxF is written to bits [3:0] of 0x232. Data for each
single vertex is stored in order one attribute at a time.
All vertex attribute data is stored regardless of whether
vertex arrays are used.
0x233, 0x234, and A single qttribute packs four 24-bi't floating-point
0x235.bits [31:0] _numbers into three 32-bit data units, w_hlch are _stored
! in 0x233, 0x234, and 0x235, respectively. A single
attribute is input by writing the data in 0x233, 0x234,
and 0x235 one at a time (in that order). The 24-bit
floating-point numbers are packed as described in
section 5.8.2.3 How to Set the Input Mode for 24-Bit
Floating-Point Numbers.

Vertex attribute data

Post-vertex cache clear 0x231 Same as when the vertex buffer is used.
Framebuffer cache flush 0x111, bit [0:0] Same as when the vertex buffer is used.
Texture enabling 0x80, bits [2:0] Same as when the vertex buffer is used.
0x245, bit [0:0] Same as when the vertex buffer is used.
Other registers Ox2ba, bits [31:16] Same as when the vertex buffer is used.
0x28a, bits [31:16] Same as when the vertex buffer is used.

When not using the vertex buffer, you do not need to set the registers described in section 5.8.14
Registers for Vertex Attribute Array Settings. Command-ordering dependencies are the same as
when using the vertex buffer.

5.8.39 Settings Registers Specific to the Geometry Shader

This section describes settings registers when the geometry shader is in use.
5.8.39.1 Overview

There are multiple vertex shader processors installed on PICA for vertex processing. One of these
vertex shader processors is used as the geometry shader processor when a geometry shader is in
use. This is called a shared processor. When a geometry shader is not in use, the shared processor
runs as a vertex shader processor and floating-point registers, Boolean registers, and other resources
are set as vertex shader values. The vertex shader values must be changed to geometry shader
settings when the geometry shader switches from being unused to used. Similarly, geometry shader
values must be changed to vertex shader settings when the geometry shader switches from being
used to unused.

Registers 0x2b0-0x2df are the settings registers used for vertex shader processors. Setting one of
these registers sets it for all of the vertex shader processors. These settings also apply to the shared
processor except when bit [0:0] of register 0x244 is set equal to 1 (when the same bit is 0 and bits
[1:0] of Ox229 are 0, settings for the vertex shader processors are also applied to the shared
processor). Registers 0x280-0x2af are used to apply the same settings as registers 0x2b0-0x2dF
to the shared processor only.

CTR-06-0006-001-D 134 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

When the geometry shader is in use, registers 0x280—0x2af are configured to be geometry shader-
specific. When the geometry shader is not in use, registers 0x280—-0x2af must have the same
settings as registers 0x2b0-0x2af. (You can also set bit [0:0] of register 0x244 equal to 0 and bits
[1:0] of 0x229 equal to 0, applying vertex shader processor settings to the shared processor, before
you re-set registers 0x2b0-0x2d¥.)

To use the geometry shader, you need to set these register settings related to the shared processor
as well as other register settings related to input, output, and so on.

5.8.39.2 Geometry Shader Floating-Point Registers

To configure the geometry shader’s floating-point registers, first set bits [7:0] of register 0x290 equal
to a floating-point register index and then write data to any registers between registers 0x291 and
0x298. Depending on whether a value of 1 or 0 is written to bit [31:31] of 0x290, the input mode is
set to accept either 32-bit or 24-bit floating-point numbers, respectively. This is configured as
described in section 5.8.2 Vertex Shader Floating-Point Registers.

5.8.39.3 Geometry Shader Boolean Registers

Bits [15:0] of register 0x280 correspond to the geometry shader’s Boolean registers. These are set
as described in section 5.8.3 Vertex Shader Boolean Registers.

5.8.39.4 Geometry Shader Integer Registers

Registers 0x281, 0x282, 0x283, and 0x284 correspond to 10, i1, i2, and i3, respectively. These
are set as described in section 5.8.4 Vertex Shader Integer Registers.

5.8.39.5 Geometry Shader Starting Address Setting Registers

Bits [15:0] of register 0x28a set the geometry shader’s starting address. These are set as described
in section 5.8.5 Vertex Shader Starting Address Setting Registers.

5.8.39.6 Registers That Set the Number of Input Vertex Attributes

Bits [3:0] of register 0x289 set a value that is one less than the number of input vertex attributes to
the geometry shader. The number of attributes input to the geometry shader is the same as the
number of attributes output by the vertex shader (including generic attributes). The number of
attributes set in this register is equal to the number of unique output registers specified in #pragma
output_map statements in the vertex shader assembly code, not the number of #pragma
output_map statements that appear in the vertex shader assembly code. If a given output register is
specified in multiple #pragma output_map statements used for each of its separate components, it

is still only counted as one.
5.8.39.7 Registers That Set the Number of Output Registers Used by the Geometry Shader

The registers described in section 5.8.7 Registers That Set the Number of Output Registers Used by
the Vertex Shader are set differently when the geometry shader is in use. Bits [2:0] of register Ox4F
set the number of output registers for the geometry shader. Bits [3:0] of register 0x25e set a value
that is one less than the number of output registers used by the geometry shader. The number of
output registers is the number of unique output registers specified in #pragma output_map
statements appearing in the geometry shader assembly code. If a given output register is specified in

© 2009-2011 Nintendo 135 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

multiple #pragma output_map statements used for each of its separate components, it is still only
counted as one.

5.8.39.8 Register That Sets the Geometry Shader Output Register Mask

A bit mask is used to set the output registers written by the geometry shader. Bits [15:0] of register
0x28d each correspond to one of the 16 output registers. These are set as described in section 5.8.8
Registers That Set the Vertex Shader Output Mask.

5.8.39.9 Registers That Set Geometry Shader Output Attributes

When a geometry shader is in use, the registers described in section 5.8.9 Registers That Set Vertex
Shader Output Attributes—0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, and 0x64—set the
attributes of vertices output by the geometry shader instead of the vertex shader.

The #pragma output_map settings defined in the geometry shader determine the geometry
shader’s output attributes. This information is generated in the map file that is created by the shader
assembly linker (for details on the map file, see the Vertex Shader Reference Manual). Several
reserved geometry shaders define generic attributes as output_map attributes. The #pragma
output_map settings that are only defined in the linked vertex shaders are applied to the attributes
defined as generic attributes (excluding generic attributes defined by the vertex shader).

5.8.39.10 Clock Control Setting Registers for Geometry Shader Output Attributes

When a geometry shader is in use, register OX6¥ (described in section 5.8.10 Clock Control Setting
Registers for Vertex Shader Output Attributes) sets the attributes of vertices output by the geometry
shader instead of those output by the vertex shader.

5.8.39.11 Geometry Shader Program Code Setting Registers
The following table shows registers that are used to load swizzle pattern data and program code

executed by the geometry shader.

Table 5-63 Geometry Shader Program Code and Swizzle Pattern Data Settings Registers

Setting Register Description

0x29Db, bits [11:0] Sets the load address for program code.

0x29c-0x2a3, bits [31:0] | Sets program code data.

0x28f Notification that a program update has completed.

0x2ab, bits [11:0] Sets the load address for the swizzle pattern.

0x2a6-0x2ad, bits [31:0] | Sets swizzle pattern data.

Subtracting 0x30 from the addresses of the registers described in section 5.8.11 Vertex Shader
Program Code Setting Registers gives the geometry shader registers, which are set the same way.

5.8.39.12 Registers That Map Vertex Attributes to Geometry Shader Input Registers

These set the input register map for vertex attributes input to the geometry shader as described in
section 5.8.12 Registers That Map Vertex Attributes to Input Registers. Fixed values are set when a

CTR-06-0006-001-D 136 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

reserved geometry shader is used. Set register 0x28b equal to 0x76543210, and register 0x28c
equal to OxFedcba98.

5.8.39.13 Miscellaneous Registers

The following registers must also be set when a geometry shader is in use.

Table 5-64 Miscellaneous Settings Registers When the Geometry Shader Is in Use

Setting Register Description

Set to 2 when a geometry shader is in use and 0 when it is not. When you set this
register, dummy commands are required both before and after the setting command. Use
inactive commands whose byte enable bits are 0 as the dummy commands. A command
0x229, bits [1:0] that sets this register must be immediately preceded by 10 dummy commands that set
register 0x251 and 30 dummy commands that set register 0x200, and immediately
followed by 30 dummy commands that set register 0x200. Dummy commands are not
needed for any command that sets bits other than bits [1:0] of register 0x229.

Set to 1 when reserved geometry shader subdivision (Loop or Catmull-Clark) is used.

0x229, bit [31:31] Set to 0 when any other geometry shader is used or when a geometry shader is not
used.

Set to 0x00000001 when reserved geometry shader subdivision (Loop or Catmull-Clark)
is used.
0x252, bits [31:0] Set to 0x01004302 when particle systems are used.

Set to 0x00000000 when any other geometry shader is used or a geometry shader is
not used.

Set to Ox08 when a geometry shader is used and 0xa0 when a geometry shader is not

0x289, bits [31:24] | °° |

Set to 1 when reserved geometry shader subdivision (Loop or Catmull-Clark) is used.

0x289, bits [15:8
X ,bits |] Set to 0 when any other geometry shader or no geometry shader is used.

Set to 3 when a reserved geometry shader is used for Catmull-Clark subdivision and 2
0x254, bits [4:0] when a reserved geometry shader is used for Loop subdivision. Otherwise, this setting is
ignored.

5.8.40 Settings Registers When Reserved Geometry Shaders Are Used

This section lists settings registers for the registers described in section 5.8.39 Settings Registers
Specific to the Geometry Shader when each reserved geometry shader is used. It also shows which
register is assigned to the uniform of each reserved geometry shader.

5.8.40.1 Point Shader

The following table shows the register values that should be set when the point shader is used.

Table 5-65 Register Setting Values When the Point Shader Is Used

Setting Register Description

Set equal to the number of output registers defined by #pragma output_map for the

Ox4f, bits [2:0] linked vertex shader, not including generic attributes.

0x50-0x56 Starting at 0x50, which must be set equal to 0x03020100, these registers are filled with

© 2009-2011 Nintendo 137 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Register

Description

the attributes defined by #pragma output_map for the linked vertex shader. The point
size is output as a generic attribute but it does not affect this register. Starting at 0x51,
registers are filled with defined attributes in ascending order of output register indices. For
example, because a point sprite’s vertex coordinates should be followed by texture
coordinates, register 0x51 would be set equal to 0x1F¥1¥0dOc for a definition of #pragma
output_map(textureO, 02.xy). Each byte of unused attributes is filled in using
Ox1f.

0x64

Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

Ox6F

Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

0x229, bit [31:31]

Set equal to 0.

0x242, bits [3:0]

Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x251, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x252

Set equal to 0.

0x254, bits [4:0]

No required settings.

0x25e, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This does not include generic attributes.

0x280, bits [15:0]

Set equal to 0.

0x281, bits [23:0]

No required settings.

0x282, bits [23:0]

No required settings.

0x283, bits [23:0]

No required settings.

0x284, bits [23:0]

No required settings.

0x289, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x289, bits [15:8]

Set equal to 0.

0x289, bits [31:24]

Set equal to 8.

0x28d, bits [15:0]

Set equal to ((1<<N)-1), where N is the number of output registers defined by #pragma
output_map for the linked vertex shader. This does not include generic attributes.

0x290-0x293

Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.

e {0x0000004c, 0x00000000, 0x00003F00, 0x00000000}

CTR-06-0006-001-D
Released: May 13, 2011

138

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

The registers assigned to each uniform are shown in the table below.

Table 5-66: Point Shader Uniforms and Their Corresponding Registers

Uniform Bound Register

dmp_Point.viewport c67.xy

dmp_Point.distanceAttenuation b0

5.8.40.2 Line Shader

The following table shows the register values that should be set when the line shader is used.

Table 5-67 Register Setting Values When Line Shading Is Used

Setting Register Description

Set equal to the number of output registers defined by #pragma output_map for the

Ox4f, bits [2:0] linked vertex shader.

Starting at 0x50, which must be set equal to 0x03020100, these registers are filled with
the attributes defined by #pragma output_map for the linked vertex shader. Starting at

0x50-0x56 0x51, registers are filled with defined attributes in ascending order of output register
indices. Each byte of unused attributes is filled in using Ox1¥.

Ox64 Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

Ox6F Set in accordance with the attributes defined by #pragma output_map for the linked

vertex shader.

0x229, bit [31:31] | Set equal to 0.

Set equal to one less than the number of input vertex attributes to the linked vertex

0x242, bits [3:0] shader

Set equal to one less than the number of output registers defined by #pragma

0x24a, bits [3:0] output_map for the linked vertex shader.

Set equal to one less than the number of output registers defined by #pragma

0x251, bits [3:0] output_map for the linked vertex shader.

0x252 Set equal to 0.

0x254, bits [4:0] No required settings.

Set equal to one less than the number of output registers defined by #pragma

0x25e, bits [3:0] output_map for the linked vertex shader.

0x280, bits [15:0] | Set equal to 0x0000. Bit [15:15] must be set for each draw operation.

0x281, bits [23:0] | No required settings.

0x282, bits [23:0] | No required settings..

0x283, bits [23:0] | No required settings.

© 2009-2011 Nintendo 139 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Register

Description

0x284, bits [23:0]

No required settings.

0x289, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x289, bits [15:8]

Set equal to 0.

0x289, bits [31:24]

Set equal to 8.

0x28d, bits [15:0]

Set equal to ((1<<N)-1), where N is the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x290-0x293

Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.

¢ {0x0000004c, 0x40800040, 0x00003F00, 0x00000000}

The registers assigned to each uniform are shown in the table below.

Table 5-68 Line Shader Uniforms and Their Corresponding Registers

Uniform

Bound Register

dmp_Line.width

C67 .xXyzw

5.8.40.3 Silhouette Shader

The following table shows the register values that should be set when the silhouette shader is used.

Table 5-69 Register Setting Values When the Silhouette Shader Is Used

Setting Register Description
Ox4F, bits [2:0] Set equal to 2.
e Set register 0x50 equal to 0x03020100
0x50-0x56 e Set register 0x51 equal to 0x0b0a0908
e Set registers 0x52-0x56 equal to Ox1F1F1F1f
0x64 Set equal to 0.
Ox6f Set equal to 3.

0x229, bit [31:31]

Set equal to 0.

0x242, bits [3:0]

Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0]

Set equal to 2.

0x251, bits [3:0]

Set equal to 2.

0x252

Set equal to 0.

0x254, bits [4:0]

No required settings.

CTR-06-0006-001-D
Released: May 13, 2011

140

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting Register Description

0x25e, bits [3:0] Set equal to 1.

0x280, bits [15:0] | Set equal to 0x0000. Bit [15:15] must be set for each draw operation.

0x281, bits [23:0] | No required settings.

0x282, bits [23:0] | No required settings.

0x283, bits [23:0] | No required settings.

0x284, bits [23:0] | No required settings.

Set equal to 2 because there are three output attributes for the vertex shader: vertex

0x289, bits [3:0] coordinates, color, and normals.

0x289, bits [15:8] | Set equal to 0.

0x289, bits [31:24] | Set equal to 8.

0x28d, bits [15:0] | Set equal to 3.

Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.

¢ {0x0000004c, 0x40800040, 0x00003F00, 0x00000000}
¢ {0x0000004d, 0x00000000, ,0x00004140, 0x00410000}

0x290-0x293

The registers assigned to each uniform are shown in the table below.

Table 5-70 Silhouette Shader Uniforms and Their Corresponding Registers

Uniform Bound Register
dmp_Silhouette.width c71.xy
dmp_Silhouette.openEdgeDepthBias c7l.z
dmp_Silhouette.color C72.Xyzw
dmp_Silhouette.openEdgeColor C73.XxXyzw
dmp_Silhouette.openEdgeWidth C74.xyzw
dmp_Silhouette.acceptEmptyTriangles b0
dmp_Silhouette.scaleByW bl
dmp_Silhouette.frontFaceCCW b2
dmp_Silhouette.openEdgeWidthScaleByW b3
dmp_Silhouette.openEdgeDepthBiasScaleByW | b4

© 2009-2011 Nintendo 141 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.8.40.4 Catmull-Clark Subdivision

The following table shows the register values that should be set when Catmull-Clark subdivision is

used.

Table 5-71 Register Setting Values When Catmull-Clark Subdivision Is Used

Setting Register

Description

0x4F, bits [2:0]

Set equal to the number of output registers defined by #pragma output_map for the
linked vertex shader.

Starting at 0x50, which must be set equal to 0x03020100, these registers are filled with
the attributes defined by #pragma output_map for the linked vertex shader. Starting at

0x50-0x56 0x51, registers are filled with defined attributes in ascending order of output register
indices. Each byte of unused attributes is filled in using Ox1¥.

0x64 Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

ox6F Set in accordance with the attributes defined by #pragma output_map for the linked

vertex shader.

0x229, bit [31:31]

Set equal to 1.

0x242, bits [3:0]

Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x251, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x252

Set equal to 1.

0x254, bits [4:0]

Set equal to 3.

0x25e, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x280, bits [15:0]

Set equal to 0x0000. Bit [15:15] must be set for each draw operation.

0x281, bits [23:0]

No required settings.

0x282, bits [23:0]

e 0x0212ff for DMP_subdivisionl.obj
e 0x0216ff for DMP_subdivision2.obj
e 0x02l1aff for DMP_subdivision3.obj
e 0x02l1leff for DMP_subdivision4.obj
o 0x0222fF for DMP_subdivision5.0obj
e 0x0226fT for DMP_subdivision6.obj

0x283, bits [23:0]

No required settings.

0x284, bits [23:0]

No required settings.

0x289, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

CTR-06-0006-001-D
Released: May 13, 2011

142

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting Register Description

0x289, bits [15:8] | Set equal to 1.

0x289, bits [31:24] | Set equal to 8.

Set equal to ((1<<N)-1), where N is the number of output registers defined by #pragma

0x284d, bits [15:0] output_map for the linked vertex shader.

Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.

e {0x0000004c, 0x3c80003b, 0x00003c80, 0x003e2000}
e {0x0000004d, 0x0000003e, 0x00003c00, 0x003d8000}
e {0x0000004¢€, 0x4300003d, 0x00003e80, 0x00420000}
¢ {0x0000004f, 0x3c60003c, 0xc8003780, 0x00390000}
¢ {0x00000050, 0x3d0c0039, 0x80003700, 0x003b8000}
e {0x00000051, 0x3cc0003c, 0x70003a60, 0x003c2800}
e {0x00000052, 0x3d16003b, 0x0c003500, 0x003d8000}
¢ {0x00000053, 0x3daaaa39, 0xc71c3c55, 0x55be2aaa}
¢ {0x00000054, 0x3d871c3a, 0x425e3c55, 0x55be3c71}
e {0x00000055, 0x3e200039, 0x00003b80, 0x00bdc000}
¢ {0x00000056, 0x3d940039, Ox8FFF3c04, 0xO00be3600}
0x290-0x293 ¢ {Ox00000057, 0x0000003f, 0x00004180, 0x00cOcO00}
e {0x00000058, 0x00000040, 0x00004230, 0x00c17000}
e {0x00000059, 0x000000c0, 0xc000c350, 0x00428800}
Furthermore,

e Set {0x0000004b, 0x42000041, 0x80004100, 0x00400000} only for
DMP_subdivisionl.obj

¢ Set {0x0000004b, 0x42800042, 0x20004180, 0x00408000} only for
DMP_subdivision2.obj

¢ Set {0x0000004b, 0x43000042, 0x80004200, 0x00410000} only for
DMP_subdivision3.obj

e Set {O0x0000004b, 0x43400042, 0xe0004240, 0x00414000} only for
DMP_subdivision4.obj

e Set {Ox0000004b, 0x43800043, 0x20004280, 0x00418000} only for
DMP_subdivision5.0obj

¢ Set {0x0000004b, 0x43c00043, 0x500042c0, 0x0041c000} only for
DMP_subdivision6.obj

Table 5-72 Catmull-Clark Subdivision Shader Uniforms and Their Corresponding Registers

Uniform Bound Register

dmp_Subdivision. level Cc74.X

dmp_Subdivision.fragmentLightingEnabled | b2

5.8.40.5 Loop Subdivision

The following table shows the register values that should be set when Loop subdivision is used.

© 2009-2011 Nintendo 143 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Table 5-73 Register Setting Values When Loop Subdivision Is Used

Setting Register

Description

0x4f, bits [2:0]

Set equal to the number of output registers defined by #pragma output_map for the
linked vertex shader, not including generic attributes.

Starting at 0x50, which must be set equal to 0x03020100, these registers are filled with
the attributes defined by #pragma output_map for the linked vertex shader. Starting at

0x50-0x56 0x51, registers are filled with defined attributes in ascending order of output register
indices. All generic attributes are ignored, and each byte of unused attributes is filled in
using Ox1f.

0x64 Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

ox6F Set in accordance with the attributes defined by #pragma output_map for the linked

vertex shader.

0x229, bit [31:31]

Set equal to 1.

0x242, bits [3:0]

Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x251, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x252

Set equal to 1.

0x254, bits [4:0]

Set equal to 2.

0x25e, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This does not include generic attributes.

0x280, bits [15:0]

Set equal to 0x0000. Bit [15:15] must be set for each draw operation.

0x281, bits [23:0]

No required settings.

0x282, bits [23:0]

No required settings.

0x283, bits [23:0]

No required settings.

0x284, bits [23:0]

No required settings.

0x289, bits [3:0]

Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x289, bits [15:8]

Set equal to 1.

0x289, bits [31:24]

Set equal to 8.

0x28d, bits [15:0]

Set equal to ((1<<N)-1), where N is the number of output registers defined by #pragma
output_map for the linked vertex shader. This does not include generic attributes.

0x290-0x293

Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.

CTR-06-0006-001-D
Released: May 13, 2011

144

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Setting Register Description

+ {0x00000057, 040800040, 0x00003f00, 0x00000000}
e {0x00000058, 0x3d00003e, 0XO00056FF, OxFF3cO000}
e {0x00000059, 0x3800003d, 0x00003e80, 0x003d3000}
+ {0x0000005a, 0x3ce0003b, 0x00003d80, 0x00390000}
e {0x0000005b, 0x3c60003a, 0x80003b80, 0XxO0000000}
e {0x0000005c, 0x3c98003d, 0x9c003c80, 0x003dc000}
+ {0x0000005d, 0x3de0003e, 0x10003d80, 0x003e4000}

Table 5-74 Loop Subdivision Shader Uniforms and Their Corresponding Registers

Uniform Bound Register

dmp_Subdivision. level Cc86.X

dmp_Subdivision.fragmentLightingEnabled | bO

5.8.40.6 Particle System

The following table shows the register values that should be set when the particle system shader is
used.

Table 5-75 Register Setting Values When the Particle System Shader Is Used

Setting Register Description

0x4T, bits [2:0] Set equal to 3.

e Set register 0x50 equal to 0x03020100
e Set register 0x51 equal to 0x0b0a0908

0x50-0x56 e Set register 0x52 equal to 0x17160d0c when texture coordinate 2 is used or
0x1f1f0dOc otherwise

o Set registers 0x53-0x56 equal to Ox1F1f1F1f

0x64 Set equal to 1.

Ox6T Set equal to 0x00000503 when texture coordinate 2 is used or 0x00000103 otherwise.

0x229, bit [31:31] | Set equal to 0.

Set equal to one less than the number of input vertex attributes to the linked vertex

0x242, bits [3:0] shader

0x24a, bits [3:0] Set equal to 4.

0x251, bits [3:0] Set equal to 4.

0x252 Set equal to 0x01004302.

0x254, bits [4:0] No required settings.

0x25e, bits [3:0] Set equal to 2.

© 2009-2011 Nintendo 145 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Register

Description

0x280, bits [15:0]

Set equal to 0.

0x281, bits [23:0]

No required settings.

0x282, bits [23:0]

No required settings.

0x283, bits [23:0]

No required settings.

0x284, bits [23:0]

Set equal to 0x0100Fe.

0x289, bits [3:0]

Set equal to 4 because there are a total of five output attributes for the vertex shader: the
vertex coordinates and the four bounding-box sizes for the control points.

0x289, bits [15:8]

Set equal to 1.

0x289, bits [31:24]

Set equal to 8.

0x28d, bits [15:0]

Set equal to 0x0007.

0x290-0x293

Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.

{0x0000004c, 0x3F0000bf, 0x00003F00, 0X00000000}
¢ {0x0000004d, 0x40921f3c, 0x45¥34192, 0x1¥3e0000}
{0x0000005d, 0x3F00003f, 0x0000bc55, 0x55be0000}
{0x0000005€, 0x3811113a, 0x5555b2a0, O0x1ab56c16}
{0x0000005F, 0x2c71de2f, OxaOlaa5ae, 0x64a927¢e4}

Table 5-76 Particle System Shader Uniforms and Their Corresponding Registers

Uniform

Bound Register

dmp_PartSys.color

Cc26.xXyzw - €29.xyzw

dmp_PartSys.viewport c30.xy
dmp_PartSys.pointSize c31l.xy
dmp_PartSys.time c3l.z
dmp_PartSys.speed c3l.w
dmp_PartSys.distanceAttenuation c32.xyz
dmp_PartSys.countMax c32.w
dmp_PartSys.randSeed c33.xyzw

dmp_PartSys.aspect

c34.xyzw - c37.Xyzw

dmp_PartSys.randomCore

c38.xyzw

CTR-06-0006-001-D
Released: May 13, 2011

146

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.8.41 Clearing the Framebuffer Cache

Cached data is flushed for both the color buffer and depth buffer if a value of 1 is written to bit [0:0] of
register 0Ox111. The cache tag is cleared for both the color buffer and depth buffer if a value of 1 is
written to bit [0:0] of register 0x110. A 0x110 command must always be accompanied by a Ox111
command, with the 0x111 command first.

These commands are inserted immediately before commands that generate interrupts. Commands
that generate interrupts occur when the glFlush, glFinish, or glClear function is called, when
NN_GX_STATE_FRAMEBUFFER is validated after the color buffer or depth buffer address has changed,
when NN_GX_STATE_FBACCESS is validated, and when the 3D command buffer is split by
nngxSplitDrawCmdl ist or a similar function. In addition to the situations just listed, standalone
0x111 commands are generated by the glDrawArrays and glDrawE lements functions
immediately after a rendering kick command.

In general, a clear operation performed by a 0x111 and 0x110 command pair is required when the
color buffer or depth buffer are cleared, when the color buffer or depth buffer settings (size, address
or format) are changed, and when the read-write access pattern is changed after all rendering has
completed (before referencing the rendering results).

Depending on the series of commands between one render command and the next render command,
a 0x111 command is sometimes necessary between render commands. It is necessary when either
of the following two conditions are met.

Condition 1: When you set any of the registers 0x100 — 0x130 between render command A and the
next render command B, a single 0x111 command is required after render command A and before
the register 0x100 — 0x130 setting commands.

Condition 2: When you set any of the registers 0x80 — 0x0b7 between render command A and the
next render command B, a single 0x111 command is required after render command A and before
the register 0x80 — 0x0b7 setting commands.

For condition 1, as long as you set just one 0x111 command after render command A, you can set
the 0x100 — 0x130 registers any humber of times between the 0x111 command and the next render
command B.

Likewise for condition 2, as long as you set just one 0x111 command after render command A, you
can set the 0x80 — 0x0b7 registers any number of times between the 0x111 command and the next
render command B. But for condition 2, it is also possible to set three 0x80 dummy commands
instead of the 0x111 command. In other words, as long as you set three 0x80 dummy commands
after render command A, you can set the 0x80 — 0x0b7 registers any number of times between the
three dummy commands and the next render command B. These 0x80 dummy commands are
commands that write data of O with a byte enable of O to register 0x80.

If you simply use a command to set register 0x111 immediately after every render command, you
can arrange your commands freely without needing to consider the above two conditions,

© 2009-2011 Nintendo 147 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

5.8.42 Commands That Generate Interrupts (Split Commands)

Writing a value of 0x12345678 to register 0x10 causes a P3D (PICA 3D Module) interrupt to occur.
Set this command when splitting the 3D command buffer.

5.8.43 Command Buffer Execution Registers

This section describes the command buffer execution registers.
5.8.43.1 Overview

The driver carries out normal command buffer execution (kicking) internally based on the information
of the command requests for the render commands accumulated in the command list. It is possible to
use the command buffer execution registers to execute the next command buffer from the register
write command included in the command buffer. There are three kinds of command buffer execution
registers, specifically the command buffer address setting register, the command buffer size setting
register, and the command buffer kick register. Configure valid values for the address and size and hit
the kick register to start execution of the command buffer.

There are two channels for the command buffer execution interface, and each has their own setting
register. These registers are described below.

Table 5-77 Register Settings for Command Buffer Execution Commands

Setting Register Description
0x238, bits [20:0] Sets the size of the command buffer for channel 1.
0x239, bits [20:0] Sets the size of the command buffer for channel 2.
0x23a, bits [28:0] Sets the address of the command buffer for channel 1.
0x23b, bits [28:0] Sets the address of the command buffer for channel 2.
0x23c, bit [31:0] Kicks channel 1.
0x23d, bit [31:0] Kicks channel 2.

Set the size of the command buffer to the value of the total number of bytes in the command buffer to
execute, divided by 8. (The size is set in units of 8 bytes.) The set value must be an even number.

Set the command buffer address to the value of the address of the command buffer to execute,
divided by 8. (The address is set in units of 8 bytes.) The set value must be an even number. Set a
physical address for the address.

When configuring the command buffer address and size from a command buffer register write
command (i.e., when configured during command buffer execution), the new values will have no
effect on the currently executing status unless a new kick command is executed. (This means the
remaining execution size and addresses of the commands currently executing will not change.)

CTR-06-0006-001-D 148 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Once values are written to the kick register, the command buffer executes based on the address and

size values configured for each channel. (If the byte-enable value is not 0, a kick occurs regardless of
the write data value.)

When executing a kick command from a command buffer register write command, store the kick
command at the end of the command buffer.

5.8.43.2 Use Example 1
An interrupt generation command is usually stored at the end, but you can alternately store a kick
command for the next command buffer instead to cause a jump to that command buffer's execution
address. (Also include commands in this command buffer to configure the address and size of the

next command buffer.) This allows you to execute multiple command buffers without interrupts,
thereby reducing the load on the CPU from interrupts.

Figure 5-11 Use Example 1 Diagram 1

Normal Execution

Channel 1 kicked Interrupt Channel 1 kicked Interrupt
from the driver Generation fim the driver Generation
| Command Buffer 1 | | | | Command Buffer 2 | | |
Interrupt Ge‘neration Interrupt Ge‘neration
Command Command

Execution Using a Command Buffer
Execution Command

Channel 1 kicked

Interrupt
from the driver Channel 1 Generation
kicked from a T

command
| Command Bufferll | | | | | 4 | Command Buffer 2 | | |

Command to Set the Size of ‘
Command Buffer 2 in Channel 1 Interrupt Generation

(0x238) Command
Command to Set the Address of

Command Buffer 2 in Channel 1 Channel 1 Kick Command
(0x23a) (0x23c)

You can execute as many command buffers consecutively as you want by repeatedly using the last
command of a command buffer to execute the next command buffer. However, the last command in
the last executed command buffer must be an interrupt generation command.

© 2009-2011 Nintendo 149
CONFIDENTIAL

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Figure 5-12 Use Example 1 Diagram 2

Consecutive Execution of Command
Buffer Execution Commands

Channel 1 kicked

from the driver Channel 1 Channel 1

kicked from a kicked from a

command comman
| Command Bufferll | | | | 4 | Command Buffer2| | | | | 4

Command to Set the Size of J Command to Set the Size of
Command Buffer 2 in Channel 1 Command Buffer 3 in Channel 1
(0x238) (0x238)
Command to Set the Address of Command to Set the Address of
Command Buffer 2 in Channel 1 Command Buffer 3 in Channel 1
(0x23a) (0x23a)
Channel 1 Kick Command (0x23¢c) ——— Channel 1 Kick Command (0x23¢c) ———
| Command Buffer 3| ‘ | | | — ...
Command to Set the Size of Interrupt
Command Buffer 4 in Channel 1 Generation
(0x238) T
Command to Set the Address of
Command Buffer 4 in Channel 1
(0x23a) I ﬁl Command Buffer N | { |

Channel 1 Kick Command (0x23c) Interrupt Generation Command

After preparing multiple command buffers like those above in your application, call the
nngxAdd3DCommand function, passing the address to command buffer 1 in bufferaddr, the size of
command buffer 1 in buffersize (the address and size of the first command buffer to kick), and
GL_FALSE in copycmd to execute all of these command buffers.

5.8.43.3 Use Example 2

Combine the settings for channels 1 and 2 to jump to a command buffer's execution address and
jump back when done. Configure the address and size of the command buffer to jump to in channel 1,
then the address and size (the size of the commands remaining after jumping back) of the command
buffer to jump back to in channel 2. Set the last command in the command buffer to jump to as a
command to kick channel 2 in order to jump back.

CTR-06-0006-001-D 150
Released: May 13, 2011

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Figure 5-13 Use Example 2 Diagram 1

Channel 1 kicked
from the driver

!

Channel 1 Command Address

Executing in

Channel 1 Point to Address

to Jum—qu - -4

-

Point to

Address to Channel 1 Command Size

Jump BaCk’ ~ Channel 2 Command Address
to -

/ Channel 2 Command Size

N _ Executing in
~a Channel 1 Kick \/ Channel 1
W~

Executing in
Channel 2

Channel 2 Kick

Command Buffer 2
Command Buffer 1

When executing this way, the address to jump back to is already set in the command buffer being
jumped from, so there is no need to include this address information in the command buffer being
jumped to. Leave a channel 2 kick command at the end of a certain command buffer and reference
that command buffer during execution to run the maximum number of commands for the shader

program or lookup table data as many times as you want, without any copying or interrupt generation
by the CPU.

Figure 5-14 Use Example 2 Diagram 2

Channel 1 kicked

from the driver Command Set for

Command Set for

] Command Set for Interrupt
@ Jumping Jumping Jum‘ping T
| | | | | | |Command Buffer 1 | ! | | ‘l
N % Interrupt
\ ~__) / / Generation
\ ~/ Command

~__ The command set for

\ / ™~ jumping includes the address
\ and size for channel 1, the
same for channel 2, and a

‘ channel 1 kick command.

Command Buffer 2

Channel 2 Kick
Command (0x23d)

The figure above shows an example of referencing and running command buffer 2 multiple times. You

can execute command buffer 2 by storing command sets for jumping to command buffer 2 in
command buffer 1.

© 2009-2011 Nintendo
CONFIDENTIAL

151 CTR-06-0006-001-D

Released: May 13, 2011

DMPGL 2.0 System API Specifications

After preparing a command buffer in your application like the one shown above, call the
nngxAdd3DCommand function, passing the address to command buffer 1 in bufferaddr, the size
up to the first kick command for command buffer 1 in buffersize (the address and size of the first
command buffer to kick), and GL_FALSE in copycmd to execute. Specify the size from the jump
return address until the next command kick as the value of the channel 2 command size included in
each command set for jumping. (Make sure not to enter the total size of command buffer 1.)

The examples in this chapter use channel 1 for jumping and channel 2 for jumping back, but you can
also do the reverse. However, using channel 1 for jumping and channel 2 for jumping back means
that the commands included in the command sets for jumping (registers 0x238-0x23c) are all
sequential, allowing you to create the command set for jumping with just one burst command and
thereby reducing the command size.

5.8.43.4 Notes

Take care to note the following points.

e When kicking the next command buffer from a command buffer register write command, you must
position the kick command at the end of the command buffer. (Specify a command buffer size so
the kick command comes at the end.)

¢ You cannot kick a command buffer in the middle of executing a burst command. However, you can
execute if the kick is the last command in the burst command and also the last command in the
command buffer.

e The address and size register setting values are kept even after the command buffer is kicked, but
the setting values for channel 1 are overwritten when the driver executes a render command
request.

e Execution might not work properly if the command buffer memory region has not had the cache
flushed.

¢ You cannot execute channel 1 and channel 2 simultaneously.

5.8.44 Settings Information for Otherwise Undocumented Bits

Some of the registers described so far have undocumented bits. You must use a byte enable setting
of 0 to avoid accessing some of these undocumented bits, and others are set to fixed values. This
information is shown in the following table. Although bits that are completely undocumented
(mentioned neither in the preceding sections nor this section) can, in theory, be set to any value
without affecting the hardware, we recommend that you set them to O.. (Do not set any registers not
mentioned in this document.)

For the undocumented bits that are set to fixed values, the nngxInitial ize function issues
commands that initialize these bits to the correct fixed values. Applications therefore do not need to
issue commands to initialize these bits. If fixed-value bits are included in the same byte of a register
as bits whose values can be changed, you must write the fixed-value bits alongside the other bits
when you set the register.

CTR-06-0006-001-D 152 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Table 5-78 Otherwise Undocumented Bit Setting Information

Setting Register

Description

0x47, bits [31:8]

Set a byte enable of 0 to ensure no access.

0x61, bits [31:8]

Set a byte enable of 0 to ensure no access.

0x62, bits [31:8]

Set a byte enable of 0 to ensure no access.

0x64a, bits [31:24]

Set a byte enable of 0 to ensure no access.

0Ox6e, hit [24:24]

Set equal to 1.

0x80, bit [3:3] and bits [31:24]

Set equal to 0.

0x80, bits [23:17]

Set equal to 0 when writing to bit [16:16] of the same register to clear the
texture cache. Otherwise, set a byte enable of O to ensure no access.

0x80, hit [12:12]

Set equal to 1.

0x83, bits [17:16]

Set equal to 0.

0x93, bits [17:16]

Set equal to 0.

0x9Db, bits [17:16]

Set equal to 0.

Ox0ac, bits [10:3]

Set equal to 0x60.

Ox0ad, bits [31:8]

Set equal to 0xe0c080.

0x0e0, bits [25:24]

Set equal to 0.

0x100, bits [25:16]

Set equal to 0x0e4.

0x110, bits [31:1]

Set equal to 0.

0x111, bits [31:1]

Set equal to 0.

Ox11e, bit [24:24]

Set equal to 1.

0x1c3, bit [31:31]

Set equal to 1.

0x1c3, bits [11:8]

Set equal to 4.

Ox1c4, bit [18:18]

Set equal to 1.

0x229, bit [9:9]

Set equal to 0.

0x229, bits [23:16]

Set a byte enable of 0 to ensure no access.

0x244, bits [31:8]

Set a byte enable of 0 to ensure no access.

0x245, bits [7:1]

Set equal to 0.

0x245, bits [31:8]

Set a byte enable of 0 to ensure no access.

0x253, bits [31:16]

Set a byte enable of 0 to ensure no access.

0x25e, bit [16:16]

Set a byte enable of 0 to ensure no access.

© 2009-2011 Nintendo
CONFIDENTIAL

153 CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Setting Register Description
0x25fF, bits [31:1] Set equal to 0.
0x280, bits [31:16] Set equal to OX7FFF.
0x289, bits [23:16] Set a byte enable of 0 to ensure no access.
0x28a, bits [31:16] Set equal to OX7FFF.
0x28d, bits [31:16] Set equal to 0.
0x2b0, bits [31:16] Set equal to OX7FFF.
0x2b9, bits [15:8] Set equal to 0.
0x2b9, bits [23:16] Set a byte enable of 0 to ensure no access.
0x2h9, bits [31:24] Set equal to Oxa0.
Ox2ba, bits [31:16] Set equal to OX7FFF.
0x2bd, bits [31:16] Set equal to 0.

5.9 Code to Convert Formats for PICA Register Settings

When an application sets a value using the DMPGL 2.0 API, the DMPGL 2.0 driver may convert it into
a different format before writing it to a PICA register. This section shows code used by the DMPGL

2.0 driver to convert formats.

5.9.1 Converting from float32 to float24

The following code converts a 32-bit floating-point number into a 24-bit floating-point number (with a
1-bit sign, 7-bit exponent, and 16-bit mantissa). If you pass a 32-bit floating-point number to _inarg,

a 24-bit floating-point number is stored as an unsigned int variable in _outarg.

Code 5-11 Conversion into a 24-Bit Floating-Point Number
#define UTL_F2F_16M7E(_inarg, _outarg) \

{\
unsigned uval_, m_; \
int e ; \
float ¥ ; \
static const int bias_ = 128 - (1 << (7 - 1)):; \
f = (inarg); \
uval _ = *(unsigned*)&f ; \
e_ = (uval_ & OX7TFFFFFF) ? (((uval_ >> 23) & OxfF) - bias_) : 0; \
m_ = (uval_ & OX7fffff) >> (23 - 16); \
if (e_>=0) \
outarg = m_ | (e_ << 16) | ((uval_ >> 31) << (16 + 7)); \
else \
CTR-06-0006-001-D 154 © 2009-2011 Nintendo

Released: May 13, 2011

CONFIDENTIAL

DMPGL 2.0 System API Specifications

}

outarg = ((uval_ >> 31) << (16 + 7)); \

5.9.2 Converting from float32 to float16

The following code converts a 32-bit floating-point number into a 16-bit floating-point number (with a
1-bit sign, 5-bit exponent, and 10-bit mantissa). If you pass a 32-bit floating-point number to _inarg,
a 16-bit floating-point number is stored as an unsigned int variable in _outarg.

Code 5-12 Conversion into a 16-Bit Floating-Point Number

#define
{\

}

UTL_F2F 10M5E(_inarg, _outarg) \

unsigned uval_, m_; \
int e ; \
float £ ; \
static const int bias_ = 128 - (1 << (6 - 1)); \
f = (Cinarg); \
uval_ = *(unsigned*)&f ; \
e_ = (uval_ & OX7FFFFFFF) ? (((uval_ >> 23) & OxfF) - bias_) : 0; \
m_ = (uval_ & OxX7FfFfFfF) >> (23 - 10); \
if (e_>=0)\
outarg = m_ | (e_ << 10) | (Quval_ >> 31) << (10 + 5)); \
else \
outarg = ((uval_ >> 31) << (10 + 5)); \

5.9.3 Converting from float32 to float31

The following code converts a 32-bit floating-point number into a 31-bit floating-point number (with a
1-bit sign, 7-bit exponent, and 23-bit mantissa). When you pass a 32-bit floating-point number into
_inarg, a 31-bit floating-point number is stored as an unsigned int variable in _outarg.

Code 5-13 Conversion into a 31-Bit Floating-Point Number

#define
{\

UTL_F2F 23M7E(_inarg, _outarg) \

unsigned uval_, m_; \

int e ; \

float £ ; \

static const int bias_ = 128 - (1 << (7 - 1)); \

f = (Cinarg); \

uval_ = *(unsigned*)&f ; \

e_ = (uval_ & OX7FFFffff) ? (((uval_ >> 23) & Oxff) - bias_) : 0; \
m_ = (uval_ & OxX7FFFfF) >> (23 - 23); \

if (e_>=0) \

© 2009-2011 Nintendo 155 CTR-06-0006-001-D

CONFIDENTIAL

Released: May 13, 2011

DMPGL 2.0 System API Specifications

outarg m_ | (e_ << 23) | (Quval_ >> 31) << (23 + 7)); \
else \
outarg = ((uval_ >> 31) << (23 + 7)): \

}

5.9.4 Converting from float32 to float20

The following code converts a 32-bit floating-point number into a 20-bit floating-point number (with a
1-bit sign, 7-bit exponent, and 12-bit mantissa). When you pass a 32-bit floating-point number into
__inharg, a 20-bit floating-point number is stored as an unsigned int variable in _outarg.

Code 5-14 Conversion into a 20-Bit Floating-Point Number
#define UTL_F2F_12M_7E(_inarg, _outarg) \

{\
unsigned uval_, m_; \
int e ; \
float ¥ ; \
static const int bias_ = 128 - (1 << (7 - 1)); \
f = (Cinarg); \
uval _ = *(unsigned*)&f ; \
e_ = (uval_ & OX7TFFFFfFF) ? (((uval_ >> 23) & OxfF) - bias_) : 0; \
m_ = (uval_ & OX7fffff) >> (23 - 12); \
if (e_>=0)\
outarg = m | (e_ << 12) | ((uval_ >> 31) << (12 + 7)); \
else \
outarg = ((uval >> 31) << (12 + 7)); \
he

5.9.5 Converting a 32-Bit Floating-Point Number into an 8-Bit Sighed Fixed-Point
Number with 7 Fractional Bits

The following code converts a 32-bit floating-point number into an 8-bit signed fixed-point number
with 7 decimal bits. The most significant bit indicates the sign and is followed by seven fractional bits.
Negative values are represented in two’'s complement. If you pass a 32-bit floating-point number to
_inarg, an 8-bit fixed-point number is stored in _outarg.

Code 5-15 Conversion into an 8-Bit Signed Fixed-Point Number with 7 Fractional Bits
#define UTL_F2FX_8W_11_T(inarg, _outarg) \
{\
float ¥ ; \
unsigned v_; \
f = (Cinarg); \

v_ = *(unsigned*)&f ; \

if (F_ == 0.F || (v_ & Ox7F800000) == 0x7F800000) \

CTR-06-0006-001-D 156 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

outarg = 0; \
else \
{\
f_+= 0.5F * (1 << 1); \
f_ *=1<< @B -1);\
if (Ff_<0)\
f =05\
else if (f_>= (1 << 8)) \
f = (1 <<8) -1;\
if (f_>= (1 << @ -1)) \
outarg = (unsigned)(f_ - (1 << (8 - 1))); \
else \

outarg = (unsigned)(f_+ (1 << (8 - 1))); \
3\

}

5.9.6 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point
Number with 11 Fractional Bits

The following code converts a 32-bit floating-point number into a 12-bit signed fixed-point number
with 11 fractional bits. The most significant bit indicates the sign and is followed by 11 fractional bits
that set an absolute value (negative values are not represented in two’s complement). If you pass a
32-bit floating-point number to _inarg, a 12-bit fixed-point number is stored in _outarg.

Code 5-16 Conversion into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits
#define UTL_F2FX _12W_11 F(_inarg, _outarg) \
{\
float £ ; \
unsigned v_; \
f = (Cinarg); \
Vv_ = *(unsigned*)&f ; \
if (f_==0.f || (v_ & 0x7f800000) == 0x7f800000) \
outarg = 0; \
else \
{\
f *= (1 << (12 - 1)); \
if (f_<0)\
{\
outarg = 1 << (12 - 1); \
f =-f ;\
N\
else \

outarg = 0; \

© 2009-2011 Nintendo 157 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

if (Ff_>= Q<<@@2-1))F =@=<<@2-1)-1;\
outarg |= (unsigned)(f):; \
3\
}

5.9.7 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point
Number with 11 Fractional Bits (Alternate Method)

The following code converts a 32-bit floating-point number into a 12-bit signed fixed-point number
with 11 fractional bits. The most significant bit indicates the sign and is followed by 11 fractional bits.
Negative values are represented in two’'s complement. If you pass a 32-bit floating-point number to
_inarg, a 12-bit fixed-point number is stored in _outarg.

Code 5-17 Alternate Conversion into a 12-Bit Signed Fixed-Point Number with 11 Fractional

Bits
#define UTL_F2FX_12W_11 T(_inarg, _outarg) \
{\
float T ; \

unsigned v_; \
f = (inarg); \
v_ = *(unsigned*)&f ; \
if (f_==0.F || (v_ & 0x7f800000) == 0x7f800000) \
outarg = 0; \
else \
{\
f +=0.5F* (1 << 1); \
f *=1<< (12 - 1); \
if (F_<0)\
f_ =0; \
else if (f_ >= (1 << 12)) \
f = (1 <<12) - 1; \
if (Ff_>= (1 << @2 - 1))\
outarg = (unsigned)(f_ - (1 << (12 - 1))); \
else \
outarg = (unsigned)(f_ + (1 << (12 - 1))); \
3\
}

5.9.8 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point
Number with 8 Fractional Bits

The following code converts a 32-bit floating-point number into a 13-bit signed fixed-point number
with 8 fractional bits. The most significant bit indicates the sign and is followed by four integer bits and

CTR-06-0006-001-D 158 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

eight fractional bits, respectively. Negative values are represented in two’s complement. If you pass a
32-bit floating-point number to _inarg, a 13-bit fixed-point number is stored in _outarg.

Code 5-18 Conversion into a 13-Bit Signed Fixed-Point Number with 8 Fractional Bits
#define UTL_F2FX_13W 51 T(inarg, _outarg) \

{\
float T ; \
unsigned v_; \
f = (Cinarg); \
v_ = *(unsigned*)&f ; \
if (f_ == 0.f || (v_ & Ox7f800000) == Ox7¥800000) \
outarg = 0; \
else \
{\
f_ += 0.5F * (1 << 5); \
f *=1<< (13 - 5); \
if (Ff_<0)\
f_ =0; \
else if (f_>= (1 << 13)) \
f = (1 << 13) - 1; \
if (f >= (1 << @3 -1D))\
outarg = (unsigned)(f_ - (1 << (13 - 1)); \
else \
outarg = (unsigned)(f_ + (1 << (13 - 1))): \
AN
}

5.9.9 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point
Number with 11 Fractional Bits

The following code converts a 32-bit floating-point number into a 13-bit signed fixed-point number
with 11 fractional bits. The most significant bit indicates the sign and is followed by 1 integer bit and
11 fractional bits, respectively. Negative values are represented in two’s complement. If you pass a
32-bit floating-point number to _inarg, a 13-bit fixed-point number is stored in _outarg.

Code 5-19 Conversion into a 13-Bit Sighed Fixed-Point Number with 11 Fractional Bits
#define UTL_F2FX _13W_21 _T(_inarg, _outarg) \
{\
float T ; \
unsigned v_; \
f = (inarg); \

v_ = *(unsigned*)&f ; \

if (F_==0.f || (v_ & Ox7F800000) == 0x7F800000) \

© 2009-2011 Nintendo 159 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

outarg = 0; \
else \
{\
f_ += 0.5F * (1 << 2); \
f *=1<< (13 - 2); \
if (F_<0)\
f_ =0; \
else if (f_ >= (1 << 13)) \
f = (1 <<13) - 1; \
if (f_>= (1 << (@3 - 1)) \

outarg = (unsigned)(f_ - (1 << (13 - 1))); \

else \

outarg
T\
}

(unsigned)(f_ + (1 << (13 - 1))); \

5.9.10 Converting a 32-Bit Floating-Point Number into a 16-Bit Signed Fixed-Point

Number with 12 Fractional Bits

The following code converts a 32-bit floating-point number into a 16-bit signed fixed-point number
with 12 fractional bits. The most significant bit indicates the sign and is followed by three integer bits
and 12 fractional bits, respectively. Negative values are represented in two’s complement. If you pass
a 32-bit floating-point number to _inarg, a 16-bit fixed-point number is stored in _outarg.

Code 5-20 Conversion into a 16-Bit Fixed-Point Number
#define UTL_F2FX_16W_41 _T(_inarg, _outarg) \

{\
float ¥ ; \
unsigned v_; \
f = (Cinarg); \
v_ = *(unsigned*)&f ; \
if (f_ == 0.Ff || (v_ & 0x7f800000) == 0x7¥800000) \
outarg = 0; \
else \
{\
f +=0.5F * (1 << 4); \
f_ *=1 << (16 - 4); \
if (f_<0)\
f =0; \
else if (f_>= (1 << 16)) \
f = (@ << 16) - 1; \
if (f_>= (1 << (16 - D)) \
outarg = (unsigned)(f_ - (1 << (16 - 1))); \
CTR-06-0006-001-D 160 © 2009-2011 Nintendo

Released: May 13, 2011

CONFIDENTIAL

DMPGL 2.0 System API Specifications

else \
outarg = (unsigned)(f_ + (1 << (16 - 1))); \
3\
}

5.9.11 Converting a 32-Bit Floating-Point Number into an 8-Bit Unsigned Fixed-Point
Number with No Fractional Bits

The following code converts a 32-bit floating-point number into an 8-bit unsigned fixed-point number
with no fractional bits. If you pass a 32-bit floating-point number to _inarg, an 8-bit fixed-point
number is stored in _outarg.

Code 5-21 Conversion into an 8-Bit Unsigned Fixed-Point Number with No Fractional Bits
#define UTL_F2UFX_8W_81(_inarg, _outarg) \

{\
float £ = (inarg); \
unsigned val_; \
unsigned v_ = *(unsigned*)&f_; \
if (f_ <=0 || (v_ & 0x7f800000) == 0x7¥800000) \
val_ = 0; \
else \
{\
f *=1<< (8 -8); \
if (Ff_>= 1 << 8)) \
val_ = (1 << 8) - 1; \
else \
val_ = (unsigned)(f)); \
3\
(_outarg) = val_; \
}

5.9.12 Converting a 32-Bit Floating-Point Number into an 11-Bit Unsigned Fixed-
Point Number with 11 Fractional Bits

The following code converts a 32-bit floating-point number into an 11-bit unsigned fixed-point number
with 11 fractional bits. If you pass a 32-bit floating-point number to _inarg, an 11-bit fixed-point
number is stored in _outarg.

Code 5-22 Conversion into an 11-Bit Unsigned Fixed-Point Number with 11 Fractional Bits
#define UTL_F2UFX_11W_OI(_inarg, _outarg) \
{\
float ¥ = (_inarg); \
unsigned val_; \

unsigned v_ = *(unsigned*)&f_; \

© 2009-2011 Nintendo 161 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

}

if (f_ <=0 || (v_ & 0x7f800000) == 0x7f800000) \

val_ = 0; \
else \
{\
f *= 1 << (11 - 0); \
if (f_>= (1 << 1)) \
val_ = (1 << 11) - 1; \
else \
val_ = (unsigned)(f)); \
3} N\
(_outarg) = val_; \

5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point
Number with 12 Fractional Bits

The following code converts a 32-bit floating-point number into a 12-bit unsigned fixed-point number
with 12 fractional bits. If you pass a 32-bit floating-point number to _inarg, a 12-bit fixed-point

number is stored in _outarg.

Code 5-23 Conversion into a 12-Bit Unsigned Fixed-Point Number with 12 Fractional Bits

#define UTL_F2UFX_12W Ol (_inarg, _outarg) \

{\
float £ = (_inarg); \
unsigned val_; \
unsigned v_ = *(unsigned*)&f ; \
if (f_ <= 0 || (v_ & 0x7¥800000) == 0x7f800000) \
val_ = 0; \
else \
{\
f_ *=1<< (12 - 0); \
if (f_>= (1 << 12)) \
val_ = (1 << 12) - 1; \
else \
val_ = (unsigned)(f); \
3} N\
(_outarg) = val_; \
}
CTR-06-0006-001-D 162 © 2009-2011 Nintendo

Released: May 13, 2011

CONFIDENTIAL

DMPGL 2.0 System API Specifications

5.9.14 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point

Number with 24 Fractional Bits

The following code converts a 32-bit floating-point number into a 24-bit unsigned fixed-point number
with 24 fractional bits. If you pass a 32-bit floating-point number to _inarg, a 24-bit fixed-point

number is stored in _outarg.

Code 5-24 Conversion into a 24-Bit Fixed-Point Number with 24 Fractional Bits

#define UTL_F2UFX_24W_OI(_inarg, _outarg) \

{\
float f_ = (_inarg); \
unsigned val_; \
unsigned v_ = *(unsigned*)&f_; \
if (f_ <=0 || (v_ & 0x7f800000) == 0x7¥800000) \
val_ = 0; \
else \
{\
f *=1<< (24 - 0); \
if (f_>= (1 << 24)) \
val_ = (1 << 24) - 1; \
else \
val_ = (unsigned)(f_); \
3N\
(_outarg) = val_; \
}

5.9.15 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point

Number with 8 Fractional Bits

The following code converts a 32-bit floating-point number into a 24-bit unsigned fixed-point number
with 8 fractional bits. If you pass a 32-bit floating-point number to _inarg, a 24-bit fixed-point number

is stored in _outarg.

Code 5-25 Conversion into a 24-Bit Fixed-Point Number with 8 Fractional Bits

#define UTL_F2UFX_24W_161(_inarg, _outarg) \
{\
float £ = (inarg); \
unsigned val_; \

unsigned v_ = *(unsigned*)&f _; \

if (f_ <=0 || (v_ & 0x7f800000) == 0x7¥800000) \
val_ = 0; \

else \

{\

f_ *=1 << (24 - 16); \

© 2009-2011 Nintendo 163
CONFIDENTIAL

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

if (f_>= (1 << 24)) \
val_ = (1 << 24) - 1; \
else \
val_ = (unsigned)(f)); \
3\
(_outarg) = val_; \
}

5.9.16 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit
Unsigned Integer

The following code converts a 32-bit floating-point number between 0 and 1 into an 8-bit unsigned
integer. If you pass a 32-bit floating-point number into F, an 8-bit unsigned integer is returned.

Code 5-26 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned
Integer

((unsigned)(0.5F + () * (Float)((1 << 8) - 1)))

5.9.17 Alternate Conversion from a 32-Bit Floating-Point Number Between O and 1
into an 8-Bit Unsigned Integer

The following code converts a 32-bit floating-point number between 0 and 1 into an 8-bit unsigned
integer. If you pass a 32-bit floating-point number into f, an 8-bit unsigned integer is returned.

Code 5-27 Alternate Conversion of a 32-Bit Floating-Point Number Between 0 and 1 into an 8-
Bit Unsigned Integer

((unsigned) ((F) * (Float)((1 << 8) - 1)))

5.9.18 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit
Signed Integer

The following code converts a 32-bit floating-point number between -1 and 1 into an 8-bit signed
integer. If you pass a 32-bit floating-point number into F, an 8-bit signed integer is returned.

Code 5-28 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit Signed
Integer

(((unsigned int)(fabs(127.F * (F))) & Ox7F)|(F < 0 ? 0x80 : 0))

5.9.19 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value

The following code converts a 16-bit floating-point number (with one sign bit, a 5-bit exponent, and a
10-bit mantissa) into a 32-bit floating-point number. If you pass a 16-bit floating-point number stored
as an unsigned intto _inarg, a 32-bit floating-point number is stored in the float type variable
specified by _outarg.

CTR-06-0006-001-D 164 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Code 5-29 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value

#define UTL_U2F 10M5E(_inarg, _outarg) \

{\
int e ; \
unsigned m_; \
unsigned u_ = (inarg); \
const int width_ = 10 + 5 + 1; \
const int bias = 128 - (1 << (6 - 1)); \
e = (u_>>10) & ((1 =<<5H5) - D:; \
m_=u_& ((1d << 10) - 1); \
if (u & (@ << (width_ - 1)) - 1)) \
u = (u_>> (5 +10)) << 31) | (m_<< (23 - 10)) | ((e_ + bias) << 23); \
else \
u_ = ((u_>> (b + 10)) << 31); \
(_outarg) = *(Float*)&u_; \
}

5.10Command Cache Restrictions and Precautions

The following restrictions and precautions apply when you use the command cache.

Even after the nngxVal idateState function has validated the state of the reserved fragment
shader uniforms, lighting-related commands are generated again when rendering functions are
called when fragment lighting is enabled (dmp_FragmentLighting.enabled is GL_TRUE) and
all light sources are disabled (dmp_FragmentLightSource[i]-enabled is GL_FALSE for every
light source).

Even after the nngxVal idateState function has validated the state of the reserved fragment
shader uniforms, commands related to the dmp_Gas.accMax reserved uniform are generated
again when rendering functions are called.

If the dmp_Gas.autoAcc reserved fragment uniform is GL_TRUE and you start or stop saving a
command list at the same time as the value of dmp_FragOperation.mode changes to or from
GL_FRAGOP_MODE_GAS_ACC_DMP, commands related to dmp_Gas.autoAcc in that command list
may not be applied correctly.

The size of the 3D command buffer to execute must be a multiple of 16. Use the
nngxAdd3DCommand function to add 0x0000000000000000 as dummy data and thereby adjust
the size.

When the glUseProgram function specifies 0 and has then been called, no commands will be
generated even if the states related to the program or shader are validated.

5.11PICA Register List

The following table lists the functions, state flags, uniforms, and other items related to each of the
PICA registers. Related functions do not necessarily generate commands when called. Some of the

© 2009-2011 Nintendo 165 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

functions mentioned here have parameters that affect settings. If a setting depends on the shader
assembly implementation, it is noted as the glUseProgram function.

Table 5-79 PICA Register List

R;)gl?t&l’ Bits Related Functions and Uniforms State Flags
etting
0x10 310 nngxSplitDrawCmdlist
% [31:0] nngxTransferRenderImage i
glCullFace
0x40 glDisable(GL_CULL_FACE) NN_GX_STATE_OTHERS
. L]
x [1:0] glEnable(GL_CULL_FACE) RS IATE
glFrontFace
0x41 [23:0]
widthin glViewport
0x42 [31:0]
e NN_GX_STATE_OTHERS
0x43 [23:0]
heightin glViewport
0x44 [31:0]
0x47 [0:0] dmp_FragOperation.enableClippingPlane |e NN_GX_STATE_FSUNIFORM
0x48 [23:0]
0x49 [23:0]
dmp_FragOperation.clippingPlane e NN_GX_STATE_FSUNIFORM
Ox4a [23:0]
0x4b [23:0]
oxdd 930 dmp_FragOperation.wScale
X .
[23:0] glDepthRangef
dmp_FragOperation.wScale o NN_GX_STATE_FSUNIFORM
glbepthRangef o NN_GX_STATE_TRIOFFSET
Ox4e [23:0] glDisable(GL_POLYGON_OFFSET_FILL)
glEnable(GL_POLYGON_OFFSET_FILL)
units in glPolygonOffset
ox4f [2:0]
0x50 [31:0]
0x51 [31:0]
0x52 [31:0]
glUseProgram e NN_GX_STATE_SHADERPROGRAM
0x53 [31:0]
0x54 [31:0]
0x55 [31:0]
0x56 [31:0]

CTR-06-0006-001-D

Released: May 13, 2011

166

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Register . . .
Setting Bits Related Functions and Uniforms State Flags
0x61 [1:0] | glEarlyDepthFuncDMP NN_GX_STATE_OTHERS
e glDisable(GL_EARLY_DEPTH_TEST_DMP)
0x62 [0:0] NN_GX_STATE_OTHERS
e glEnable(GL_EARLY_DEPTH_TEST_DMP)
0x63 [0:0] |e glClear(GL_EARLY_DEPTH_BUFFER_BIT_DMP) -
0x64 [0:0] |e* glUseProgram NN_GX_STATE_SHADERPROGRAM
0x65 [1:0]
[9:0] _
0x66 e glDisable(GL_SCISSOR_TEST)
[25:16] | » glEnable(GL_SCISSOR_TEST) NN_GX_STATE_SCISSOR
e glScissor
[9:0]
0x67
[25:16]
[9:0]
0x68 e xandyinglViewport NN_GX_STATE_OTHERS
[25:16]
Ox6a [23:0] | glClearEarlyDepthDMP NN_GX_STATE_OTHERS
Ox6d [0:0] |e dmp_FragOperation.wScale NN_GX_STATE_FSUNIFORM
Target rendering object:
Ox6e [10:0] |e widthin glRenderbufferStorage NN_GX_STATE_FRAMEBUFFER
e width in glTexture2Dimage2D
Target rendering object:
Ox6e [21:12] | » heilghtin glRenderbufferStorage NN_GX_STATE_FRAMEBUFFER
e heightin glTexture2Dimage2D
[1:0]
[10:8]
Ox6f e glUseProgram NN_GX_STATE_SHADERPROGRAM
[16:16]
[24:24]
o dmp_Texture[i].samplerType(i=0,1,2)
0x80 [2:0] |e glDrawArrays -
e glDrawElements
0x80 [9:8] |e dmp_Texture[3].texcoord NN_GX_STATE_FSUNIFORM
0x80 [10:10] | » dmp_Texture[3].samplerType NN_GX_STATE_FSUNIFORM
0x80 [13:13] | » dmp_Texture[2].texcoord NN_GX_STATE_FSUNIFORM
e dmp_Texture[i]-samplerType(i=0,1,2)
0x80 [16:16] | ¢ General texture settings made by NN_GX_STATE_TEXTURE
glTexParameter

© 2009-2011 Nintendo
CONFIDENTIAL

167

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Register
Setting

Bits

Related Functions and Uniforms

State Flags

0x81

[31:0]

e glTexParameter(
pname=GL_TEXTURE_BORDER_COLOR)

This depends on settings for the texture object bound
to GL_TEXTUREO when rendering.

NN_GX_STATE_TEXTURE

0x82

[10:0]

e heightin glTexImage2D
e heightin glCompressedTexlImage2D
e heightin glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTUREO when rendering.

NN_GX_STATE_TEXTURE

0x82

[26:16]

e width in glTexImage2D
e width in glCompressedTexImage2D
e width in glCopyTexlImage2D

This depends on settings for the texture object bound
to GL_TEXTUREO when rendering.

NN_GX_STATE_TEXTURE

0x83

[1:1]

e glTexParameter(
pname=GL_TEXTURE_MAG_FILTER)

This depends on settings for the texture object bound

to GL_TEXTUREO when rendering.

NN_GX_STATE_TEXTURE

0x83

[2:2]

e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound

to GL_TEXTUREO when rendering.

NN_GX_STATE_TEXTURE

0x83

[5:4]

e internalformatin glTexImage2D

e internalformatin
glCompressedTexImage2D

e internalformatin glCopyTexImage2D

e This depends on settings for the texture object
bound to GL_TEXTUREQ when rendering.

NN_GX_STATE_TEXTURE

0x83

[10:8]

e glTexParameter(
pname=GL_TEXTURE_WRAP_T)

This depends on settings for the texture object bound

to GL_TEXTUREO when rendering.

NN_GX_STATE_TEXTURE

0x83

[14:12]

e glTexParameter(
pname=GL_TEXTURE_WRAP_S)

This depends on settings for the texture object bound
to GL_TEXTUREO when rendering.

NN_GX_STATE_TEXTURE

0x83

[20:20]

e internalformatin glTexImage2D

This depends on settings for the texture object bound
to GL_TEXTUREO when rendering.

NN_GX_STATE_TEXTURE

0x83

[24:24]

e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound

to GL_TEXTUREO when rendering.

NN_GX_STATE_TEXTURE

0x83

[30:28]

e dmp_Texture[0] -samplerType

NN_GX_STATE_TEXTURE

CTR-06-0006-001-D

Released: May 13, 2011

168

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
e glTexParameter(
x84 20 pname=GL_TEXTURE_LOD_BIAS) NN GX STATE TEXTURE
N []
% [12:0] This depends on settings for the texture object bound - - -
to GL_TEXTUREO when rendering.
e level in glTexImage2D
e level in glCompressedTexlImage2D
e level in glCopyTexImage2D
0x84 [19:16] | o glTexParameter(o NN_GX_STATE_TEXTURE
pname=GL_TEXTURE_MIN_FILTER)
This depends on settings for the texture object bound
to GL_TEXTUREO when rendering.
e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)
. e glTexParameter(
0x84 [27:24] pname=GL_TEXTURE_MIN_LOD) o NN_GX_STATE_TEXTURE
This depends on settings for the texture object bound
to GL_TEXTUREO when rendering.
0x85 [27:0]
0x86 [21:0]
e Texture address allocated by gl TexImage2D,
0x87 [21:0] glCompressedTexImage2D, or
glCopyTexImage2D e NN_GX_STATE_TEXTURE
0x88 [21:0] | This depends on settings for the texture object bound
to GL_TEXTUREO when rendering.
0x89 [21:0]
0x8a [21:0]
0x8b [0:0] |e dmpTexture[O].perspectiveShadow e NN_GX_STATE_FSUNIFORM
0x8b [23:1] | e dmpTexture[0].shadowZBias e NN_GX_STATE_FSUNIFORM
0x8b [31:24] | » dmpTexture[0].shadowZScale e NN_GX_STATE_FSUNIFORM
e internalformatin glTexImage2D
e internalformatin
glCompressedTexlImage2D
0x8e [3:0] _ . e NN_GX_STATE_TEXTURE
e internalformatin glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTUREO when rendering.
Ox8f [0:0] |e dmp_FragmentLighting.enabled e NN_GX_STATE_FSUNIFORM
e glTexParameter(
0x91. 310 pname=GL_TEXTURE_BORDER_COLOR) NN GX STATE TEXTURE
N L]
X [31:0] This depends on settings for the texture object bound - - -
to GL_TEXTURE1 when rendering.
e heightinglTexImage2D
0x92 [10:0] | e heightin glCompressedTexImage2D e NN_GX_STATE_TEXTURE
e heightin glCopyTexImage2D

© 2009-2011 Nintendo
CONFIDENTIAL

169

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Register
Setting

Bits

Related Functions and Uniforms

State Flags

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

0x92

[26:16]

e widthin glTexImage2D
e width in glCompressedTexImage2D
e width in glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x93

[1:1]

e glTexParameter(
pname=GL_TEXTURE_MAG_FILTER)

This depends on settings for the texture object bound

to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x93

[2:2]

e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x93

[5:4]

e internalformatin glTexImage2D

e internalformatin
glCompressedTexImage2D

e internalformatin glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x93

[10:8]

e glTexParameter(
pname=GL_TEXTURE_WRAP_T)

This depends on settings for the texture object bound

to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x93

[14:12]

e glTexParameter(
pname=GL_TEXTURE_WRAP_S)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x93

[24:24]

e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound

to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x94

[12:0]

e glTexParameter(
pname=GL_TEXTURE_LOD_BIAS)

e This depends on settings for the texture object
bound to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x94

[19:16]

e level in glTexImage2D
e level in glCompressedTexImage2D
e level in glCopyTexlImage2D

e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

CTR-06-0006-001-D

Released: May 13, 2011

170

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Register
Setting

Bits

Related Functions and Uniforms

State Flags

0x94

[27:24]

e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

e glTexParameter(
pname=GL_TEXTURE_MIN_LOD)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x95

[27:0]

e Texture address allocated by gl TexImage2D,
glCompressedTexlImage2D, or
glCopyTexImage2D

This depends on settings for the texture object bound

to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x96

[3:0]

e internalformatin glTexImage2D

e internalformatin
glCompressedTexImage2D

e internalformatin glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

NN_GX_STATE_TEXTURE

0x99

[31:0]

o glTexParameter(
pname=GL_TEXTURE_BORDER_COLOR)

This depends on settings for the texture object bound

to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9a

[10:0]

e heightinglTexImage2D
e heightin glCompressedTexlImage2D
e heightin glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9a

[26:16]

e width in glTexImage2D
e width in glCompressedTexlImage2D
e width in glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9b

[1:1]

e glTexParameter(
pname=GL_TEXTURE_MAG_FILTER)

This depends on settings for the texture object bound
to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9b

[2:2]

o glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound

to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9b

[5:4]

e internalformatin glTexImage2D

e internalformatin
glCompressedTexlImage2D

e internalformatin glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

© 2009-2011 Nintendo
CONFIDENTIAL

171

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Register
Setting

Bits

Related Functions and Uniforms

State Flags

0x9b

[10:8]

e glTexParameter(
pname=GL_TEXTURE_WRAP_T)

This depends on settings for the texture object bound
to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9b

[14:12]

e glTexParameter(
pname=GL_TEXTURE_WRAP_S)

This depends on settings for the texture object bound

to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9b

[24:24]

e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9c

[12:0]

e glTexParameter(
pname=GL_TEXTURE_LOD_BIAS)

This depends on settings for the texture object bound

to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9c

[19:16]

e level in glTexImage2D
level in glCompressedTexImage2D
level in glCopyTexImage2D

e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9c

[27:24]

e glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

e glTexParameter(
pname=GL_TEXTURE_MIN_LOD)

This depends on settings for the texture object bound
to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9d

[27:0]

e Texture address allocated by gl TexImage2D,
glCompressedTexImage2D, or
glCopyTexImage2D

This depends on settings for the texture object bound

to GL_TEXTUREZ2 when rendering.

NN_GX_STATE_TEXTURE

0x9e

[3:0]

e internalformatin glTexImage2D

e internalformatin
glCompressedTexImage2D

e internalformatin glCopyTexImage2D

e This depends on settings for the texture object
bound to GL_TEXTURE2 when rendering.

NN_GX_STATE_TEXTURE

0x0a8

[2:0]

e dmp_Texture[3]-ptClampU

NN_GX_STATE_FSUNIFORM

0x0a8

[5:3]

e dmp_Texture[3]-ptClampV

NN_GX_STATE_FSUNIFORM

0x0a8

[9:6]

e dmp_Texture[3].ptRgbMap

NN_GX_STATE_FSUNIFORM

0x0a8

[13:10]

e dmp_Texture[3]-ptAlphaMap

NN_GX_STATE_FSUNIFORM

CTR-06-0006-001-D

Released: May 13, 2011

172

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rseeg[iisr:Zr Bits Related Functions and Uniforms State Flags
0Ox0a8 [14:14] dmp_Texture[3] -ptAlphaSeparate NN_GX_STATE_FSUNIFORM
0x0a8 [15:15] dmp_Texture[3].ptNoiseEnable NN_GX_STATE_FSUNIFORM
0x0a8 [17:16] dmp_Texture[3].ptShiftu NN_GX_STATE_FSUNIFORM
0x0a8 [19:18] dmp_Texture[3] -ptShiftV NN_GX_STATE_FSUNIFORM
0x0a8 [27:20] dmp_Texture[3] .ptTexBias NN_GX_STATE_FSUNIFORM
0x0a9 [15:0] dmp_Texture[3] -ptNoiseU (3rd component) NN_GX_STATE_FSUNIFORM
0x0a9 [31:16] dmp_Texture[3]-ptNoiseU (2nd component) NN_GX_STATE_FSUNIFORM
Ox0aa [15:0] dmp_Texture[3]-ptNoiseV (3rd component) NN_GX_STATE_FSUNIFORM
Ox0aa [31:16] dmp_Texture[3] -ptNoiseV (2nd component) NN_GX_STATE_FSUNIFORM
0x0ab [15:0] dmp_Texture[3]-ptNoiseU (1st component) NN_GX_STATE_FSUNIFORM
Ox0ab [31:16] dmp_Texture[3]-ptNoiseV (1stcomponent) NN_GX_STATE_FSUNIFORM
Ox0Oac [2:0] dmp_Texture[3]-ptMinFilter NN_GX_STATE_FSUNIFORM
Ox0ac [18:11] dmp_Texture[3] .ptTexWidth NN_GX_STATE_FSUNIFORM
Ox0ad [26:19] dmp_Texture[3] -ptTexBias NN_GX_STATE_FSUNIFORM
OxOad [7:0] dmp_Texture[3].ptTexOffset NN_GX_STATE_FSUNIFORM
OxOaf [11:8] dmp_Texture[3]-ptSampler

OxObO— {RgbMap,AlphaMap,NoiseMap,R,G,B,A} NN_GX_STATE_LUT

0x0b7 [31:0] LUT object data created by glTexImagelD

0x0c0 [3:0] dmp_TexEnv[0] -srcRgb (1st component) NN_GX_STATE_FSUNIFORM
0x0cO [7:4] dmp_TexEnv[0] -srcRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0cO [11:8] dmp_TexEnv[0] -srcRgb (3rd component) NN_GX_STATE_FSUNIFORM
0x0cO [19:16] dmp_TexEnv[0].srcAlpha (1st component) NN_GX_STATE_FSUNIFORM
0x0cO [23:20] dmp_TexEnv[0] -srcAlpha (2nd component) NN_GX_STATE_FSUNIFORM
0x0cO [27:24] dmp_TexEnv[0] .srcAlpha (3rd component) NN_GX_STATE_FSUNIFORM
Oxcl [3:0] dmp_TexEnv[0] -operandRgb (1st component) NN_GX_STATE_FSUNIFORM
Oxcl [7:4] dmp_TexEnv[0] - operandRgb (2nd component) NN_GX_STATE_FSUNIFORM
Oxcl [11:8] dmp_TexEnv[0] -operandRgb (3rd component) NN_GX_STATE_FSUNIFORM
oxcl | [14:12] ?12?32%%%%8] -operandAlpha NN_GX_STATE_FSUNIFORM
oxcl [18:16] ?;:%—g:;ggr‘]’e[rg -operandAlpha NN_GX_STATE_FSUNIFORM

© 2009-2011 Nintendo
CONFIDENTIAL

173

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Rsegi_ster Bits Related Functions and Uniforms State Flags
etting

oxcl [22:20] ?STE—CE%E(%E%] -operandAlpha NN_GX_STATE_FSUNIFORM
0x0c2 [3:0] dmp_TexEnv[0] -combineRgb NN_GX_STATE_FSUNIFORM
0x0c2 [19:16] dmp_TexEnv[0] -combineAlpha NN_GX_STATE_FSUNIFORM
0x0c3 [7:0] dmp_TexEnv[0] .constRgba (1st component) NN_GX_STATE_FSUNIFORM
0x0c3 [15:8] dmp_TexEnv[0] -constRgba (2nd component) NN_GX_STATE_FSUNIFORM
0x0c3 [23:16] dmp_TexEnv[0] .constRgba (3rd component) NN_GX_STATE_FSUNIFORM
0x0c3 [31:24] dmp_TexEnv[0] .constRgba (4th component) NN_GX_STATE_FSUNIFORM
0x0c4 [1:0] dmp_TexEnv[0] -scaleRgb NN_GX_STATE_FSUNIFORM
0x0c4 [17:16] dmp_TexEnv[0] -scaleAlpha NN_GX_STATE_FSUNIFORM
0x0c8 [3:0] dmp_TexEnv[1] .srcRgb (1st component) NN_GX_STATE_FSUNIFORM
0x0c8 [7:4] dmp_TexEnv[1].srcRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0c8 [11:8] dmp_TexEnv[1].-srcRgb (3rd component) NN_GX_STATE_FSUNIFORM
0x0c8 [19:16] dmp_TexEnv[1] .srcAlpha (1stcomponent) NN_GX_STATE_FSUNIFORM
0x0c8 [23:20] dmp_TexEnv[1].srcAlpha (2nd component) NN_GX_STATE_FSUNIFORM
0x0c8 [27:24] dmp_TexEnv[1].srcAlpha (3rd component) NN_GX_STATE_FSUNIFORM
0x0c9 [3:0] dmp_TexEnv[1] -operandRgb (1st component) NN_GX_STATE_FSUNIFORM
0x0c9 [7:4] dmp_TexEnv[1] .operandRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0c9 [11:8] dmp_TexEnv[1] -operandRgb (3rd component) NN_GX_STATE_FSUNIFORM
0x0c9 | [14:12] ?ﬂ?—;?nﬁ?]\égtl)] -operandAlpha NN_GX_STATE_FSUNIFORM
0x0c9 | [18:16] ?Zmn%—;eéggr\]’e[:g -operandAlpha NN_GX_STATE_FSUNIFORM
0x0c9 | [22:20] ?gg—;f;‘g:g%] -operandAlpha NN_GX_STATE_FSUNIFORM
0Ox0ca [3:0] dmp_TexEnv[1] .combineRgb NN_GX_STATE_FSUNIFORM
Ox0ca [19:16] dmp_TexEnv[1].combineAlpha NN_GX_STATE_FSUNIFORM
0x0cb [7:0] dmp_TexEnv[1] .constRgba (1st component) NN_GX_STATE_FSUNIFORM
0x0cb [15:8] dmp_TexEnv[1] .constRgba (2nd component) NN_GX_STATE_FSUNIFORM
0x0cb [23:16] dmp_TexEnv[1].constRgba (3rd component) NN_GX_STATE_FSUNIFORM
0x0cb [31:24] dmp_TexEnv[1].constRgba (4th component) NN_GX_STATE_FSUNIFORM
0x0cc [1:0] dmp_TexEnv[1] .scaleRgb NN_GX_STATE_FSUNIFORM

CTR-06-0006-001-D

Released: May 13, 2011

174

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rseeg[iisr:Zr Bits Related Functions and Uniforms State Flags

0x0cc [17:16] dmp_TexEnv[1].scaleAlpha NN_GX_STATE_FSUNIFORM
0x0d0 [3:0] dmp_TexEnv[2] -srcRgb (1st component) NN_GX_STATE_FSUNIFORM
0x0do [7:4] dmp_TexEnv[2] -srcRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0do [11:8] dmp_TexEnv[2] -srcRgb (3rd component) NN_GX_STATE_FSUNIFORM
0x0d0 [19:16] dmp_TexEnv[2] .srcAlpha (1st component) NN_GX_STATE_FSUNIFORM
0x0do [23:20] dmp_TexEnv[2] .srcAlpha (2nd component) NN_GX_STATE_FSUNIFORM
0x0d0 [27:24] dmp_TexEnv[2] .srcAlpha (3rd component) NN_GX_STATE_FSUNIFORM
0x0d1 [3:0] dmp_TexEnv[2] -operandRgb (1st component) NN_GX_STATE_FSUNIFORM
0x0d1 [7:4] dmp_TexEnv[2] -operandRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0d1 [11:8] dmp_TexEnv[2] -operandRgb (3rd component) NN_GX_STATE_FSUNIFORM
Ox0d1l | [14:12] ?12?32%%%5)] -operandAlpha NN_GX_STATE_FSUNIFORM
0x0d1 | [18:16] ?2%—2: ;Ecr)‘:"e[nzg -operandAlpha NN_GX_STATE_FSUNIFORM
ox0d1l | [22:20] ?snlg—czfnxpi”n‘gf)] -operandAlpha NN_GX_STATE_FSUNIFORM
0x0d2 [3:0] dmp_TexEnv[2] -combineRgb NN_GX_STATE_FSUNIFORM
0x0d2 [19:16] dmp_TexEnv[2] .combineAlpha NN_GX_STATE_FSUNIFORM
0x0d3 [7:0] dmp_TexEnv[2] .constRgba (1st component) NN_GX_STATE_FSUNIFORM
0x0d3 [15:8] dmp_TexEnv[2] .constRgba (2nd component) NN_GX_STATE_FSUNIFORM
0x0d3 [23:16] dmp_TexEnv[2].constRgba (3rd component) NN_GX_STATE_FSUNIFORM
0x0d3 [31:24] dmp_TexEnv[2] .constRgba (4th component) NN_GX_STATE_FSUNIFORM
0x0d4 [1:0] dmp_TexEnv[2] .scaleRgb NN_GX_STATE_FSUNIFORM
0x0d4 [17:16] dmp_TexEnv[2] .scaleAlpha NN_GX_STATE_FSUNIFORM
0x0d8 [3:0] dmp_TexEnv[3]-srcRgb (1st component) NN_GX_STATE_FSUNIFORM
0x0d8 [7:4] dmp_TexEnv[3]-srcRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0d8 [11:8] dmp_TexEnv[3]-srcRgb (3rd component) NN_GX_STATE_FSUNIFORM
0x0d8 [19:16] dmp_TexEnv[3]-srcAlpha (1st component) NN_GX_STATE_FSUNIFORM
0x0d8 [23:20] dmp_TexEnv[3] -srcAlpha (2nd component) NN_GX_STATE_FSUNIFORM
0x0d8 [27:24] dmp_TexEnv[3]-srcAlpha (3rd component) NN_GX_STATE_FSUNIFORM
0x0d9 [3:0] dmp_TexEnv[3] -operandRgb (1st component) NN_GX_STATE_FSUNIFORM

© 2009-2011 Nintendo
CONFIDENTIAL

175

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
0x0d9 [7:4] dmp_TexEnv[3] -operandRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0d9 [11:8] dmp_TexEnv[3] -operandRgb (3rd component) NN_GX_STATE_FSUNIFORM

. dmp_TexEnv[3] -operandAlpha
0x0d9 [14:12] (st component) NN_GX_STATE_FSUNIFORM

. dmp_TexEnv[3] -operandAlpha
0x0d9 [18:16] (2nd component) NN_GX_STATE_FSUNIFORM

] dmp_TexEnv[3] .operandAlpha
0x0d9 [22:20] (3rd component) NN_GX_STATE_FSUNIFORM
Ox0da [3:0] dmp_TexEnv[3] -combineRgb NN_GX_STATE_FSUNIFORM
Ox0da [19:16] dmp_TexEnv[3]-combineAlpha NN_GX_STATE_FSUNIFORM
0x0db [7:0] dmp_TexEnv[3] -constRgba (1st component) NN_GX_STATE_FSUNIFORM
0x0db [15:8] dmp_TexEnv[3] -constRgba (2nd component) NN_GX_STATE_FSUNIFORM
0x0db [23:16] dmp_TexEnv[3].constRgba (3rd component) NN_GX_STATE_FSUNIFORM
0x0db [31:24] dmp_TexEnv[3] .constRgba (4th component) NN_GX_STATE_FSUNIFORM
0x0dc [1:0] dmp_TexEnv[3] -scaleRgb NN_GX_STATE_FSUNIFORM
0x0dc [17:16] dmp_TexEnv[3].scaleAlpha NN_GX_STATE_FSUNIFORM
0x0e0 [2:0] dmp_Fog.-mode NN_GX_STATE_FSUNIFORM
0x0e0 [3:3] dmp_Gas.shadingDensitySrc NN_GX_STATE_FSUNIFORM
0x0€0 g8 dmp_TexEnv[1].bufferlnput NN_GX_STATE_FSUNIFORM

[8:8] (1st component)
0x0e0 9:9 dmp_TexEnv[2] .bufferlnput NN_GX_STATE_FSUNIFORM
[9:9] (1st component)

. dmp_TexEnv[3] .bufferinput NN_GX_STATE_FSUNIFORM
0x0e0 [10:10] (1st component)

. dmp_TexEnv[4] .bufferinput NN_GX_STATE_FSUNIFORM
0x0e0 [11:11] (1st component)

. dmp_TexEnv[1].bufferlnput NN_GX_STATE_FSUNIFORM
0x0e0 [12:12] (2nd component)

. dmp_TexEnv[2] .bufferlnput NN_GX_STATE_FSUNIFORM
0x0e0 [13:13] (2nd component)

. dmp_TexEnv[3] .bufferlnput NN_GX_STATE_FSUNIFORM
0x0e0 [14:14] (2nd component)

. dmp_TexEnv[4] .bufferinput NN_GX_STATE_FSUNIFORM
0x0e0 [15:15] (2nd component)
0x0e0 [16:16] dmp_Fog.zFlip NN_GX_STATE_FSUNIFORM

CTR-06-0006-001-D

Released: May 13, 2011

176

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rseeg[iisr:Zr Bits Related Functions and Uniforms State Flags
Ox0el [7:0] dmp_Fog.color (1stcomponent) NN_GX_STATE_FSUNIFORM
0x0el [15:8] dmp_Fog.color (2nd component) NN_GX_STATE_FSUNIFORM
Ox0el [23:16] dmp_Fog.color (3rd component) NN_GX_STATE_FSUNIFORM
0x0e4 [15:0] dmp_Gas.attenuation NN_GX_STATE_FSUNIFORM
Oxe05 [15:0] dmp_Gas.accMax NN_GX_STATE_FSUNIFORM
o =0 dmp_Fog . sampler NN_GX_STATE_LUT
0x0e8— : LUT object data created by gl TexImagel1D - -

oxoef | 230

0x0f0 [3:0] dmp_TexEnv[4] -srcRgb (1st component) NN_GX_STATE_FSUNIFORM
0x0f0 [7:4] dmp_TexEnv[4] .srcRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0f0 [11:8] dmp_TexEnv[4] .srcRgb (3rd component) NN_GX_STATE_FSUNIFORM
0x0f0 [19:16] dmp_TexEnv[4] .srcAlpha (1st component) NN_GX_STATE_FSUNIFORM
0x0f0 [23:20] dmp_TexEnv[4] -srcAlpha (2nd component) NN_GX_STATE_FSUNIFORM
0x0f0 [27:24] dmp_TexEnv[4] .srcAlpha (3rd component) NN_GX_STATE_FSUNIFORM
0x0f1 [3:0] dmp_TexEnv[4] -operandRgb (1st component) NN_GX_STATE_FSUNIFORM
Ox0f1 [7:4] dmp_TexEnv[4] -operandRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0f1 [11:8] dmp_TexEnv[4] -operandRgb (3rd component) NN_GX_STATE_FSUNIFORM
OxOf1 | [14:12] ?ﬂ?;l;’;i’;‘égg] -operandAlpha NN_GX_STATE_FSUNIFORM
0xOF1 | [18:16] ?Z%—CT: ;EQ;I’E[;} -operandAlpha NN_GX_STATE_FSUNIFORM
OxOFL | [22:20] ?snlg—czfnxpi”n‘é%] -operandAlpha NN_GX_STATE_FSUNIFORM
0x0f2 [3:0] dmp_TexEnv[4] .combineRgb NN_GX_STATE_FSUNIFORM
0x0f2 [19:16] dmp_TexEnv[4] .combineAlpha NN_GX_STATE_FSUNIFORM
0x0f3 [7:0] dmp_TexEnv[4] .constRgba (1st component) NN_GX_STATE_FSUNIFORM
0x0f3 [15:8] dmp_TexEnv[4] -constRgba (2nd component) NN_GX_STATE_FSUNIFORM
0x0f3 [23:16] dmp_TexEnv[4].constRgba (3rd component) NN_GX_STATE_FSUNIFORM
0x0f3 [31:24] dmp_TexEnv[4] .constRgba (4th component) NN_GX_STATE_FSUNIFORM
0x0f4 [1:0] dmp_TexEnv[4] .scaleRgb NN_GX_STATE_FSUNIFORM
0x0f4 [17:16] dmp_TexEnv[4] .scaleAlpha NN_GX_STATE_FSUNIFORM
0x0f8 [3:0] dmp_TexEnv[5] -srcRgb (1st component) NN_GX_STATE_FSUNIFORM

© 2009-2011 Nintendo
CONFIDENTIAL

177

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
0x0f8 [7:4] dmp_TexEnv[5] -srcRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0f8 [11:8] dmp_TexEnv[5] -srcRgb (3rd component) NN_GX_STATE_FSUNIFORM
0x0f8 [19:16] dmp_TexEnv[5] -srcAlpha (1st component) NN_GX_STATE_FSUNIFORM
0x0f8 [23:20] dmp_TexEnv[5] -srcAlpha (2nd component) NN_GX_STATE_FSUNIFORM
0x0f8 [27:24] dmp_TexEnv[5] -srcAlpha (3rd component) NN_GX_STATE_FSUNIFORM
0x0f9 [3:0] dmp_TexEnv[5] -operandRgb (1st component) NN_GX_STATE_FSUNIFORM
0x0f9 [7:4] dmp_TexEnv[5] -operandRgb (2nd component) NN_GX_STATE_FSUNIFORM
0x0f9 [11:8] dmp_TexEnv[5] -operandRgb (3rd component) NN_GX_STATE_FSUNIFORM
] dmp_TexEnv[5] -operandAlpha
0x0f9 [14:12] (Lst component) NN_GX_STATE_FSUNIFORM
. dmp_TexEnv[5] -operandAlpha
0x0f9 [18:16] (2nd component) NN_GX_STATE_FSUNIFORM
. dmp_TexEnv[5] -operandAlpha
0x0f9 [22:20] (3rd component) NN_GX_STATE_FSUNIFORM
Ox0fa [3:0] dmp_TexEnv[5] -combineRgb NN_GX_STATE_FSUNIFORM
Ox0fa [19:16] dmp_TexEnv[5] -.combineAlpha NN_GX_STATE_FSUNIFORM
Ox0fb [7:0] dmp_TexEnv[5] -constRgba (1st component) NN_GX_STATE_FSUNIFORM
0x0fb [15:8] dmp_TexEnv[5] -constRgba (2nd component) NN_GX_STATE_FSUNIFORM
Ox0fb [23:16] dmp_TexEnv[5] -constRgba (3rd component) NN_GX_STATE_FSUNIFORM
0x0fb [31:24] dmp_TexEnv[5] -constRgba (4th component) NN_GX_STATE_FSUNIFORM
Ox0fc [1:0] dmp_TexEnv[5] -scaleRgb NN_GX_STATE_FSUNIFORM
Ox0fc [17:16] dmp_TexEnv[5] -scaleAlpha NN_GX_STATE_FSUNIFORM
ox0fd [7:0] dmp_TexEnv[0].bufferColor NN_GX_STATE_FSUNIFORM
(1st component)
ox0fd | (5.8 |° dmP_TexEnvIO].bufferColor NN_GX_STATE_FSUNIFORM
(2nd component)
. dmp_TexEnv[0] -bufferColor NN_GX_STATE_FSUNIFORM
Ox0fd [23:16] (3rd component)
. dmp_TexEnv[0] -bufferColor NN_GX_STATE_FSUNIFORM
Ox0fd [31:24] (4th component)
0x100 [1:0] dmp_FragOperation.mode NN_GX_STATE_FSUNIFORM

CTR-06-0006-001-D

Released: May 13, 2011

178

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
glDisable(GL_BLEND)
glDisable(GL_COLOR_LOGIC_OP)
0x100 [8:8] NN_GX_STATE_OTHERS
glEnable(GL_BLEND)
glEnable(GL_COLOR_LOGIC_OP)
0x101 mode in glBlendEquation NN_GX_STATE_OTHERS
% [2:0] modeRGB in glBlendEquationSeparate - - -
mode in glBlendEquation
0x101 [10:8] . . NN_GX_STATE_OTHERS
modeAlphain gIBlendEquationSeparate
sfactor in glBlendFunc
0x101 [19:16] . NN_GX_STATE_OTHERS
srcRGB in glBlendFuncSeparate
0x101 23:20 dfactor in gIBlendFunc NN_GX_STATE_OTHERS
X .
[23:20] dstRGB in glBlendFuncSeparate - - -
0x101 27:24 sfactor in gIBlendFunc NN_GX_STATE_OTHERS
X .
[27:24] srcAlphain glBlendFuncSeparate - - -
0x101 31:28 dfactor in giBlendrunc NN_GX_STATE_OTHERS
% [31:28] dstAlphain glBlendFuncSeparate - - -
0x102 [3:0] glLogicOp NN_GX_STATE_OTHERS
0x103 [7:0] red in glBlendColor NN_GX_STATE_OTHERS
0x103 [15:8] greenin glBlendColor NN_GX_STATE_OTHERS
0x103 [23:16] blue in glBlendColor NN_GX_STATE_OTHERS
0x103 [31:24] alphain glBlendColor NN_GX_STATE_OTHERS
0x104 [0:0] dmp_FragOperation.enableAlphaTest NN_GX_STATE_OTHERS
0x104 [6:4] dmp_FragOperation.alphaTestFunc NN_GX_STATE_OTHERS
0x104 [15:8] dmp_FragOperation.alphaRefvalue NN_GX_STATE_OTHERS
0x105 0:0 glDisable(GL_STENCIL_TEST) NN_GX_STATE_OTHERS
X .

[0:0] glEnable(GL_STENCIL_TEST) - - -
0x105 [6:4] func in glStencilFunc NN_GX_STATE_OTHERS
0x105 [15:8] glStenciIMask NN_GX_STATE_OTHERS
0x105 [23:16] refin glStencilFunc NN_GX_STATE_OTHERS
0x105 [31:24] mask in glStenci lFunc NN_GX_STATE_OTHERS
0x106 [2:0] fail in glStencilOp NN_GX_STATE_OTHERS
0x106 [6:4] zfail in glStencilOp NN_GX_STATE_OTHERS
0x106 [10:8] zpass in glStencilOp NN_GX_STATE_OTHERS

© 2009-2011 Nintendo
CONFIDENTIAL

179

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Register
Setting

Bits

Related Functions and Uniforms

State Flags

0x107

[0:0]

glDisable(GL_DEPTH_TEST)
glEnable(GL_DEPTH_TEST)

NN_GX_STATE_OTHERS

0x107

[6:4]

glDepthFunc

NN_GX_STATE_OTHERS

0x107

[8:8]

red in glColorMask

NN_GX_STATE_OTHERS

0x107

[9:9]

greenin glColorMask

NN_GX_STATE_OTHERS

0x107

[10:10]

blue in glColorMask

NN_GX_STATE_OTHERS

0x107

[11:11]

alphain glColorMask

NN_GX_STATE_OTHERS

0x107

[12:12]

glDepthMask

NN_GX_STATE_OTHERS

0x110

[0:0]

glFinish

glFlush
nngxSplitDrawCmdlist
nngxTransferRender Image

NN_GX_STATE_FRAMEBUFFER
NN_GX_STATE_FBACCESS

0Ox111

[0:0]

glFinish

glFlush

glDrawArrays
glDrawElements
nngxSplitDrawCmdlist
nngxTransferRender Image

NN_GX_STATE_FRAMEBUFFER
NN_GX_STATE_FBACCESS

0x112

[3:0]

dmp_FragOperation.mode
glDisable(GL_BLEND)
glDisable(GL_COLOR_LOGIC_OP)
glEnable(GL_BLEND)
glEnable(GL_COLOR_LOGIC_OP)
glColorMask

NN_GX_STATE_FBACCESS

0x113

[3:0]

dmp_FragOperation.mode
glColorMask

NN_GX_STATE_FBACCESS

0x114

[1:0]

dmp_FragOperation.mode
glDisable(GL_DEPTH_TEST)
glDisable(GL_STENCIL_TEST)
glEnable(GL_DEPTH_TEST)
glEnable(GL_STENCIL_TEST)

NN_GX_STATE_FBACCESS

0x115

[1:0]

dmp_FragOperation.mode
glDisable(GL_DEPTH_TEST)
glDisable(GL_STENCIL_TEST)
glEnable(GL_DEPTH_TEST)
glEnable(GL_STENCIL_TEST)
glDepthMask

glStenciIMask

NN_GX_STATE_FBACCESS

CTR-06-0006-001-D

Released: May 13, 2011

180

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rseeg[;isrtzr Bits Related Functions and Uniforms State Flags
] e internalformatin glRenderbufferStorage
0x116 [1:0] for the depth buffer that is the rendering target NN_GX_STATE_FRAMEBUFFER
[1:0] e internalformatin glRenderbufferStorage
ox117 f_or the color buffer that is the rendering target NN_GX_STATE_FRAMEBUFFER
[18:16] e internalformatin glTexture2DImage2D for
' the color buffer that is the rendering target
e glDisable(GL_EARLY_DEPTH_TEST_DMP)
0x118 [0:0] NN_GX_STATE_OTHERS
e glEnable(GL_EARLY_DEPTH_TEST_DMP)
Ox11b [0:0] | glRenderBlockModeDMP NN_GX_STATE_OTHERS
o Render buffer address allocated by
Ox1llc [27:0] glRenderbufferStorage for the depth buffer NN_GX_STATE_FRAMEBUFFER
that is the rendering target
e Render buffer address allocated by
glRenderbufferStorage for the color buffer
Ox11d [27:0] that is the rendering target NN_GX_STATE_FRAMEBUFFER
e Texture address allocated by gl TexImage2D
e width in glRenderbufferStorage for the color
Oxlle 10:0 buffer that is the rendering target NN_GX_STATE_FRAMEBUFFER
[10:0] o width in glTexture2DImage2D for the color - - -
buffer that is the rendering target
e heightin glRenderbufferStorage for the
lor buffer that is th dering t t
Oxlle | [21:12) | Coorduterinatis fe rencering farge NN_GX_STATE_FRAMEBUFFER
e heightin glTexture2DImage2D for the color
buffer that is the rendering target
0x120 [7:0] |e dmp_Gas.lightXY (1stcomponent) NN_GX_STATE_FSUNIFORM
0x120 [15:8] |e dmp_Gas.lightXY (2nd component) NN_GX_STATE_FSUNIFORM
0x120 [23:16] | * dmp_Gas.lightXY (3rd component) NN_GX_STATE_FSUNIFORM
0x121 [7:0] |e dmp_Gas.lightZ (1stcomponent) NN_GX_STATE_FSUNIFORM
0x121 [15:8] |e dmp_Gas.lightZ (2nd component) NN_GX_STATE_FSUNIFORM
0x121 [23:16] | » dmp_Gas.lightZ (3rd component) NN_GX_STATE_FSUNIFORM
0x122 [7:0] |e dmp_Gas.lightZ (4th component) NN_GX_STATE_FSUNIFORM
0x123 [15:0] | e dmp_Gas.sampler{TR,TG,TB}
. NN_GX_STATE_LUT
0x124 [31:0] e LUT object data created by glTexImagelD
0x125 [31:0] |* dmp_Gas.autoAcc -
0x126 [23:0] | dmp_Gas.deltaZz NN_GX_STATE_FSUNIFORM
0x126 [25:24] | » glDepthFunc NN_GX_STATE_OTHERS
0x130 [15:0] |e dmp_FragOperation.penumbraScale NN_GX_STATE_FSUNIFORM

© 2009-2011 Nintendo
CONFIDENTIAL

181

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
dmp_FragOperation.penumbraBias
0x130 [31:16] dmp_FragOperation.penumbraScale NN_GX_STATE_FSUNIFORM
dmp_FragmentMaterial .specular0
0x140 [29:0] i NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[0]-specular0
dmp_LightEnv. lutEnabledRefl
0x141 [29:0] dmp_FragmentMaterial .specularl NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[0].specularl
dmp_FragmentMaterial .diffuse
0x142 [29:0] i _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[0].diffuse
dmp_FragmentMaterial _.ambient
0x143 [29:0] ; _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[0].ambient
0x144 [31:0]
dmp_FragmentLightSource[0].position NN_GX_STATE_FSUNIFORM
0x145 [15:0]
[12:0]
0x146 -
] dmp_FragmentLightSource[0].
[28:16] spotDirection NN_GX_STATE_FSUNIFORM
0x147 [12:0]
0x149 [0:0] dmp_FragmentLightSource[0].position NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[0] -
0x149 [1:1] twoSideDiFfuse NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[0] -
0x149 [2:2] geomFactoro NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[0].
0x149 [3:3] geomFactorl NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[0] -
Ox14a [19:0] distanceAttenuationBias NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[0].
Ox14b [19:0] distanceAttenuationScale NN_GX_STATE_FSUNTFORM
dmp_FragmentMaterial .specular0
0x150 [29:0] ; NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[1].specular0
dmp_LightEnv. lutEnabledRefl
0x151 [29:0] dmp_FragmentMaterial .specularl NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[1].specularl
dmp_FragmentMaterial .diffuse
0x152 [29:0] ; i NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[1].diffuse
dmp_FragmentMaterial _.ambient
0x153 [29:0] _ _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[1]-ambient

CTR-06-0006-001-D

Released: May 13, 2011

182

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
0x154 [31:0]
dmp_FragmentLightSource[1] -position NN_GX_STATE_FSUNIFORM
0x155 [15:0]
[12:0]
0x156 -
] dmp_FragmentLightSource[1].
[28:16] spotDirection NN_GX_STATE_FSUNIFORM
0x157 [12:0]
0x159 [0:0] dmp_FragmentLightSource[1] -position NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[1].
0x159 [1:1] twoSideDi Ffuse NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[1]-
0x159 [2:2] geomFactor0 NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[1].
0x159 [3:3] geomFactorl NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[1].
Ox15a [19:0] distanceAttenuationBias NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[1]-
0x15b [19:0] distanceAttenuationScale NN_GX_STATE_FSUNIFORM
0X160 290 dmp_FragmentMaterial .specular0 NN GX STATE ESUNIEGRM
X : -
[] dmp_FragmentLightSource[2] -specular0 - -
dmp_LightEnv.lutEnabledRefl
0x161 [29:0] dmp_FragmentMaterial .specularl NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[2].specularl
0x162 29:0 dmp_Fragmentaterial .diffuse NN_GX_STATE_FSUNIFORM
X : . -
[] dmp_FragmentLightSource[2] -diffuse - -
0x163 290 dmp_FragmentMaterial _.ambient NN GX STATE ESUNIEGRM
X : _ -
[] dmp_FragmentLightSource[2].ambient - -
0x164 [31:0]
dmp_FragmentLightSource[2].position NN_GX_STATE_FSUNIFORM
0x165 [15:0]
[12:0]
0x166 .
] dmp_FragmentLightSource[2].
[28:16] spotDirection NN_GX_STATE_FSUNIFORM
0x167 [12:0]
0x169 [0:0] dmp_FragmentLightSource[2] -position NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[2]-
0x169 [1:1] twoSideDiFfuse NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[2]-
0x169 [2:2] geomFactor0 NN_GX_STATE_FSUNIFORM

© 2009-2011 Nintendo
CONFIDENTIAL

183

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
. dmp_FragmentLightSource[2].
0x169 [3:3] geomFactorl NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[2].
Ox16a [19:0] distanceAttenuationBias NN_GX_STATE_FSUNTFORM
. dmp_FragmentLightSource[2] -
0x16b [19:0] distanceAttenuationScale NN_GX_STATE_FSUNIFORM
0x170 290 dmp_FragmentMaterial .specular0 NN GX STATE ESUNIEORM
X : -
[] dmp_FragmentLightSource[3]-specular0 - = -
dmp_LightEnv. lutEnabledRefl
0x171 [29:0] dmp_FragmentMaterial .specularl NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[3].specularl
0x172 29:0 dmp_Fragmentiiaterial.diffuse NN_GX_STATE_FSUNIFORM
X : - -
[] dmp_FragmentLightSource[3].diffuse - = -
0x173 290 dmp_FragmentMaterial _.ambient NN GX STATE ESUNIEORM
X : _ -
[] dmp_FragmentLightSource[3].ambient - = -
0x174 [31:0]
dmp_FragmentLightSource[3].position NN_GX_STATE_FSUNIFORM
0x175 [15:0]
[12:0]
0x176 -
] dmp_FragmentLightSource[3].
[28:16] spotDirection NN_GX_STATE_FSUNIFORM
0x177 [12:0]
0x179 [0:0] dmp_FragmentLightSource[3] -position NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[3].
0x179 [1:1] twoSideDiFfuse NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[3] -
0x179 [2:2] geomFactoro NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[3].
0x179 [3:3] geomFactorl NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[3]-
Ox17a [19:0] distanceAttenuationBias NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[3].
0x17b [19:0] distanceAttenuationScale NN_GX_STATE_FSUNTFORM
dmp_FragmentMaterial .specular0
0x180 [29:0] _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[4] .specular0
dmp_LightEnv. lutEnabledRefl
0x181 [29:0] dmp_FragmentMaterial .specularl NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[4].specularl
0x182 [29:0] dmp_FragmentMaterial .diffuse NN_GX_STATE_FSUNIFORM

CTR-06-0006-001-D

Released: May 13, 2011

184

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
dmp_FragmentLightSource[4] -diffuse
dmp_FragmentMaterial .ambient
0x183 [29:0] _ _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[4] .ambient
0x184 [31:0]
dmp_FragmentLightSource[4].position NN_GX_STATE_FSUNIFORM
0x185 [15:0]
[12:0]
0x186 -
[28:16] 2212{5 ragnentLightSourcel4]- NN_GX_STATE_FSUNIFORM
0x187 [12:0]
0x189 [0:0] dmp_FragmentLightSource[4].position NN_GX_STATE_FSUNIFORM
0x189 [1:1] gwggfggg?igﬁééghtsoume [4]1- NN_GX_STATE_FSUNIFORM
0x189 [2:2] gggaiggggfgt" TghtSource[4].- NN_GX_STATE_FSUNIFORM
0x189 | [3:3] gggaigiggﬁgt" ightSource[4]- NN_GX_STATE_FSUNIFORM
oxisa | (is0] |* SigEragTenctignsouroetal-
ox18b | po:o) | ° GrP-FragnentlightSource[4]. NN_GX_STATE_FSUNIFORM
dmp_FragmentMaterial .specularO
0x190 [29:0] _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[5].specular0
dmp_LightEnv. lutEnabledRefl
0x191 [29:0] dmp_FragmentMaterial .specularl NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[5] -specularl
dmp_FragmentMaterial .diffuse
0x192 [29:0] _ _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[5] -diffuse
dmp_FragmentMaterial .ambient
0x193 [29:0] N _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[5]-ambient
0x194 [31:0]
dmp_FragmentLightSource[5] -position NN_GX_STATE_FSUNIFORM
0x195 [15:0]
[12:0]
0x196 -
[28:16] gggig :i‘ggi:‘gh 1ghtSource[5]- NN_GX_STATE_FSUNIFORM
0x197 [12:0]
0x199 [0:0] dmp_FragmentLightSource[5]-position NN_GX_STATE_FSUNIFORM

© 2009-2011 Nintendo
CONFIDENTIAL

185

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
. dmp_FragmentLightSource[5].
0x199 [1:1] twoSideDiFfuse NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[5].
0x199 [2:2] geomFactoro NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[5] -
0x199 [3:3] geomFactorl NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[5].
0x19a [19:0] distanceAttenuationBias NN_GX_STATE_FSUNTFORM
. dmp_FragmentLightSource[5] -
0x19b [19:0] distanceAttenuationScale NN_GX_STATE_FSUNIFORM
ox1a0 29:0 dmp_FragmentMaterial .specular0 NN GX STATE ESUNIFORM
x1al : -
[] dmp_FragmentLightSource[6] -specular0 - = -
dmp_LightEnv. lutEnabledRefl
Oxlal [29:0] dmp_FragmentMaterial .specularl NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[6] -specularl
oxla2 2010 dmp_FragmentMaterial .diffuse NN GX STATE ESUNIFORM
xla :
[29:0] dmp_FragmentLightSource[6] .diffuse - = -
Ox1a3 2010 dmp_FragmentMaterial .ambient NN GX STATE ESUNIEORM
xla : - -
[] dmp_FragmentLightSource[6].ambient - = -
Oxla4 [31:0]
dmp_FragmentLightSource[6].position NN_GX_STATE_FSUNIFORM
Ox1a5 [15:0]
[12:0]
Ox1a6 -
. dmp_FragmentLightSource[6].
[28:16] spotDirection NN_GX_STATE_FSUNIFORM
Oxla7 [12:0]
Ox1a9 [0:0] dmp_FragmentLightSource[6] -position NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[6].
0x1a9 [1:1] twoSideDiFfuse NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[6] -
0x1a9 [2:2] geomFactoro NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[6].
0x1a9 [3:3] geomFactorl NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[6].
Oxlaa [19:0] distanceAttenuationBias NN_GX_STATE_FSUNTFORM
. dmp_FragmentLightSource[6] -
Oxlab [19:0] distanceAttenuationScale NN_GX_STATE_FSUNIFORM
dmp_FragmentMaterial .specular0
0x1b0 [29:0] i NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[7] -specular0 - = -

CTR-06-0006-001-D

Released: May 13, 2011

186

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
dmp_LightEnv. lutEnabledRefl
Ox1b1l [29:0] dmp_FragmentMaterial .specularl NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[7].specularl
dmp_FragmentMaterial .diffuse
0x1b2 [29:0] _ _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[7] -diffuse
dmp_FragmentMaterial .ambient
0x1b3 [29:0] _ _ NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[7] -ambient
0x1b4 [31:0]
dmp_FragmentLightSource[7].position NN_GX_STATE_FSUNIFORM
0x1b5 [15:0]
[12:0]
0x1b6 -
] dmp_FragmentLightSource[7]-
[28:16] spotDirection NN_GX_STATE_FSUNIFORM
0x1b7 [12:0]
0x1b9 [0:0] dmp_FragmentLightSource[7].position NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[7]-
0x1b9 [1:1] twoSideDiFfuse NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[7].
0x1b9 [2:2] geomFactoro0 NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[7]-
0x1b9 [3:3] geomFactorl NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[7]-
Ox1ba [19:0] distanceAttenuationBias NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[7].
Ox1bb [19:0] distanceAttenuationScale NN_GX_STATE_FSUNIFORM
dmp_FragmentLighting.ambient
0x1cO [29:0] dmp_FragmentMaterial .ambient NN_GX_STATE_FSUNIFORM
dmp_FragmentMaterial .emission
Ox1c2 [2:0] dmp_FragmentLightSource[i] -enabled NN_GX_STATE_FSUNIFORM
dmp_LightEnv.shadowPrimary
0x1c3 [0:0] dmp_LightEnv.shadowSecondary NN_GX_STATE_FSUNIFORM
dmp_LightEnv._shadowAlpha
0x1c3 [3:2] dmp_LightEnv.fresnelSelector NN_GX_STATE_FSUNIFORM
0x1c3 [7:4] dmp_LightEnv.config NN_GX_STATE_FSUNIFORM
0x1c3 [16:16] dmp_LightEnv.shadowPrimary NN_GX_STATE_FSUNIFORM
0x1c3 [17:17] dmp_LightEnv.shadowSecondary NN_GX_STATE_FSUNIFORM
Ox1c3 [18:18] dmp_LightEnv. invertShadow NN_GX_STATE_FSUNIFORM

© 2009-2011 Nintendo
CONFIDENTIAL

187

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

iz s Bits Related Functions and Uniforms State Flags
Setting
0Ox1c3 [19:19] dmp_LightEnv.shadowAlpha NN_GX_STATE_FSUNIFORM
0x1c3 [23:22] dmp_LightEnv.bumpSelector NN_GX_STATE_FSUNIFORM
Ox1c3 [25:24] dmp_LightEnv.shadowSelector NN_GX_STATE_FSUNIFORM
0x1c3 [27:27] dmp_LightEnv.clampHighlights NN_GX_STATE_FSUNIFORM
0x1c3 [29:28] dmp_LightEnv.bumpMode NN_GX_STATE_FSUNIFORM
dmp_LightEnv.bumpMode
Ox1c3 [30:30] _ NN_GX_STATE_FSUNIFORM
dmp_LightEnv._bumpRenorm
Ox1lc4 [0:0] dmp_FragmentLightSource[0] -shadowed NN_GX_STATE_FSUNIFORM
Ox1lc4 [1:1] dmp_FragmentLightSource[1]-.shadowed NN_GX_STATE_FSUNIFORM
Ox1lc4 [2:2] dmp_FragmentLightSource[2] -shadowed NN_GX_STATE_FSUNIFORM
Ox1lc4 [3:3] dmp_FragmentLightSource[3] -shadowed NN_GX_STATE_FSUNIFORM
Ox1lc4 [4:4] dmp_FragmentLightSource[4] -shadowed NN_GX_STATE_FSUNIFORM
Ox1lc4 [5:5] dmp_FragmentLightSource[5] -shadowed NN_GX_STATE_FSUNIFORM
Ox1c4 [6:6] dmp_FragmentLightSource[6] -shadowed NN_GX_STATE_FSUNIFORM
Ox1lc4 [7:7] dmp_FragmentLightSource[7] -shadowed NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[0].
Ox1lc4 [8:8] spotEnabled NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[1].
Oxlc4 [9:9] spotEnabled NN_GX_STATE_FSUNIFORM
Ox1lc4 | [10:10] gggé;;g?ggt" TghtSource[2].- NN_GX_STATE_FSUNIFORM
Oxlcd | [11:11] gggé;;ﬁ?ggt" ightSource[3]- NN_GX_STATE_FSUNIFORM
dmp_FragmentLightSource[4] .-
Oxicd | [12:12] sngEnagl o [4] NN_GX_STATE_FSUNIFORM
Oxlcd | [13:13] gggé;zg?ggu IghtSource[5]. NN_GX_STATE_FSUNIFORM
Oxlcd | [14:14] gggggzg?ggt" 1ghtSource[6].- NN_GX_STATE_FSUNIFORM
Ox1lc4 | [15:15] gggé;;g?ggt" TghtSource[7]- NN_GX_STATE_FSUNIFORM
Ox1lc4 [16:16] dmp_LightEnv. lutEnabledDO NN_GX_STATE_FSUNIFORM
Ox1lc4 [17:17] dmp_LightEnv.lutEnabledD1 NN_GX_STATE_FSUNIFORM
Ox1lc4 [19:19] dmp_LightEnv.fresnelSelector NN_GX_STATE_FSUNIFORM

CTR-06-0006-001-D

Released: May 13, 2011

188

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
Ox1c4 [22:20] dmp_LightEnv. lutEnabledRefl NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[0].
Oxlc4 [24:24] distanceAttenuationEnabled NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[1]-
Ox1c4 [25:25] distanceAttenuationEnabled NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[2].
Oxlca [26:26] distanceAttenuationEnabled NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[3]-
Ox1c4 [27:27] distanceAttenuationEnabled NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[4].-
Oxlc4 [28:28] distanceAttenuationEnabled NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[5].
Oxlc4 [29:29] distanceAttenuationEnabled NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[6] -
Ox1c4 [30:30] distanceAttenuationEnabled NN_GX_STATE_FSUNIFORM
. dmp_FragmentLightSource[7].
Oxlc4 [31:31] distanceAttenuationEnabled NN_GX_STATE_FSUNIFORM
[7:0] dmp_FragmentMaterial .sampler
{b0,D1,FR,RB,RG,RR}
0Ox1c5 dmp_FragmentLightSource[i] .-sampler NN_GX_STATE_LUT
[12:8] {SP,DA}
LUT object data created by gl TexImagelD
Ox1c6 [0:0] dmp_FragmentLighting.enabled FS_STATE_FSUNIFORM
dmp_FragmentMaterial .sampler
{Db0,D1,FR,RB,RG,RR}
Ox1c8- [23:0] dmp_FragmentLightSource[i]-sampler NN_GX_STATE_LUT
Oxi1cf
{SP,DA}
LUT object data created by gl TexImagelD
0x1dO [1:1] dmp_LightEnv.absLutinputDO NN_GX_STATE_FSUNIFORM
0x1do [5:5] dmp_LightEnv.absLutlnputDl NN_GX_STATE_FSUNIFORM
0x1dO [9:9] dmp_LightEnv.absLutInputSP NN_GX_STATE_FSUNIFORM
0x1do [13:13] dmp_LightEnv.absLutInputFR NN_GX_STATE_FSUNIFORM
0x1d0 [17:17] dmp_LightEnv.absLutlnputRB NN_GX_STATE_FSUNIFORM
0x1d0 [21:21] dmp_LightEnv.absLutlnputRG NN_GX_STATE_FSUNIFORM
0x1do [25:25] dmp_LightEnv.absLutInputRR NN_GX_STATE_FSUNIFORM
Ox1d1 [2:0] dmp_LightEnv. lutlnputDO NN_GX_STATE_FSUNIFORM
Ox1d1 [6:4] dmp_LightEnv. lutinputDl NN_GX_STATE_FSUNIFORM

© 2009-2011 Nintendo
CONFIDENTIAL

189

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
Ox1d1 [10:8] dmp_LightEnv. lutlnputSP NN_GX_STATE_FSUNIFORM
Ox1d1 [14:12] dmp_LightEnv. lutlnputFR NN_GX_STATE_FSUNIFORM
Ox1d1 [18:16] dmp_LightEnv. lutlnputRB NN_GX_STATE_FSUNIFORM
Ox1d1 [22:20] dmp_LightEnv. lutlnputRG NN_GX_STATE_FSUNIFORM
Ox1d1 [26:24] dmp_LightEnv. lutInputRR NN_GX_STATE_FSUNIFORM
0x1d2 [2:0] dmp_LightEnv. lutScaleD0O NN_GX_STATE_FSUNIFORM
0x1d2 [6:4] dmp_LightEnv. lutScaleD1 NN_GX_STATE_FSUNIFORM
0x1d2 [10:8] dmp_LightEnv. lutScaleSP NN_GX_STATE_FSUNIFORM
0x1d2 [14:12] dmp_LightEnv. lutScaleFR NN_GX_STATE_FSUNIFORM
0x1d2 [18:16] dmp_LightEnv. lutScaleRB NN_GX_STATE_FSUNIFORM
0x1d2 [22:20] dmp_LightEnv. lutScaleRG NN_GX_STATE_FSUNIFORM
0x1d2 [26:24] dmp_LightEnv. lutScaleRR NN_GX_STATE_FSUNIFORM
[2:0]
[6:4]
[10:8]
[14:12]
0x1d9 dmp_FragmentLightSource[i].enabled NN_GX_STATE_FSUNIFORM
[18:16]
[22:20]
[26:24]
[30:28]
0x200 [28:1] Vertex buffer address allocated by glBufferData NN_GX_STATE_VERTEX
0x201 [31:0]
size and type in glVertexAttribPointer NN_GX_STATE_VERTEX
0x202 [15:0]
glEnableVertexAttribArray
0x202 [27:16] glDIsableVertexAttribArray NN_GX_STATE_VERTEX
glUseProgram
0x202 [31:28] glUseProgram NN_GX_STATE_VERTEX
0x203 [27:0] Vertex buffer address allocated by glBufferData
ptr, stride, size, and type in NN_GX_STATE_VERTEX
0x204 [31:0] glVertexAttribPointer
0x205 [15:0] Vertex buffer address allocated by glBufferData NN_GX_STATE_VERTEX

CTR-06-0006-001-D

Released: May 13, 2011

190

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Register

Setti Bits Related Functions and Uniforms State Flags
etting
[23:16] ptr, stride, size, and type in
glVertexAttribPointer
[31:28]

0x206 | [27:0]

0x207 [31:0]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

[15:0]

0x208 | [23:16]

[31:28]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

0x209 | [27:0]

0x20a [31:0]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

[15:0]

0x20b [23:16]

[31:28]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

0x20c [27:0]

0x20d [31:0]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

[15:0]

0x20e [23:16]

[31:28]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

0x20F [27:0]

0x210 [31:0]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

[15:0]

0x211 [23:16]

[31:28]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

0x212 | [27:0]

0x213 [31:0]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

[15:0]

0x214 [23:16]

[31:28]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

0x215 | [27:0]

0x216 [31:0]

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

© 2009-2011 Nintendo
CONFIDENTIAL

191

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Related Functions and Uniforms

State Flags

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

Vertex buffer address allocated by glBufferData

ptr, stride, size, and type in
glVertexAttribPointer

NN_GX_STATE_VERTEX

‘Seting | BIS
[15:0]
0x217 [23:16]
[31:28]
0x218 [27:0]
0x219 [31:0]
[15:0]
O0x2la | [23:16]
[31:28]
0x21b [27:0]
0x21c [31:0]
[15:0]
0ox21d [23:16]
[31:28]
Ox21e [27:0]
0x21f [31:0]
[15:0]
0x220 | [23:16]
[31:28]
0x221 [27:0]
0x222 [31:0]
[15:0]
0x223 [23:16]
[31:28]
0x224 [27:0]
0x225 [31:0]
[15:0]
0x226 [23:16]
[31:28]
0x227 [27:0]

Vertex buffer address allocated by glBufferData

CTR-06-0006-001-D
Released: May 13, 2011

192

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Rsegl_ster Bits Related Functions and Uniforms State Flags
etting
indices in glDrawElements
0x227 [31:31] type in glDrawElements -
countin glDrawElements
0x228 [31:0] . -
count in glDrawArrays
0x229 [1:0] glUseProgram e NN_GX_STATE_SHADERMODE
0x229 [8:8] mode in glDrawElements -
0x229 [31:31] glUseProgram e NN_GX_STATE_SHADERPROGRAM
0x22a [31:0] firstin glDrawArrays -
0x22e glDrawArrays -
0x22Ff glDrawElements -
glDrawElements
0x231 -
glDrawArrays
0x232 [3:0]
ptrin glVertexAttribPointer .
0x233 [31:0] ibute d db o NN_GX_STATE_VERTEX for fixed
V(Iecex Etm Alétte _aga fgngen::\?reate y vertex attribute values when the
0x234 [31:0] glvertexAttrib{ 3fvor vertex buffer is used
glVertexAttrib{1234}f
0x235 [31:0]
0x238 [20:0] Channel 1 command buffer size -
0x239 [20:0] Channel 2 command buffer size -
0x23a [28:0] Channel 1 command buffer address -
0x23b [28:0] Channel 2 command buffer address -
0x23c [31:0] Kick the channel 1 command buffer -
0x23d [31:0] Kick the channel 2 command buffer -
0x242 [3:0] glUseProgram o NN_GX_STATE_SHADERPROGRAM
0x244 [0:0] glUseProgram e NN_GX_STATE_SHADERMODE
glDrawElements
0x245 [0:0] -
glDrawArrays
Ox24a [3:0] glUseProgram e NN_GX_STATE_SHADERPROGRAM
0x251 [3:0] glUseProgram e NN_GX_STATE_SHADERPROGRAM
0x252 [31:0] glUseProgram o NN_GX_STATE_SHADERPROGRAM
[0:0] glDrawElements
0x253 -
[8:8] glDrawArrays

© 2009-2011 Nintendo
CONFIDENTIAL

193

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Regl_ster Bits Related Functions and Uniforms State Flags
Setting
0x254 [4:0] glUseProgram NN_GX_STATE_SHADERPROGRAM
0x25e [3:0] glUseProgram NN_GX_STATE_SHADERPROGRAM
0x25 glDrawElements
e : -
% [5:8] glDrawArrays
0x25F glDrawElements
X : -
[0:0] glDrawArrays
0x280 glUseProgram NN_GX_STATE_VSUNIFORM
% [15:0] glUniformi NN_GX_STATE_SHADERMODE
glUseProgram NN_GX_STATE_VSUNIFORM
0x281 [23:0] , -
glUniformi NN_GX_STATE_SHADERMODE
glUseProgram NN_GX_STATE_VSUNIFORM
0x282 [23:0] . . -
glUniformi NN_GX_STATE_SHADERMODE
glUseProgram NN_GX_STATE_VSUNIFORM
0x283 [23:0] , -
glUniformi NN_GX_STATE_SHADERMODE
glUseProgram NN_GX_STATE_VSUNIFORM
0x284 [23:0] - -
glUniformi NN_GX_STATE_SHADERMODE
[3:0]
0x289 1UseP NN_GX_STATE_SHADERPROGRAM
: seProgram
x [15:8] g g NN_GX_STATE_SHADERMODE
[31:24]
0x28 lUseProgranm NN_GX_STATE_SHADERPROGRAM
xeea [15:0] g g NN_GX_STATE_SHADERMODE
0x28b [31:0] glUseProgram NN_GX_STATE_VERTEX
0x28c [31:0] glUseProgram NN_GX_STATE_VERTEX
0x28d lUseProararn NN_GX_STATE_SHADERPROGRAM
x [15:0] g g NN_GX_STATE_SHADERMODE
0x28f glUseProgram NN_GX_STATE_SHADERBINARY
X290 [7:0] glUseProgram NN_GX_STATE_SHADERFLOAT
X -

[31:31] glUniformf NN_GX_STATE_VSUNIFORM
0x291— 0 glUseProgram NN_GX_STATE_SHADERFLOAT
0x298 [31:0] glUniformf NN_GX_STATE_VSUNIFORM
0x29b [11:0] glUseProgram NN_GX_STATE_SHADERB INARY
0x29c— . glUseProgram
Ox2a3 [31:0] NN_GX_STATE_SHADERBINARY
0x2a5 [11:0] glUseProgram NN_GX_STATE_SHADERBINARY

CTR-06-0006-001-D

Released: May 13, 2011

194

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Regl_ster Bits Related Functions and Uniforms State Flags
Setting
0x2a6— . glUseProgram
Ox2ad [31:0] NN_GX_STATE_SHADERBINARY
glUseProgram NN_GX_STATE_VSUNIFORM
0x2b0 [15:0] . . oy
glUniformi NN_GX_STATE_SHADERMODE
glUseProgram NN_GX_STATE_VSUNIFORM
0x2b1l [23:0] - -
glUniformi NN_GX_STATE_SHADERMODE
glUseProgram NN_GX_STATE_VSUNIFORM
0x2b2 [23:0] . . oy
glUniformi NN_GX_STATE_SHADERMODE
glUseProgram NN_GX_STATE_VSUNIFORM
0x2b3 [23:0] - -
glUniformi NN_GX_STATE_SHADERMODE
glUseProgram NN_GX_STATE_VSUNIFORM
0x2b4 [23:0] - ,
glUniformi NN_GX_STATE_SHADERMODE
[3:0]
0x2hg 1UseProgram NN_GX_STATE_SHADERPROGRAM
% [15:8] g g NN_GX_STATE_SHADERMODE
[31:24]
glUseProgram NN_GX_STATE_SHADERPROGRAM
Ox2ba [15:0]

NN_GX_STATE_SHADERMODE
0x2bb [31:0] glUseProgram NN_GX_STATE_VERTEX
0x2bc [31:0] glUseProgram NN_GX_STATE_VERTEX

glUseProgram NN_GX_STATE_SHADERPROGRAM
0x2bd [15:0]

NN_GX_STATE_SHADERMODE
0x2bf glUseProgram NN_GX_STATE_SHADERBINARY
Ox2C0 [7:0] glUseProgram NN_GX_STATE_SHADERFLOAT

X2C _

[31:31] glUniformf NN_GX_STATE_VSUNIFORM
Ox2cl— 0 glUseProgram NN_GX_STATE_SHADERFLOAT
0x2c8 [31:0] glUniformf NN_GX_STATE_VSUNIFORM
Ox2cb [11:0] glUseProgram NN_GX_STATE_SHADERBINARY
Ox2cc— . glUseProgram
0x2d3 [31:0] NN_GX_STATE_SHADERBINARY
0x2d5 [11:0] glUseProgram NN_GX_STATE_SHADERB INARY
0x2d6— } glUseProgram
Ox2dd [31:0] NN_GX_STATE_SHADERBINARY

© 2009-2011 Nintendo
CONFIDENTIAL

195

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Error Codes

This chapter lists error codes that may be generated when system functions are called. Use the
glGetError function to get error codes.

Table 6-1 Error Code List

Error Code

Error-Generating Function

Error Cause

GL_ERROR_8000_DMP

nngxGenCmdlists

Negative value specified for n.

GL_ERROR_8001_DMP

nngxGenCmdlists

Failed to allocate memory in the
management region.

GL_ERROR_8002_DMP

nngxDeleteCmdlists

Negative value specified for n.

GL_ERROR_8003_DMP

nngxDeleteCmdlists

Command list object deleted during
execution.

GL_ERROR_8004_DMP

nngxBindCmdlist

Failed to allocate memory in the
management region.

GL_ERROR_8005_DMP

nngxBindCmdlist

This API function was called while saving
the command list.

GL_ERROR_8006_DMP

nngxCmdlistStorage

Failed to allocate memory for command
buffer or command request.

GL_ERROR_8007_DMP

nngxCmdlistStorage

This function was called against the
executing command list.

GL_ERROR_8008_DMP

nngxCmdlistStorage

Negative value specified for bufsize or
requestcount.

GL_ERROR_8009_DMP

nngxRunCmdlist

Command buffer and command request
memory not allocated for bound command
list.

GL_ERROR_800A_DMP

nngxReserveStopCmdlist

This function was called against the
executing command list.

GL_ERROR_800B_DMP

nngxReserveStopCmdlist

0, a negative value, or a value greater than
the maximum number of command
requests specified for id.

GL_ERROR_800C_DMP

nngxSplitDrawCmdlist

0 bound to current command list.

GL_ERROR_800D_DMP

nngxSplitDrawCmdlist

Maximum number of accumulated
command requests has been reached.

GL_ERROR_800E_DMP

nngxSplitDrawCmdlist

A command to stop reading 3D commands
was added to a 3D command buffer that
has finished accumulating, exceeding the
maximum command buffer size.

GL_ERROR_800F_DMP

nngxClearCmdlist

This function was called against the
executing command list.

GL_ERROR_8010_DMP

nngxSetCmdlistCal lback

This function was called against the

CTR-06-0006-001-D
Released: May 13, 2011

196

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Error Code

Error-Generating Function

Error Cause

executing command list.

GL_ERROR_8012_DMP

nngxEnableCmdlistCal lback

0, a negative value other than -1, or a
value greater than the maximum number
of command requests specified for id.

GL_ERROR_8014_DMP

nngxDisableCmdlistCal lback

0, a negative value other than -1, or a
value greater than the maximum number
of command requests specified for id.

GL_ERROR_8015_DMP

nngxSetCmdlistParameteri

This function was called against the
executing command list.

GL_ERROR_8016_DMP

nngxSetCmdlistParameteri

Invalid values specified for pname and
param.

GL_ERROR_8017_DMP

nngxGetCmdlistParameteri

Invalid value specified for pname.

GL_ERROR_8018_DMP

nngxGetCmdlistParameteri

The bound command list is 0, and a value
other than NX_GX_CMDLIST_BINDING is
specified for pname.

GL_ERROR_8019_DMP

nngxCheckVSync

Invalid value specified for display.

GL_ERROR_801A_DMP

nngxWaitVSync

Invalid value specified for display.

GL_ERROR_801B_DMP

nngxSetVSyncCal Iback

Invalid value specified for display.

GL_ERROR_801C_DMP

nngxGenDisplaybuffers

Negative value specified for n.

GL_ERROR_801D_DMP

nngxGenDisplaybuffers

Failed to allocate memory in the
management region.

GL_ERROR_801E_DMP

nngxDeleteDisplaybuffers

Negative value specified for n.

GL_ERROR_801F DMP

nngxActiveDisplay

Invalid value specified for display.

GL_ERROR_8020_DMP

nngxBindDisplaybuffer

Failed to allocate memory in the
management region.

GL_ERROR_8021_DMP

nngxDisplaybufferStorage

0 is bound to the display target.

GL_ERROR_8022_DMP

nngxDisplaybufferStorage

Invalid value specified for width and
height.

GL_ERROR_8023_DMP

nngxDisplaybufferStorage

Invalid value specified for format.

GL_ERROR_8024_DMP

nngxDisplaybufferStorage

Invalid value specified for area.

GL_ERROR_8025_DMP

nngxDisplaybufferStorage

Failed to allocate memory for display
buffer.

GL_ERROR_8026_DMP

nngxDisplayEnv

Negative value specified for displayx or
displayy.

GL_ERROR_8027_DMP

nngxTransferRender Image

0 bound to current command list.

GL_ERROR_8028_DMP

nngxTransferRenderImage

The current command list has already

© 2009-2011 Nintendo
CONFIDENTIAL

197

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Error Code Error-Generating Function Error Cause

accumulated the maximum number of
command requests.

GL_ERROR_8029_DMP | nngxTransferRenderImage Invalid value specified for buffer. Invalid
object name, or display buffer memory not
allocated.

GL_ERROR_802A_DMP | nngxTransferRenderImage Current color buffer invalid. Render buffer
not attached, or render buffer memory not
allocated.

GL_ERROR_802B_DMP | nngxTransferRenderImage Invalid value specified for mode.

GL_ERROR_802C_DMP | nngxTransferRenderImage Color buffer resolution lower than the
resolution of the transfer destination
display buffer.

GL_ERROR_802D_DMP | nngxTransferRenderImage Invalid value specified for colorx or
colory.

GL_ERROR_802E_DMP | nngxTransferRenderImage Pixel size of the transfer destination

display buffer is larger than the pixel size
of the transfer origin color buffer.

GL_ERROR_802F DMP | nngxTransferRenderlImage No space available in the command buffer,
so could not add split command.

GL_ERROR_8030_DMP | nngxSwapBuffers Invalid value specified for display.

GL_ERROR_8031_DMP | nngxSwapBuffers 0 bound to current display buffer, or

display buffer memory not allocated.

GL_ERROR_8032_DMP | nngxSwapBuffers The display region specified by the

nngxDisplayEnv function lies outside of
the display buffer.

GL_ERROR_8033_DMP | nngxGetDisplaybufferParameteri Invalid value specified for pname.

GL_ERROR_8034_DMP | nngxStartCmdlistSave This function was called again before the

previous call to this function finished
saving the command.

GL_ERROR_8035_DMP | nngxStartCmdlistSave 0 bound to current command list.
GL_ERROR_8036_DMP | nngxStopCmdl istSave Command list save not started.
GL_ERROR_8037_DMP | nngxUseSavedCmdlist 0 bound to current command list.

GL_ERROR_8038_DMP | nngxUseSavedCmdlist Invalid object name specified for cmdlist.

GL_ERROR_8039 _DMP | nngxUseSavedCmdlist Current command list specified for
cmdlist.
GL_ERROR_803A_DMP | nngxUseSavedCmdlist Command was added, exceeding the

maximum size of the 3D command buffer
or of the command request list.

GL_ERROR_803B_DMP | nngxExportCmdlist Invalid value specified for cmdlist.

CTR-06-0006-001-D 198 © 2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMPGL 2.0 System API Specifications

Error Code

Error-Generating Function

Error Cause

GL_ERROR_803C_DMP

nngxExportCmdlist

Value specified for datasize is smaller
than the size of the exported data.

GL_ERROR_803D_DMP

nngxExportCmdlist

bufferoffset, buffersize,
requestid, and requestsize specify
regions for which commands have not
been accumulated.

GL_ERROR_803E_DMP

nngxExportCmdlist

Values specified for bufferoffset and
buffersize are not 8-byte aligned.

GL_ERROR_803F_DMP

nngxExportCmdlist

Attempted to export 3D execution
command that was added with the method
that does not copy the 3D command
buffer, using the nngxUseSavedCmdlist
function.

GL_ERROR_8040_DMP

nngxExportCmdlist

Values specified for bufferoffset and
buffersize do not properly specify the
3D command buffer to be executed by the
exported 3D execution command.

GL_ERROR_8041_DMP

nngxImportCmdlist

Invalid value specified for cmdl ist.

GL_ERROR_8042_DMP

nngxImportCmdlist

Pointer to invalid data specified for data.

GL_ERROR_8043_DMP

nngxImportCmdlist

Value specified for datasize does not
match size of exported data.

GL_ERROR_8044_DMP

nngxImportCmdlist

Command was imported, exceeding the
maximum size of the 3D command buffer
or of the command request list.

GL_ERROR_8045_DMP

nngxImportCmdlist

3D execution command was not the first
command request imported into a
command list's 3D command buffer that
has not been split.

GL_ERROR_8046_DMP

nngxGetExportedCmdlistinfo

Pointer to invalid data specified for data.

GL_ERROR_8047_DMP

nngxCopyCmdlist

Current command list specified for
dcemdlist.

GL_ERROR_8048_DMP

nngxCopyCmdlist

Invalid value specified for scmdlist.

GL_ERROR_8049 DMP

nngxCopyCmdlist

Invalid value specified for dcmdlist.

GL_ERROR_804A_DMP

nngxCopyCmdlist

Same value specified for both scmdlist
and demdlist.

GL_ERROR_804B_DMP

nngxCopyCmdlist

Command list specified for decmdlistis
currently being executed.

GL_ERROR_804C_DMP

nngxCopyCmdlist

Size of the commands accumulated in
scmdl 1st exceeds the maximum size of
the 3D command buffer or of the
command request list specified by
dcmdlist.

© 2009-2011 Nintendo
CONFIDENTIAL

199

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Error Code

Error-Generating Function

Error Cause

GL_ERROR_804D_DMP

nngxSetCommandGenerationMode

Invalid value specified for mode.

GL_ERROR_804E_DMP | nngxAdd3DCommand 0 bound to current command list.

GL_ERROR_804F _DMP | nngxAdd3DCommand An invalid value is specified for
buffersize.

GL_ERROR_8050_DMP | nngxAdd3DbCommand copycmd specifies GL_TRUE, and the size
of the 3D command buffer exceeds the
maximum.

GL_ERROR_8051_DMP | nngxAdd3DCommand copycmd specifies GL_FALSE, and the
size of the 3D command request exceeds
the maximum.

GL_ERROR_8052_DMP | nngxAdd3DCommand Value specified for bufferaddr not a
multiple of 16.

GL_ERROR_8053_DMP | nngxSwapBuffers The display buffer address is not 16-byte

aligned.

GL_ERROR_8054_DMP

nngxAddCmdlist

An invalid value is specified for cmdlist.

GL_ERROR_8055_DMP

nngxAddCmdlist

No command list is currently bound.

GL_ERROR_8056_DMP

nngxAddCmdlist

cmd l i st specifies the current command
list.

GL_ERROR_8057_DMP

nngxAddCmdlist

The current command list is in the middle
of execution.

GL_ERROR_8058_DMP

nngxAddCmdlist

There is not enough memory for command
buffers or command requests.

GL_ERROR_8059_DMP

nngxTransferRenderImage

The 32-block format is set and the
transfer’s source color buffer or destination
display buffer has a width or height that is
not a multiple of 32.

GL_ERROR_805A_DMP

nngxTransferRenderImage

A color buffer was transferred to a display
buffer that uses 24-bit pixels and the 8-
block format when either the color buffer or
display buffer had a width or height that
was not a multiple of 16.

GL_ERROR_805B_DMP

nngxTransferLinearlImage

The current command list is bound to 0.

GL_ERROR_805C_DMP

nngxTransferLinearlImage

The current command list is has already
accumulated the maximum number of
command requests.

GL_ERROR_805D_DMP

nngxTransferLinearlImage

The current 3D command buffer is of
insufficient size.

GL_ERROR_805E_DMP

nngxTransferLinearlImage

Either the object specified to the dstid
argument does not exist, or the address of
the data has not yet been allocated.

GL_ERROR_805F DMP

nngxTransferLinearlImage

Either the width or the height of the

CTR-06-0006-001-D
Released: May 13, 2011

200

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Error Code

Error-Generating Function

Error Cause

destination render buffer is invalid.

GL_ERROR_8060_DMP

nngxTransferLinearImage

The target argument is invalid.

GL_ERROR_8061_DMP

nngxMoveCommandbufferPointer

No command buffer is currently bound, or
the specified offset value will move to
outside of the buffer memory region.

GL_ERROR_8062_DMP

nngxAddVramDmaCommand

Either a valid command list object is not
currently bound, or the current command
request queue is too small.

GL_ERROR_8064_DMP

nngxAddVramDmaCommand

A negative value was specified for size.

GL_ERROR_8065_DMP

nngxClearFillCmdlist

This function was called on a command list
that was still being executed.

GL_ERROR_8066_DMP

nngxValidateState

There was an overflow in the 3D command
buffer.

GL_ERROR_8067_DMP

nngxTransferLinearImage

Either the destination render buffer or the
texture's pixels are of invalid size.

GL_ERROR_8068_DMP

nngxFilterBlocklmage

Either a valid command list object is not
currently bound, or the current command
request queue is too small.

GL_ERROR_8069_DMP

nngxFilterBlocklmage

Either srcaddr or dstaddr is not 8-byte
aligned.

GL_ERROR_806A_DMP

nngxFilterBlocklmage

An invalid value was specified for width
or height.

GL_ERROR_806B_DMP

nngxFilterBlocklmage

An invalid value was specified for format.

GL_ERROR_806C_DMP

nngxValidateState

An error was generated during validation.

GL_ERROR_806D_DMP

nngxSetGasAutoAccumulationUpdate

0 is bound to the current command list.

GL_ERROR_806E_DMP

nngxSetGasAutoAccumulationUpdate

An invalid value was specified for id.

GL_ERROR_806F DMP

nngxAddL2BTransferCommand

A valid command list object is not currently
bound or the current command request
queue is too small.

GL_ERROR_8070_DMP

nngxAddL2BTransferCommand

Either srcaddr or dstaddr uses an
invalid alignment.

GL_ERROR_8071_DMP

nngxAddL2BTransferCommand

blocksize is invalid.

GL_ERROR_8072_DMP

nngxAddL2BTransferCommand

Either width or height is invalid.

GL_ERROR_8073_DMP

nngxAddL2BTransferCommand

format is invalid.

GL_ERROR_8074_DMP

nngxAddBlockImageCopyCommand

A valid command list object is not currently
bound or the current command request
queue is too small.

GL_ERROR_8075_DMP

nngxAddBlockImageCopyCommand

Either srcaddr or dstaddr uses an

© 2009-2011 Nintendo
CONFIDENTIAL

201

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Error Code

Error-Generating Function

Error Cause

invalid alignment.

GL_ERROR_8076_DMP

nngxAddBlockImageCopyCommand

totalsize isinvalid.

GL_ERROR_8077_DMP

nngxAddBlockImageCopyCommand

Either srcunit, srcinterval,
dstunit, or dstinterval is invalid.

GL_ERROR_8078_DMP

nngxAddMemoryFi I ICommand

A valid command list object is not currently
bound or the current command request
queue is too small.

GL_ERROR_8079_DMP

nngxAddMemoryFi Il ICommand

Either startaddrO or startaddrl uses
an invalid alignment.

GL_ERROR_807A_DMP

nngxAddMemoryFi I ICommand

Either size0O or sizel is invalid.

GL_ERROR_807B_DMP

nngxAddMemoryFi Il ICommand

Either widthO or width1 is invalid.

GL_ERROR_807C_DMP

nngxAddB2LTransferCommand

A valid command list object is not currently
bound or the current command request
gueue is too small.

GL_ERROR_807D_DMP

nngxAddB2LTransferCommand

Either srcaddr or dstaddr uses an
invalid alignment.

GL_ERROR_807E_DMP

nngxAddB2LTransferCommand

blocksize is invalid.

GL_ERROR_807F DMP

nngxAddB2LTransferCommand

aamode is invalid.

GL_ERROR_8080_DMP

nngxAddB2LTransferCommand

Either srcformat or dstformat is
invalid.

GL_ERROR_8081_DMP

nngxAddB2LTransferCommand

The target image has a larger pixel size
than the original image.

GL_ERROR_8082_DMP

nngxAddB2LTransferCommand

Either srcwidth, srcheight,
dstwidth, or dstheight is invalid.

GL_ERROR_8083_DMP

nngxAddB2LTransferCommand

The target image is wider or taller than the
original image in pixels.

GL_ERROR_8084_DMP | nngxFlush3DCommand 0 is bound to the current command list.

GL_ERROR_8085_DMP | nngxFlush3DCommand The accumulated command requests have
reached the maximum number.

GL_ERROR_8086_DMP | nngxFlush3DCommand If a 3D command loading complete

command is added to the accumulated 3D
command buffer, the buffer will exceed its
maximum size.

GL_ERROR_8087_DMP

nngxSwapBuffersByAddress

An invalid value was specified for
display.

GL_ERROR_8088_DMP

nngxSwapBuffersByAddress

An invalid value was specified for addr.

GL_ERROR_8089_DMP

nngxSwapBuffersByAddress

An invalid value was specified for addrB.

CTR-06-0006-001-D
Released: May 13, 2011

202

© 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Error Code

Error-Generating Function

Error Cause

GL_ERROR_808A_DMP

nngxSwapBuffersByAddress

An invalid value was specified for width.

GL_ERROR_808B_DMP

nngxSwapBuffersByAddress

An invalid value was specified for format.

GL_ERROR_808C_DMP

nngxAdd3DCommandNoCacheFlush

0 is bound to the current command list.

GL_ERROR_808D_DMP

nngxAdd3DCommandNoCacheFlush

An invalid value was specified for
buffersize.

GL_ERROR_808E_DMP

nngxAdd3DCommandNoCacheFlush

bufferaddr is not a multiple of 16.

GL_ERROR_808F_DMP

nngxAdd3DCommandNoCacheFlush

The command request size is larger than
the maximum size.

GL_ERROR_8090_DMP

nngxAddVramDmaCommandNoCacheFlush

A valid command list object is not currently
bound, or the current command request
size is insufficient.

GL_ERROR_8091_DMP

nngxAddVramDmaCommandNoCacheF lush

A negative value was specified for size.

GL_ERROR_9000_DMP

nngxSwapBuffers

The display mode is
NN_GX_DISPLAYMODE_STEREO and
either O is bound to
NN_GX_DISPLAYO_EXT or the display
buffer region has not been allocated.

GL_ERROR_9001_DMP

nngxSwapBuffers

The display mode is
NN_GX_DISPLAYMODE_STEREO and the
display region specified by the
nngxDisplayEnv function is outside of
the display buffer.

GL_ERROR_9002_DMP

nngxSwapBuffers

The display mode is
NN_GX_DISPLAYMODE_STEREO and the
resolution, format, or memory region
differs between the display buffers bound
to NN_GX_DISPLAYO and
NN_GX_DISPLAYO_EXT.

GL_ERROR_9003_DMP

nngxSetDisplayMode

An invalid value is specified for mode.

© 2009-2011 Nintendo
CONFIDENTIAL

203

CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Revision History

Version

Revision
Date

Iltem

Description

2.3

2011/04/18

Added section 5.4.17 Moving the Command Buffer Pointer.
Added section 5.8.14.7 Performance and Setting the Load Array.

Section 5.8.14.6 Padding Components and Automatic Padding for the Load
Array

Added explanation about load array padding elements.

Section 5.9.18 Converting a 32-Bit Floating-Point Number Between -1 and 1
into an 8-Bit Signed Integer

Changed value range from "0to 1"to "-1 to 1."

Added nngxMoveCommandBufferPointer.

Table 5-4 Function List

Changed bit width of command buffer header S1ZE field.
Added section 5.8.43 Command Buffer Execution Registers.

2.2

2011/03/17

Added nngxAddVramDmaCommandNoCacheFlush.

Added supplementary information about nngxAddVramDmaCommand .
Added nngxAdd3DCommandNoCacheFlush.

Added supplementary information about nngxAdd3DCommand -
Revised register configuration of Catmull-Clark subdivision shader.
Fixed typos.

2.1

2011/02/07

Added information about NN_GX_CMDLIST_HW_STATE.

Changed bits [11:8] of register 0x1c5 to [12:8].

Added a note about bits [25:24] of register 0x126.

Added a note to 5.8.39 Settings Registers Specific to the Geometry Shader.

Deleted unnecessary settings from register settings for the reserved
geometry shaders. Corrected a mistaken value.

Revised the description of clearing the framebuffer cache.
Added a note about setting undocumented bits.

Added a note about bits [11:8] of register OxOaf.

Added a note about register 0x1cO.

Added a note about use of dummy commands when setting bits [1:0] of
register 0x229.

Revised the description of address alignment of the color buffer.

Added NN_GX_CMDLIST_GAS_UPDATE to nngxSetCmdl istParameteri.
Added the new nngxSwapBuffersByAddress function.

Deleted the RGBAS format from the display buffers

2.0

2010/11/05

3.3.3
3.3.26
5.8.38.1
5.8.41

Revised an explanation regarding the nngxBindCmdl ist error.
Added an explanation regarding transferring a block image.
Revised the explanation for Ox25f.

Added an explanation regarding clearing the framebuffer cache.

1.9

2010/10/08

5.8.28

5.8.20.13,
5.8.20.14

5.8.20.15

Added explanation of register settings to control frame buffer access.

Noted that shadow textures and gas textures do not support
mipmaps.
Added explanation of clearing the texture cache.

CTR-06-0006-001-D
Released: May 13, 2011

204 © 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Version

Revision
Date

Iltem

Description

e 338

e 3.35,
3.3.6

e 3.3.27

Corrected setting method for register 0x227.
Added nngxFlush3DCommand function.

In sections 3.3.5 and 3.3.6 corrected descriptions of nngxRunCmdlist,
nngxStopCmdlist, and nngxSpl itDrawCmdl ist functions.

Corrected description of nngxAddMemoryFi I ICommand function.
Corrected typos.

1.8

2010/09/16

Standardized the function argument type void* to GLvoid*.

Changed the type of the srcaddr argument to the
nngxAddVramDmaCommand function into const GLvoid*.

Removed the restriction that srcaddr and dstaddr must be 8-byte aligned
in the nngxAddVrambmaCommand function.

Changed the type of the srcaddr argument to the
nngxFi lterBlocklImage function into const GLvoid*.

Added nngxSetGasAutoAccumulationUpdate.

Added nngxAddB2LTransferCommand.

Added nngxAddL2BTransferCommand.

Added nngxBlockImageCopyCommand.

Added nngxAddMemoryFi I ICommand.

Added nngxGetAl locator.

Added a description related to automatic padding for load arrays.

Revised information on gas register settings.

Added a description related to framebuffer access control setting registers.

Revised descriptions of the blend setting register 0x101 and logical
operations.

Revised information for bit [0:0] of register Ox25¥F, which has settings
related to the rendering API.

Added information on the wrapping mode settings for shadow textures.

1.7

2010/08/20

Revised descriptions of register settings for
dmp_FragOperation.wScale.

Added information on register settings for gas lookup tables and procedural
textures.
Added information on shadow and gas settings to the texture format register
settings.

Revised the conversion code in section 5.9.7 Converting a 32-Bit Floating-
Point Number into a 12-Bit Signed Fixed-Point Number with 11 Fractional
Bits (Alternate Method).

Changed register 0x289 to 0x28a in the setting registers related to the
rendering API.

Revised information on automatic padding for load arrays.

1.6

2010/07/30

Deprecated restriction that 2D textures cannot straddle 32 MB boundaries.
Added the nngxSetT imeout function.

Changed buffersize restrictions for the nngxAdd3DCommand function.
Added description of the global ambient register settings.

Added information about bit [7:4] of register 0x1c3.

Revised information about register 0x227 setting values.

Added setting values for bit [18:18] of register Ox1c4.

© 2009-2011 Nintendo
CONFIDENTIAL

205 CTR-06-0006-001-D
Released: May 13, 2011

DMPGL 2.0 System API Specifications

Version

Revision
Date

Iltem

Description

Revised information about bit [16:16] of register 0x25e.
Clarified the number of items stored in lookup tables.
Added details about the commands for the rendering API.
Added information about framebuffer cache clears.

Replaced some images to fix an issue where images were corrupted when
creating a PDF version of this document.

15

2010/07/13

Fixed incorrect values.
Added a note about address constraints for cube-map textures.

1.4

2010/07/07

Revised the notation used for register addresses.

Added a table of correspondences between uniforms in reserved geometry
shaders and registers.

Changed the setting for register 0x280 in the line shader.

Added a precaution about command generation if glUseProgram specifies
0.

Added parameters that can be obtained using
nngxGetCmdl istParameteri.

Added two new functions, nngxlnval idateState and
nngxTransferLinearImage.

Added register information for global ambients.

13

2010/06/04

Revised the description of nngxExportCmdlist.

Revised allocator information related to cube-map textures.
Added three new functions: nngxClearFilICmdlist,
nngxAddVramDmaCommand, and nngxFi lterBlocklImage.

Described factors that cause errors to be generated by validation with
nngxVal idateState.

Revised argument specifications for nngxAdd3DCommand.

Added supplementary information on a byte-enable setting of O for the
command buffer.

Added supplementary information on various registers.

Added information on the binary layout of signed fixed-point numbers.
Added register information for dmp_Gas . autoAcc.

Added register information related to clearing the early depth buffer.
Added register information related to the rendering API.

Added register settings that are applicable when a reserved geometry
shader is used.

Added register information related to clearing the framebuffer caches.
Added register information related to interrupt commands.
Added a list of PICA registers.

1.2

2010/05/11

Revised conditions for updating the NN_GX_STATE_SCISSOR state as well
as dependency relationships.

Added conditions for command generation with
NN_GX_STATE_SHADERPROGRAM.

Added information on setting registers for fixed vertex attributes.

Added section 5.8.15 Other Setting Registers Related to the Vertex Shader.
Added information on setting registers for the gas shading lookup tables.
Fixed typos.

CTR-06-0006-001-D
Released: May 13, 2011

206 © 2009-2011 Nintendo
CONFIDENTIAL

DMPGL 2.0 System API Specifications

Version REYIEIEL) Item Description
Date

o Fixed typos.
¢ Added information on display modes and stereoscopic display.

e Added a note about the block format to the specifications of
nngxDisplaybufferStorage.

e Added an error to nngxTransferRender Image related to block-32 mode.
e Added a new function, nngxGetCommandGenerationMode.
o Added details for register settings for vertex shader attributes.

¢ Renamed section 5.8.16 Render Buffer Address Setting Registers to Render
Buffer Setting Registers and added register settings related to the render
buffer.

e Added content in section 5.8.19 Texture Setting Registers. Deleted section

5.12.2.6 Clock Controls for Texture Coordinates and consolidated it with
1.1 2010/04/23 section 5.8.10 Clock Control Setting Registers for Vertex Shader Output
Attributes.

o Added register information to section 5.8.29 Depth Test Setting Registers.
e Added section 5.8.37 Register Settings Related to the Rendering API.

e Added section 5.8.38 Register Settings Related to the Geometry Shader.
e Added section 5.8.39 Settings for Undocumented Bits.

e Added information to section 5.10 Command Cache Restrictions.

¢ Noted that rendering functions generate commands to set registers for the
texture sampler type (this was added along with revisions to the
implementation).

e Added errors for nngxTransferRender Image.
¢ Added information on registers that set gas shading lookup tables.
e Revised the description of nngxStopCmdlist.

1.0 2010/04/02 e Initial version.

© 2009-2011 Nintendo 207 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

DMP and PICA are registered trademarks of Digital Media Professionals Inc.

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

© 2009-2011 Digital Media Professionals Inc. All
rights reserved.

This documentation is the confidential and
proprietary property of Digital Media
Professionals Inc. The possession or use of this
documentation and its content requires a written
license from Digital Media Professionals Inc.

© 2009-2011 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

CTR-06-0006-001-D 208

Released: May 13, 2011

© 2009-2011 Nintendo
CONFIDENTIAL

	1
Overview
	2 Initialization API
	2.1 API
	2.1.1 DMPGL Initialization
	2.1.2 DMPGL Finalization
	2.1.3 Getting an Allocator

	2.2 Allocator Information

	3 Execution Control API
	3.1 Command List Objects
	3.1.1 3D Command Buffer
	3.1.2 Command Requests
	3.1.2.1 DMA Transfer Commands
	3.1.2.2 3D Execution Commands
	3.1.2.3 Memory Fill Commands
	3.1.2.4 Post-Transfer Commands
	3.1.2.5 Render Texture Transfer Commands

	3.2 Executing Commands
	3.2.1 Serial Execution Mode
	3.2.2 Parallel Execution Mode
	3.2.3 Synchronous Execution Mode

	3.3 API
	3.3.1 Generating Command List Objects
	3.3.2 Deleting Command List Objects
	3.3.3 Binding Command List Objects
	3.3.4 Allocating Data Regions for Command List Objects
	3.3.5 Executing Command List Objects
	3.3.6 Stopping Command List Objects
	3.3.7 Scheduling Stops for Command List Objects
	3.3.8 Splitting the 3D Command Buffer
	3.3.9 Flushing the Accumulated 3D Command Buffer
	3.3.10 Clearing Command List Objects
	3.3.11 Clearing Command List Objects and Filling Command Buffers
	3.3.12 Registering Interrupt Handlers for Command Completion
	3.3.13 Setting Parameters for Command List Objects
	3.3.14 Getting the Parameters of Command List Objects
	3.3.15 Checking for V-Sync Updates
	3.3.16 V-Sync Synchronization
	3.3.17 Registering the V-Sync Callback Function
	3.3.18 Waiting for a Command List Object to Complete Execution
	3.3.19 Transferring Data via DMA
	3.3.20 Transferring Data via DMA (Without Cache Flush)
	3.3.21 Transferring Block Images with an Anti-Aliasing Filter
	3.3.22 Image Transfer Requests
	3.3.23 Setting the Timeout for Waiting to Complete Command List Object Execution
	3.3.24 Updating Additive Blend Results Rendered with Gas Density Information
	3.3.25 Transferring a Block Image That Is Converted into a Linear Image
	3.3.26 Transferring a Linear Image That Is Converted into a Block Image
	3.3.27 Transferring a Block Image
	3.3.28 Filling Memory

	3.4 NN_GX_CMDLIST_HW_STATE

	4 Display Control API
	4.1 Processing Flow from Rendering Through Display
	4.1.1 Rendering
	4.1.2 Transferring Rendered Results
	4.1.3 Displaying

	4.2 Specifying the Display Area
	4.3 API
	4.3.1 Generating Display Buffer Objects
	4.3.2 Deleting Display Buffer Objects
	4.3.3 Activating Display Targets
	4.3.4 Binding Display Buffers
	4.3.5 Allocating Display Buffers
	4.3.6 Specifying the Display Area
	4.3.7 Requesting Transfers of Rendered Results
	4.3.8 Displaying Rendered Screens (Swapping)
	4.3.9 Getting Parameters for Display Buffer Objects
	4.3.10 Display Mode Settings
	4.3.11 Screen Display by Specifying the Display Address (Swapping by Specifying Addresses)

	5 Command List Extended API
	5.1 Saving and Reusing Command List Objects
	5.1.1 Saving Commands
	5.1.2 Using Saved Commands
	5.1.2.1 The Method That Copies the 3D Command Buffer
	5.1.2.2 The Method That Does Not Copy the 3D Command Buffer
	5.1.2.3 Copied Command Request Information

	5.2 Editing Commands
	5.3 Other Features
	5.3.1 Importing and Exporting Command Lists
	5.3.2 Copying Command List Objects
	5.3.3 3D Command Buffer Generation
	5.3.4 Adding 3D Commands

	5.4 API
	5.4.1 Start Saving Command Lists
	5.4.2 Stop Saving Command Lists
	5.4.3 Using Saved Command Lists
	5.4.4 Exporting Command Lists
	5.4.5 Importing Command Lists
	5.4.6 Getting Command List Information for Exported Data
	5.4.7 Copying Command Lists
	5.4.8 Checking the DMPGL State and Generating Commands
	5.4.9 Updating the DMPGL State
	5.4.10 Setting the Command Output Mode
	5.4.11 Getting the Command Output Mode
	5.4.12 Adding 3D Commands
	5.4.13 Adding 3D Commands (Without Cache Flush)
	5.4.14 Adding a Copied Command List
	5.4.15 Getting the Updated DMPGL State
	5.4.16 Invalidating DMPGL State Updates
	5.4.17 Moving the Command Buffer Pointer

	5.5 State Flags
	5.5.1 State Flag Types
	5.5.2 State Flag Dependencies
	5.5.3 Lookup Table Command Generation

	5.6 DMPGL Functions That Generate Commands
	5.7 3D Command Buffer Specifications
	5.7.1 Basic Specifications
	5.7.2 Single Access
	5.7.3 Burst Access
	5.7.3.1 Writing to a Single Register
	5.7.3.2 Writing to Consecutive Registers

	5.8 PICA Register Information
	5.8.1 Render Start Registers
	5.8.2 Vertex Shader Floating-Point Registers
	5.8.2.1 Address Information
	5.8.2.2 How to Set the Input Mode for 32-Bit Floating-Point Numbers
	5.8.2.3 How to Set the Input Mode for 24-Bit Floating-Point Numbers

	5.8.3 Vertex Shader Boolean Registers
	5.8.4 Vertex Shader Integer Registers
	5.8.5 Vertex Shader Starting Address Setting Registers
	5.8.6 Registers That Set the Number of Input Vertex Attributes
	5.8.7 Registers That Set the Number of Output Registers Used by the Vertex Shader
	5.8.8 Registers That Set the Vertex Shader Output Mask
	5.8.9 Registers That Set Vertex Shader Output Attributes
	5.8.10 Clock Control Setting Registers for Vertex Shader Output Attributes
	5.8.11 Vertex Shader Program Code Setting Registers
	5.8.12 Registers That Map Vertex Attributes to Input Registers
	5.8.13 Registers That Set Fixed Vertex Attribute Values
	5.8.14 Registers for Vertex Attribute Array Settings
	5.8.14.1 Base Address
	5.8.14.2 Internal Vertex Attributes
	5.8.14.3 Fixed Vertex Attribute Mask
	5.8.14.4 Vertex Attribute Count
	5.8.14.5 Load Arrays
	5.8.14.6 Padding Components and Automatic Padding for the Load Array
	5.8.14.7 Setting the Load Array and Performance

	5.8.15 Other Setting Registers Related to the Vertex Shader
	5.8.16 Texture Address Setting Registers
	5.8.17 Render Buffer Setting Registers
	5.8.18 Texture Combiner Setting Registers
	5.8.19 Registers That Set Fragment Lighting
	5.8.19.1 Enabling and Disabling Lighting
	5.8.19.2 Global Ambient Settings
	5.8.19.3 Per-Light Settings
	5.8.19.4 Lookup Table Settings
	5.8.19.5 Setting the Range of Lookup Table Arguments
	5.8.19.6 Setting Lookup Table Input Values
	5.8.19.7 Setting the Output Scaling for Lookup Tables
	5.8.19.8 Shadow Attenuation Settings
	5.8.19.9 Miscellaneous Settings

	5.8.20 Texture Setting Registers
	5.8.20.1 Shadow Texture Settings
	5.8.20.2 Setting the Texture Sampler Type
	5.8.20.3 Setting the Texture Coordinate Selection
	5.8.20.4 Procedural Texture Settings
	5.8.20.5 Lookup Table Settings for Procedural Textures
	5.8.20.6 Texture Resolution
	5.8.20.7 Texture Formats
	5.8.20.8 Texture WRAP Modes
	5.8.20.9 Texture Filter Modes
	5.8.20.10 Texture Level of Detail
	5.8.20.11 Texture Border Color
	5.8.20.12 Registers for Texture LOD Bias Settings
	5.8.20.13 Shadow Texture Settings
	5.8.20.14 Gas Texture Use Settings
	5.8.20.15 Clearing the Texture Caches

	5.8.21 Registers for Gas Settings
	5.8.21.1 Gas-Related Reserved Uniform Settings
	5.8.21.2 Shading Lookup Table Settings

	5.8.22 Fog Setting Registers
	5.8.22.1 Fog-related Reserved Uniform Settings
	5.8.22.2 Fog Lookup Table Settings

	5.8.23 Fragment Operation Setting Registers
	5.8.24 Shadow Attenuation Factor Setting Registers
	5.8.25 w Buffer Setting Registers
	5.8.26 User Clip Setting Registers
	5.8.27 Alpha Test Setting Registers
	5.8.28 Framebuffer Access Control Setting Registers
	5.8.29 Viewport Setting Registers
	5.8.30 Depth Test Setting Registers
	5.8.31 Logical Operation and Blend Setting Registers
	5.8.32 Early Depth Test Setting Registers
	5.8.33 Stencil Test Setting Registers
	5.8.34 Culling Setting Registers
	5.8.35 Scissoring Setting Registers
	5.8.36 Color Mask Setting Registers
	5.8.37 Block Format Setting Registers
	5.8.38 Settings Registers Specific to the Rendering API
	5.8.38.1 With the Vertex Buffer in Use
	5.8.38.2 Without the Vertex Buffer in Use

	5.8.39 Settings Registers Specific to the Geometry Shader
	5.8.39.1 Overview
	5.8.39.2 Geometry Shader Floating-Point Registers
	5.8.39.3 Geometry Shader Boolean Registers
	5.8.39.4 Geometry Shader Integer Registers
	5.8.39.5 Geometry Shader Starting Address Setting Registers
	5.8.39.6 Registers That Set the Number of Input Vertex Attributes
	5.8.39.7 Registers That Set the Number of Output Registers Used by the Geometry Shader
	5.8.39.8 Register That Sets the Geometry Shader Output Register Mask
	5.8.39.9 Registers That Set Geometry Shader Output Attributes
	5.8.39.10 Clock Control Setting Registers for Geometry Shader Output Attributes
	5.8.39.11 Geometry Shader Program Code Setting Registers
	5.8.39.12 Registers That Map Vertex Attributes to Geometry Shader Input Registers
	5.8.39.13 Miscellaneous Registers

	5.8.40 Settings Registers When Reserved Geometry Shaders Are Used
	5.8.40.1 Point Shader
	5.8.40.2 Line Shader
	5.8.40.3 Silhouette Shader
	5.8.40.4 Catmull-Clark Subdivision
	5.8.40.5 Loop Subdivision
	5.8.40.6 Particle System

	5.8.41 Clearing the Framebuffer Cache
	5.8.42 Commands That Generate Interrupts (Split Commands)
	5.8.43 Command Buffer Execution Registers
	5.8.43.1 Overview
	5.8.43.2 Use Example 1
	5.8.43.3 Use Example 2
	5.8.43.4 Notes

	5.8.44 Settings Information for Otherwise Undocumented Bits

	5.9 Code to Convert Formats for PICA Register Settings
	5.9.1 Converting from float32 to float24
	5.9.2 Converting from float32 to float16
	5.9.3 Converting from float32 to float31
	5.9.4 Converting from float32 to float20
	5.9.5 Converting a 32-Bit Floating-Point Number into an 8-Bit Signed Fixed-Point Number with 7 Fractional Bits
	5.9.6 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits
	5.9.7 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits (Alternate Method)
	5.9.8 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 8 Fractional Bits
	5.9.9 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 11 Fractional Bits
	5.9.10 Converting a 32-Bit Floating-Point Number into a 16-Bit Signed Fixed-Point Number with 12 Fractional Bits
	5.9.11 Converting a 32-Bit Floating-Point Number into an 8-Bit Unsigned Fixed-Point Number with No Fractional Bits
	5.9.12 Converting a 32-Bit Floating-Point Number into an 11-Bit Unsigned Fixed-Point Number with 11 Fractional Bits
	5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point Number with 12 Fractional Bits
	5.9.14 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number with 24 Fractional Bits
	5.9.15 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number with 8 Fractional Bits
	5.9.16 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned Integer
	5.9.17 Alternate Conversion from a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned Integer
	5.9.18 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit Signed Integer
	5.9.19 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value

	5.10 Command Cache Restrictions and Precautions
	5.11 PICA Register List

	6 Error Codes

