

 2009-2011 Nintendo CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

DMPGL 2.0 System API Specifications

Version 2.3

Digital Media Professionals Inc.

The content of this document is highly confidential
and should be handled accordingly.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 2  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 3 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Table of Contents

1 Overview ...12

2 Initialization API ...13

2.1 API ..13
2.1.1 DMPGL Initialization ...13
2.1.2 DMPGL Finalization ...14
2.1.3 Getting an Allocator ..14

2.2 Allocator Information ..14

3 Execution Control API ...16

3.1 Command List Objects ...16
3.1.1 3D Command Buffer ...17
3.1.2 Command Requests ...17

3.2 Executing Commands ..19
3.2.1 Serial Execution Mode ...19
3.2.2 Parallel Execution Mode ..19
3.2.3 Synchronous Execution Mode ...20

3.3 API ..21
3.3.1 Generating Command List Objects ..21
3.3.2 Deleting Command List Objects ...21
3.3.3 Binding Command List Objects ..21
3.3.4 Allocating Data Regions for Command List Objects ..22
3.3.5 Executing Command List Objects ..22
3.3.6 Stopping Command List Objects ..23
3.3.7 Scheduling Stops for Command List Objects ...23
3.3.8 Splitting the 3D Command Buffer ...23
3.3.9 Flushing the Accumulated 3D Command Buffer ..24
3.3.10 Clearing Command List Objects ..24
3.3.11 Clearing Command List Objects and Filling Command Buffers ...24
3.3.12 Registering Interrupt Handlers for Command Completion ...25
3.3.13 Setting Parameters for Command List Objects ..26
3.3.14 Getting the Parameters of Command List Objects ..26
3.3.15 Checking for V-Sync Updates ..28
3.3.16 V-Sync Synchronization ...29
3.3.17 Registering the V-Sync Callback Function ...29
3.3.18 Waiting for a Command List Object to Complete Execution ..29
3.3.19 Transferring Data via DMA ...30
3.3.20 Transferring Data via DMA (Without Cache Flush) ..30
3.3.21 Transferring Block Images with an Anti-Aliasing Filter ...30

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 4  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

3.3.22 Image Transfer Requests .. 31
3.3.23 Setting the Timeout for Waiting to Complete Command List Object Execution 32
3.3.24 Updating Additive Blend Results Rendered with Gas Density Information 32
3.3.25 Transferring a Block Image That Is Converted into a Linear Image .. 33
3.3.26 Transferring a Linear Image That Is Converted into a Block Image .. 34
3.3.27 Transferring a Block Image .. 35
3.3.28 Filling Memory.. 37

3.4 NN_GX_CMDLIST_HW_STATE ... 38

4 Display Control API... 40

4.1 Processing Flow from Rendering Through Display ... 40
4.1.1 Rendering .. 40
4.1.2 Transferring Rendered Results .. 41
4.1.3 Displaying .. 42

4.2 Specifying the Display Area ... 42

4.3 API ... 43
4.3.1 Generating Display Buffer Objects .. 43
4.3.2 Deleting Display Buffer Objects ... 43
4.3.3 Activating Display Targets .. 43
4.3.4 Binding Display Buffers .. 43
4.3.5 Allocating Display Buffers .. 44
4.3.6 Specifying the Display Area ... 44
4.3.7 Requesting Transfers of Rendered Results ... 45
4.3.8 Displaying Rendered Screens (Swapping) .. 46
4.3.9 Getting Parameters for Display Buffer Objects .. 47
4.3.10 Display Mode Settings ... 47
4.3.11 Screen Display by Specifying the Display Address (Swapping by Specifying Addresses) 48

5 Command List Extended API ... 49

5.1 Saving and Reusing Command List Objects ... 49
5.1.1 Saving Commands .. 49
5.1.2 Using Saved Commands ... 50

5.2 Editing Commands .. 52

5.3 Other Features ... 52
5.3.1 Importing and Exporting Command Lists .. 52
5.3.2 Copying Command List Objects .. 52
5.3.3 3D Command Buffer Generation ... 52
5.3.4 Adding 3D Commands ... 53

5.4 API ... 53
5.4.1 Start Saving Command Lists ... 53
5.4.2 Stop Saving Command Lists .. 53

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 5 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.4.3 Using Saved Command Lists ...54
5.4.4 Exporting Command Lists ..55
5.4.5 Importing Command Lists ..58
5.4.6 Getting Command List Information for Exported Data ...58
5.4.7 Copying Command Lists ..59
5.4.8 Checking the DMPGL State and Generating Commands ..59
5.4.9 Updating the DMPGL State ..60
5.4.10 Setting the Command Output Mode...60
5.4.11 Getting the Command Output Mode ..61
5.4.12 Adding 3D Commands ...61
5.4.13 Adding 3D Commands (Without Cache Flush) ..62
5.4.14 Adding a Copied Command List ..62
5.4.15 Getting the Updated DMPGL State ..63
5.4.16 Invalidating DMPGL State Updates ..63
5.4.17 Moving the Command Buffer Pointer ...64

5.5 State Flags ...64
5.5.1 State Flag Types ...64
5.5.2 State Flag Dependencies ...67
5.5.3 Lookup Table Command Generation ...67

5.6 DMPGL Functions That Generate Commands ..68

5.7 3D Command Buffer Specifications ...70
5.7.1 Basic Specifications ...70
5.7.2 Single Access ...71
5.7.3 Burst Access ...71

5.8 PICA Register Information ..72
5.8.1 Render Start Registers ...72
5.8.2 Vertex Shader Floating-Point Registers ...72
5.8.3 Vertex Shader Boolean Registers ..74
5.8.4 Vertex Shader Integer Registers ..74
5.8.5 Vertex Shader Starting Address Setting Registers ...74
5.8.6 Registers That Set the Number of Input Vertex Attributes ...75
5.8.7 Registers That Set the Number of Output Registers Used by the Vertex Shader75
5.8.8 Registers That Set the Vertex Shader Output Mask ..75
5.8.9 Registers That Set Vertex Shader Output Attributes ..75
5.8.10 Clock Control Setting Registers for Vertex Shader Output Attributes ..77
5.8.11 Vertex Shader Program Code Setting Registers ...77
5.8.12 Registers That Map Vertex Attributes to Input Registers ...78
5.8.13 Registers That Set Fixed Vertex Attribute Values ..79
5.8.14 Registers for Vertex Attribute Array Settings ..80
5.8.15 Other Setting Registers Related to the Vertex Shader ..89
5.8.16 Texture Address Setting Registers ...89
5.8.17 Render Buffer Setting Registers ..89

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 6  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

5.8.18 Texture Combiner Setting Registers .. 90
5.8.19 Registers That Set Fragment Lighting ... 93
5.8.20 Texture Setting Registers ... 102
5.8.21 Registers for Gas Settings ... 111
5.8.22 Fog Setting Registers .. 114
5.8.23 Fragment Operation Setting Registers .. 115
5.8.24 Shadow Attenuation Factor Setting Registers ... 115
5.8.25 w Buffer Setting Registers ... 116
5.8.26 User Clip Setting Registers .. 117
5.8.27 Alpha Test Setting Registers .. 117
5.8.28 Framebuffer Access Control Setting Registers .. 118
5.8.29 Viewport Setting Registers .. 122
5.8.30 Depth Test Setting Registers ... 122
5.8.31 Logical Operation and Blend Setting Registers ... 123
5.8.32 Early Depth Test Setting Registers .. 125
5.8.33 Stencil Test Setting Registers .. 126
5.8.34 Culling Setting Registers ... 127
5.8.35 Scissoring Setting Registers .. 127
5.8.36 Color Mask Setting Registers .. 128
5.8.37 Block Format Setting Registers ... 129
5.8.38 Settings Registers Specific to the Rendering API .. 129
5.8.39 Settings Registers Specific to the Geometry Shader... 134
5.8.40 Settings Registers When Reserved Geometry Shaders Are Used ... 137
5.8.41 Clearing the Framebuffer Cache ... 147
5.8.42 Commands That Generate Interrupts (Split Commands) .. 148
5.8.43 Command Buffer Execution Registers... 148
5.8.44 Settings Information for Otherwise Undocumented Bits .. 152

5.9 Code to Convert Formats for PICA Register Settings ... 154
5.9.1 Converting from float32 to float24.. 154
5.9.2 Converting from float32 to float16.. 155
5.9.3 Converting from float32 to float31.. 155
5.9.4 Converting from float32 to float20.. 156
5.9.5 Converting a 32-Bit Floating-Point Number into an 8-Bit Signed Fixed-Point Number with 7

Fractional Bits .. 156
5.9.6 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11

Fractional Bits .. 157
5.9.7 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11

Fractional Bits (Alternate Method) ... 158
5.9.8 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 8

Fractional Bits .. 158
5.9.9 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 11

Fractional Bits .. 159

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 7 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.9.10 Converting a 32-Bit Floating-Point Number into a 16-Bit Signed Fixed-Point Number with 12
Fractional Bits ...160

5.9.11 Converting a 32-Bit Floating-Point Number into an 8-Bit Unsigned Fixed-Point Number with
No Fractional Bits ...161

5.9.12 Converting a 32-Bit Floating-Point Number into an 11-Bit Unsigned Fixed-Point Number with
11 Fractional Bits ..161

5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point Number with
12 Fractional Bits ..162

5.9.14 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number with
24 Fractional Bits ..163

5.9.15 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number with 8
Fractional Bits ...163

5.9.16 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned Integer 164
5.9.17 Alternate Conversion from a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit

Unsigned Integer ..164
5.9.18 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit Signed Integer ...164
5.9.19 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value164

5.10 Command Cache Restrictions and Precautions ..165

5.11 PICA Register List ..165

6 Error Codes ...196

Revision History ...204

Code
Code 5-1 Sample 32-Bit Floating-Point Input ...73
Code 5-2 Sample 24-Bit Floating-Point Input ...74
Code 5-3 Sample Vertex Shader Definitions ..76
Code 5-4 Sample Interleaved Array ..84
Code 5-5 Vertex Array Settings for an Interleaved Array ..84
Code 5-6 Sample Independent Array ...85
Code 5-7 Vertex Array Settings for an Independent Array..85
Code 5-8 Sample Vertex Data Structure with Padding Components ...87
Code 5-9 Sample Vertex Data Structure with Automatic Padding ..87
Code 5-10 Another Sample Vertex Data Structure with Automatic Padding ..88
Code 5-11 Conversion into a 24-Bit Floating-Point Number ...154
Code 5-12 Conversion into a 16-Bit Floating-Point Number ..155
Code 5-13 Conversion into a 31-Bit Floating-Point Number ..155
Code 5-14 Conversion into a 20-Bit Floating-Point Number ..156
Code 5-15 Conversion into an 8-Bit Signed Fixed-Point Number with 7 Fractional Bits156
Code 5-16 Conversion into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits157

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 8  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Code 5-17 Alternate Conversion into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits 158
Code 5-18 Conversion into a 13-Bit Signed Fixed-Point Number with 8 Fractional Bits 159
Code 5-19 Conversion into a 13-Bit Signed Fixed-Point Number with 11 Fractional Bits 159
Code 5-20 Conversion into a 16-Bit Fixed-Point Number .. 160
Code 5-21 Conversion into an 8-Bit Unsigned Fixed-Point Number with No Fractional Bits 161
Code 5-22 Conversion into an 11-Bit Unsigned Fixed-Point Number with 11 Fractional Bits 161
Code 5-23 Conversion into a 12-Bit Unsigned Fixed-Point Number with 12 Fractional Bits 162
Code 5-24 Conversion into a 24-Bit Fixed-Point Number with 24 Fractional Bits.................................... 163
Code 5-25 Conversion into a 24-Bit Fixed-Point Number with 8 Fractional Bits...................................... 163
Code 5-26 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned Integer164
Code 5-27 Alternate Conversion of a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit
Unsigned Integer .. 164
Code 5-28 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit Signed Integer . 164
Code 5-29 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value 165

Tables
Table 2-1 Alignments for Each Buffer Type .. 14
Table 3-1 Parameter List 1 for Command List Objects .. 26
Table 3-2 Parameter List 2 for Command List Objects .. 27
Table 3-3 width and height in nngxFilterBlockImage .. 31
Table 3-4 Color Buffer Formats and nngxAddMemoryFillCommand Parameters 38
Table 3-5 Depth/Stencil Buffer Formats and nngxAddMemoryFillCommand Parameters 38
Table 4-1 List of Parameters for Display Buffer Objects .. 47
Table 5-1 State Flag Types ... 64
Table 5-2 State Flag Dependencies ... 67
Table 5-3 Conditions for Enabling Lookup Tables .. 67
Table 5-4 Function List ... 69
Table 5-5 Command Bit Structure .. 70
Table 5-6 Registers That Set Output Attributes from the Vertex Shader .. 75
Table 5-7 Clock Control Setting Registers for Vertex Shader Output Attributes .. 77
Table 5-8 Vertex Shader Program Code Setting Registers .. 78
Table 5-9 Vertex Shader Swizzle Pattern Setting Registers .. 78
Table 5-10 Registers That Map Vertex Attributes to Input Registers ... 78
Table 5-11 Registers for Vertex Attribute Array Settings .. 80
Table 5-12 Texture Data Address Setting Registers ... 89
Table 5-13 Block Format Setting Registers .. 90
Table 5-14 Texture Combiner Setting Registers ... 90
Table 5-15 Texture Combiner Numbers and Starting Registers ... 93
Table 5-16 Registers That Enable or Disable Lighting ... 94
Table 5-17 Registers That Set Each Color Component ... 95
Table 5-18 Registers That Set Individual Components of Light Source Coordinates 96

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 9 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Table 5-19 Registers That Set Individual Components of the Spotlight Direction97
Table 5-20 Setting Registers for the Bias and Scale with Distance Attenuation ...97
Table 5-21 Registers Used by Other Miscellaneous Settings for Individual Light Sources97
Table 5-22 Registers That Configure Lookup Tables for Fragment Lighting ..98
Table 5-23 Registers That Set the Range of Lookup Table Arguments ..99
Table 5-24 Registers That Set Lookup Table Input Values ...99
Table 5-25 Registers That Set the Output Scaling for Lookup Tables ..100
Table 5-26 Registers for Shadow Attenuation Settings ..100
Table 5-27 Registers for Other Miscellaneous Fragment Lighting Settings ...101
Table 5-28 Shadow Texture Setting Registers ..102
Table 5-29 Registers That Set the Texture Sampler Type ..102
Table 5-30 Registers for Texture Coordinate Selection ..103
Table 5-31 Registers for Procedural Texture Settings ..103
Table 5-32 Registers That Configure Lookup Tables for Procedural Textures ...105
Table 5-33 Registers That Set the Texture Resolution ...107
Table 5-34 Registers for Texture Format Settings ..107
Table 5-35 Registers for Texture WRAP Mode Settings ...108
Table 5-36 Registers for Texture Filter Mode Settings ..109
Table 5-37 Registers for Texture LOD Settings ..109
Table 5-38 Registers for Texture Border Color Settings ... 110
Table 5-39 Registers for Texture LOD Bias Settings .. 110
Table 5-40 Registers for Gas Settings .. 111
Table 5-41 Registers That Set the Shading Lookup Table ... 113
Table 5-42 Fog Setting Registers ... 114
Table 5-43 Fog Lookup Table Setting Registers ... 114
Table 5-44 Fragment Operation Setting Registers ... 115
Table 5-45 Shadow Attenuation Factor Setting Register .. 115
Table 5-46 w Buffer Setting Registers .. 116
Table 5-47 User Clip Setting Registers ... 117
Table 5-48 Alpha Test Setting Registers ... 117
Table 5-49 Framebuffer Access Control Setting Registers ... 118
Table 5-50 Combinations of Framebuffer Access Control Setting Registers .. 119
Table 5-51 Conditions for Disabling Access to the Framebuffer ...120
Table 5-52 Viewport Setting Registers ..122
Table 5-53 Depth Test Setting Registers ..123
Table 5-54 Logical Operation and Blend Setting Registers ..123
Table 5-55 Early Depth Test Setting Registers ...125
Table 5-56 Stencil Test Setting Registers ...126
Table 5-57 Culling Setting Registers ...127
Table 5-58 Scissoring Setting Registers ...127
Table 5-59 Color Mask Setting Registers ...128
Table 5-60 Block Format Setting Registers ..129

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 10  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Table 5-61 Register Settings Related to the Rendering API (if the Vertex Buffer Is in Use) 129
Table 5-62 Register Settings Related to the Rendering API (when the Vertex Buffer Is Not in Use)....... 132
Table 5-63 Geometry Shader Program Code and Swizzle Pattern Data Settings Registers 136
Table 5-64 Miscellaneous Settings Registers When the Geometry Shader Is in Use 137
Table 5-65 Register Setting Values When the Point Shader Is Used .. 137
Table 5-66: Point Shader Uniforms and Their Corresponding Registers ... 139
Table 5-67 Register Setting Values When Line Shading Is Used .. 139
Table 5-68 Line Shader Uniforms and Their Corresponding Registers ... 140
Table 5-69 Register Setting Values When the Silhouette Shader Is Used ... 140
Table 5-70 Silhouette Shader Uniforms and Their Corresponding Registers .. 141
Table 5-71 Register Setting Values When Catmull-Clark Subdivision Is Used .. 142
Table 5-72 Catmull-Clark Subdivision Shader Uniforms and Their Corresponding Registers 143
Table 5-73 Register Setting Values When Loop Subdivision Is Used .. 144
Table 5-74 Loop Subdivision Shader Uniforms and Their Corresponding Registers 145
Table 5-75 Register Setting Values When the Particle System Shader Is Used 145
Table 5-76 Particle System Shader Uniforms and Their Corresponding Registers 146
Table 5-77 Register Settings for Command Buffer Execution Commands .. 148
Table 5-78 Otherwise Undocumented Bit Setting Information ... 153
Table 5-79 PICA Register List .. 166
Table 6-1 Error Code List ... 196

Figures
Figure 3-1 Block Diagram of a Command List Object .. 16
Figure 3-2 3D Command Buffer ... 17
Figure 3-3 Command Execution in Serial Execution Mode ... 19
Figure 3-4 Command Execution in Parallel Execution Mode ... 20
Figure 3-5 Command Execution in Synchronous Execution Mode .. 20
Figure 3-6 Transferring Partial Image Regions .. 36
Figure 4-1 Rendering ... 40
Figure 4-2 Transferring Rendered Results ... 41
Figure 4-3 Displaying Images After Rendering .. 42
Figure 4-4 Specifying the Display Area .. 42
Figure 5-1 Saving Command List Objects.. 49
Figure 5-2 Using a Copy of a Saved 3D Command Buffer .. 50
Figure 5-3 Using a Saved 3D Command Buffer Directly .. 51
Figure 5-4 First Example of Specifying an Export Correctly .. 56
Figure 5-5 Second Example of Specifying an Export Correctly ... 57
Figure 5-6 First Example of Specifying an Export Incorrectly .. 57
Figure 5-7 Third Example of Specifying an Export Correctly ... 57
Figure 5-8 Fourth Example of Specifying an Export Correctly ... 58
Figure 5-9 Command Structure for Burst Access ... 71

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 11 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Figure 5-10 How to Set 24-Bit Floating-Point Numbers ...74
Figure 5-11 Use Example 1 Diagram 1 ...149
Figure 5-12 Use Example 1 Diagram 2 ..150
Figure 5-13 Use Example 2 Diagram 1 ..151
Figure 5-14 Use Example 2 Diagram 2 ..151

Equations
Equation 4-1 Display Buffer Address in Hardware ...46

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 12  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

1 Overview
This document describes the system API for the development hardware drivers for DMPGL 2.0. There
are four system APIs:

• Initialization API
• Execution Control API
• Display Control API
• Command List Extended API

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 13 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

2 Initialization API
This chapter describes the specifications of the DMPGL 2.0 initialization API.

The initialization API must be called prior to the calling of any other DMPGL API. The initialization API
initializes the overall system. Values for the following settings must be passed to it:

• Settings for LCD display
• Memory allocators
• Other extended settings

2.1 API
This section describes the functions in the API.

2.1.1 DMPGL Initialization
GLboolean nngxInitialize(

 GLvoid* (*allocator)(GLenum, GLenum, GLuint, GLsizei),

 void (*deallocator)(GLenum, GLenum, GLuint, GLvoid*));

Initializes DMPGL. Operation is not guaranteed if any other functions are called prior to this function.
It will return GL_TRUE if initialization is successful. It will return GL_FALSE upon failure. When this
function is called again after a successful initialization without first calling the nngxFinalize
function, it will return GL_FALSE.

Specify pointers to the memory allocator and deallocator to the allocator and deallocator
arguments, respectively. The allocator is used to allocate memory, and the deallocator is used to
deallocate memory. The following values are passed to the first argument of the allocator and
deallocator functions.

• NN_GX_MEM_FCRAM Allocates the FCRAM region
• NN_GX_MEM_VRAMA Allocates a region in the A channel in VRAM
• NN_GX_MEM_VRAMB Allocates a region in the B channel in VRAM

The following values are passed to the second argument of the allocator and deallocator functions.

• NN_GX_MEM_SYSTEM System memory
• NN_GX_MEM_TEXTURE Texture memory
• NN_GX_MEM_VERTEXBUFFER Vertex buffer memory
• NN_GX_MEM_RENDERBUFFER Render buffer memory
• NN_GX_MEM_DISPLAYBUFFER Display buffer memory
• NN_GX_MEM_COMMANDBUFFER 3D command buffer memory

If the second argument is set to NN_GX_MEM_TEXTURE, NN_GX_MEM_VERTEXBUFFER,
NN_GX_MEM_RENDERBUFFER, NN_GX_MEM_DISPLAYBUFFER, or NN_GX_MEM_COMMANDBUFFER,
the name (ID) of the appropriate object will be passed to the third argument of the allocator and
deallocator functions.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 14  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

For the fourth argument to the allocator function, specify the size (in bytes) of the memory area to be
allocated. The allocator function will return the address of the area that was allocated. If the allocation
failed, it will return zero.

For the fourth argument to the deallocator, specify the address of the area allocated by the allocator.
For the first, second, and third arguments to the deallocator, specify the same arguments that you
passed to the allocator when the memory was allocated.

The initialization function does not create a default render buffer. The user must create a render buffer
explicitly based on the settings being used.

2.1.2 DMPGL Finalization
void nngxFinalize(void);

Finalizes DMPGL. Some hardware is not reinitialized even if the nngxInitialize function is called
again after DMPGL finalization.

2.1.3 Getting an Allocator
void nngxGetAllocator (

 GLvoid* (**allocator)(GLenum, GLenum, GLuint, GLsizei),

 void (**deallocator)(GLenum, GLenum, GLuint, GLvoid*));

Gets the allocator set by nngxInitialize, the DMPGL initialization function. Specify a pointer to a
function pointer for both allocator and deallocator to get the allocator and deallocator
respectively. The allocator and deallocator are not obtained if allocator and deallocator are set
to 0.

2.2 Allocator Information
Implementation of the allocators set using DMPGL initialization functions must comply with the
following address alignment rules.

Table 2-1 Alignments for Each Buffer Type

Buffer Type Alignment

Texture
(2D and environmental mapping)

128 bytes

Vertex buffer Alignment of each vertex attribute
4 bytes (GLfloat type)
2 bytes (GLshort and GLushort types)
1 byte (GLbyte and GLubyte types)

Color buffer 64 bytes

Depth buffer (stencil buffer) 32 bytes (for 16-bit depth buffers)
96 bytes (for 24-bit depth buffers)
64 bytes (for 24-bit depth + 8-bit stencil buffers)

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 15 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Buffer Type Alignment

Display buffer 16 bytes

3D command buffer 16 bytes

System 4 bytes (when the size allocated is a multiple of four)
2 bytes (when the size allocated is a multiple of two that is
not a multiple of four)
1 byte (when the size allocated is not a multiple of two)

These alignments all indicate multiples starting from each address bank (128 MB). For example, a
96-byte alignment would require that the starting addresses of the buffer data be placed at the
following positions: (0x1000_0000, 0x1000_0060, 0x1000_00C0, 0x1000_0120, …).

Apart from the address alignment rules listed above, you must also implement your allocators with the
following specifications of the PICA hardware in mind.

• All six faces of cube-map textures must be contained within 32 MB boundaries.
• Addresses for all six faces of cube-map textures must share the same values for the most

significant 7 bits.
• For cube-map textures, the address of the GL_TEXTURE_CUBE_MAP_POSITIVE_X face must be less

than or equal to the address of any other face. In other words, the following relationship must be
satisfied:

(𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 GL_TEXTURE_CUBE_MAP_POSITIVE_X 𝑓𝑎𝑐𝑒) ≤ (𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝑜𝑓 𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑓𝑎𝑐𝑒)

• They must not be located partially in VRAMA and partially in VRAMB.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 16  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

3 Execution Control API
This chapter describes the specifications of the DMPGL 2.0 execution control API. The execution
control API lets applications control execution of 3D rendering with a high degree of freedom. It
replaces the traditional “one-pipe mode” and “two-pipe mode” mechanisms of execution control.

3.1 Command List Objects
The execution control API introduces a new object called the command list object. This object is
treated as the execution unit. A single command list object is made up of the following data.

• 3D command buffer
• Command requests

Figure 3-1 Block Diagram of a Command List Object

3D Command Buffer

Command
Request 1

Command
Request 2

Command
Request N・ ・ ・

Command List Object

Command
Request 3

The following three actions are performed on command list objects.

• Accumulating commands
• Executing accumulated commands
• Executing commands immediately while accumulating them

The total accumulatable size of the 3D command buffer and the maximum accumulatable number of
command requests are specified using the nngxCmdlistStorage function. The command list
object cannot accumulate any more than these specified limits. A completion interrupt callback is
issued to notify the application that accumulated commands have finished executing. Command list
objects that have finished execution can be reused by clearing their content with the
nngxClearCmdlist function.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 17 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

3.1.1 3D Command Buffer

A 3D command buffer is one of the components that make up each command list object. It stores the
register write commands to set for PICA. When a 3D execution command from a command request
begins, the content of this buffer will be loaded into PICA and executed. The 3D command buffer is
caused to accumulate commands by calls to glDrawElements and other functions in the rendering
API.

Figure 3-2 3D Command Buffer

Command Set 1 Command Set 2

3D Command Buffer

・・・・・

In
te

rru
pt

C

om
m

an
d

C
om

m
an

d
1

C
om

m
an

d
2

C
om

m
an

d
3

The 3D command buffer stores a number of sequential command sets. Each command set includes
multiple register write commands; the last command in each command set is the interrupt generation
command. This final command acts as the command loading completion command (that is, the
command indicating that the loading of commands has completed). All 3D execution commands are
executed in command set units.

3.1.2 Command Requests

Command requests include DMA transfer commands, 3D execution commands, memory fill
commands, post-transfer commands, and render texture transfer commands. Each type of command
is queued when certain corresponding functions are issued, and those functions are triggered by
specific causes. The details for each type of command are explained below.

3.1.2.1 DMA Transfer Commands

These commands perform a DMA transfer of textures or vertex buffer data from FCRAM to VRAM.
Functions that allocate texture memory (like glTexImage2D) and functions that allocate vertex
buffers (like glBufferData) will cause commands to be queued.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 18  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

3.1.2.2 3D Execution Commands

These commands cause the PICA register write commands that have accumulated in the 3D
command buffer to be loaded into PICA and executed. The register write commands for PICA include
the start rendering command. Each time a 3D execution command is run, a single command set that
includes multiple register write commands is executed. When functions like glClear or
glCopyTexImage2D are called, a loading complete command is written to the 3D command buffer
to pause the 3D rendering, and the contents of the 3D command buffer up to that point are queued as
a single 3D execution command. It is also possible to stop the loading of the 3D command buffer at
will by using the nngxSplitDrawCmdlist function (see section 3.3.8 Splitting the 3D Command
Buffer).

3.1.2.3 Memory Fill Commands

These commands use the PICA memory fill feature to fill allocated regions in VRAM with a specified
pattern. When the glClear function is called when attached to a render buffer allocated in VRAM,
the command will be queued. Moreover, in order to execute the glClear function, several PICA
registers must be set in addition to the memory fill, so a single 3D execution command will also be
queued. In other words, the register write commands for the glClear function and a 3D command
loading complete command are added to the 3D command buffer after the commands that had
already accumulated beforehand, one 3D execution command is queued for the sake of loading the
3D command buffer up through that point, and the fill command is queued after that.

3.1.2.4 Post-Transfer Commands

These commands take rendered images that were rendered in PICA block format using PICA’s post-
filters and convert them into a linear format that can be loaded to the LCD. This queues commands
using the nngxTransferRenderImage function in the display buffer control API. As with the
glClear function, this requires that the loading of all commands (such as render commands) up to
that point in the 3D command buffer be completed. To do this, a loading complete command is added
to the 3D command buffer, and the post-transfer command is queued after the 3D execution
command is queued. When the 3D command buffer is completed by calling the
nngxSplitDrawCmdlist function immediately beforehand, only the post-transfer command will be
queued.

3.1.2.5 Render Texture Transfer Commands

These commands copy rendered results from PICA to textures. Commands are queued using
glCopyTexImage2D or other such functions in the texture-copying API. As with the glClear
function, this requires that the loading of all commands (such as render commands) up to that point in
the 3D command buffer be completed. To do this, a loading complete command is added to the 3D
command buffer, and the render texture transfer command is queued after the 3D execution
command is queued. When the 3D command buffer is completed by calling the
nngxSplitDrawCmdlist function immediately beforehand, only the render texture transfer
command will be queued.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 19 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

3.2 Executing Commands
The 3D command buffer and command requests of command list objects can be run in one of three
modes: serial execution mode, parallel execution mode, or synchronous execution mode. The
current implementation only supports serial execution mode. The other modes are planned to
be supported in the future.

Each mode is explained below.

3.2.1 Serial Execution Mode

Serial execution mode will cause queued command requests to execute in order from start to finish.
Each command will be executed after the previous command has finished executing. The figure
below shows an example.

Figure 3-3 Command Execution in Serial Execution Mode

DMA
Transfer

Command

Memory Fill
Command

Render
Command

Command Request

DMA
Transfer

Command

Post
Transfer

Command

DMA
Transfer

Memory
Fill

DMA
Transfer Render Post

Transfer

Start Executing Command List

All commands are being executed in order.

3.2.2 Parallel Execution Mode

Parallel execution mode will split the queued command requests into two pipelines and execute them
in parallel, one for DMA transfer commands and another for all other commands.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 20  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Figure 3-4 Command Execution in Parallel Execution Mode

DMA
Transfer

Command

Memory Fill
Command

Render
Command

Command Request

DMA
Transfer

Command

Post
Transfer

Command

DMA
Transfer

DMA
Transfer

Start Executing Command List

Memory
Fill Render Post

Transfer

3.2.3 Synchronous Execution Mode

Synchronous execution mode will split the queued command requests into two pipelines and run
them in parallel, one for DMA transfer commands and another for all other commands. However,
unlike parallel execution mode, render commands will not execute until any DMA transfer commands
that had entered the queue before them have finished executing.

Figure 3-5 Command Execution in Synchronous Execution Mode

DMA
Transfer

Command

Memory Fill
Command

Render
Command

Command Request

DMA
Transfer

Command

Post
Transfer

Command

DMA
Transfer

DMA
Transfer

Start Executing Command List

Memory
Fill Render Post

Transfer

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 21 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

3.3 API
This section describes the functions in the API.

3.3.1 Generating Command List Objects
void nngxGenCmdlists(GLsizei n, GLuint* cmdlists);

Generates a command list object. Specifically, it will create n command list objects and store the
object names in cmdlists. Command list objects have their own namespaces; 0 is reserved for the
driver. When a negative value is specified for n, a GL_ERROR_8000_DMP error is generated. When
memory failed to be allocated for the management region, a GL_ERROR_8001_DMP error is
generated.

3.3.2 Deleting Command List Objects
void nngxDeleteCmdlists(GLsizei n, const GLuint* cmdlists);

Deletes command list objects. Specifically, it will delete n command list objects whose names are
stored in the cmdlists argument. Attempts to delete a command list object that is running causes a
GL_ERROR_8003_DMP error to be generated. The running command list object will not be affected,
but the other command list objects will be deleted. When a negative value is specified for n, a
GL_ERROR_8002_DMP error is generated.

3.3.3 Binding Command List Objects
void nngxBindCmdlist(GLuint cmdlist);

Binds the command list object specified in cmdlist. Command list objects that are bound will
thereafter accumulate commands. Call the nngxRunCmdlist function to run command list objects
once they are bound. Commands can continue to accumulate in a command list object after that
command list has started to execute, but it is also possible to bind another command list object and
start accumulating commands there. That said, the order in which commands accumulate in
command list objects and the order in which those commands are executed must be the same.

A new command list object is generated when cmdlist refers to an unused object name. When
memory fails to be allocated for the management region at this time, a GL_ERROR_8004_DMP error is
generated. When you call this function while a command list is being saved, a GL_ERROR_8005_DMP
error is generated. For details on saving command lists, see section 5.4.1 Start Saving Command
Lists.

If no command list object has been bound, or if bound command list objects either have insufficient
space in the 3D command buffer or lack available command request slots, calling a DMPGL function
that accumulates commands will generate an error. If there is insufficient space in the 3D command
buffer, a GL_ERROR_COMMANDBUFFER_FULL_DMP error is generated; if there is insufficient space in
the command request region, a GL_ERROR_COMMANDREQUEST_FULL_DMP error is generated. When
the command list object is not bound, each error is generated depending on whether a 3D command
buffer or command request command is being accumulated.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 22  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

3.3.4 Allocating Data Regions for Command List Objects
void nngxCmdlistStorage(GLsizei bufsize, GLsizei requestcount);

Allocates a region for the 3D command buffer of a bound command list object, and also allocates a
region for the command request queue. The size of the 3D command buffer (in bytes) will be the size
specified to the bufsize argument. The number of slots allocated in the command request queue
will be the value specified to the requestcount argument. When memory allocation fails, a
GL_ERROR_8006_DMP error is generated. DMPGL function calls that attempt to add more commands
than the command list object is capable of storing (given the specified 3D command buffer size and
the command request count) will cause a GL_INVALID_OPERATION error to be generated. A
GL_INVALID_OPERATION error is also generated when a function that generates commands is
called on a bound command list object whose data region has not yet been allocated using this
function. Execution of this function is ignored when the reserved object 0 is currently bound. If this
function is called again on a command list object for which a data region has already been allocated,
the existing region will be deallocated, and a new one will be allocated.

It is recommended to allocate more space in the 3D command buffer and more slots in the command
request queue than you think you’ll require. If necessary, though, you can call the
nngxGetCmdlistParameteri function (described later) to find the actual size used and aim to
allocate the optimal size.

When this function is called on a command list object that is executing, a GL_ERROR_8007_DMP error
is generated. When negative values are specified for bufsize or requestcount, a
GL_ERROR_8008_DMP error is generated.

3.3.5 Executing Command List Objects
void nngxRunCmdlist(void);

Sequentially executes the command requests of command list objects that have been bound using
the nngxBindCmdlist function. Execution of this function is ignored when the reserved object 0 is
currently bound.

There are three execution modes for command requests: serial execution mode, parallel execution
mode, and synchronous execution mode. See the section 3.2 Executing Commands for more details
about each of these modes. The execution mode is set by specifying NN_GX_CMDLIST_RUN_MODE
for the pname argument of the nngxSetCmdlistParameteri command. In the param argument,
specify NN_GX_CMDLIST_SERIAL_RUN for serial execution mode,
NN_GX_CMDLIST_PARALLEL_RUN for parallel execution mode, or NN_GX_CMDLIST_SYNC_RUN for
synchronous execution mode.

If the nngxRunCmdlist function is called while a command list object is running, the call is ignored.
Calls to nngxRunCmdlist are also ignored if this function is called during the period after a call to
the nngxStopCmdlist function has specified to stop commands and before all issued commands
have actually stopped. To confirm the completion of issued commands, call the
nngxGetCmdlistParameteri function and specify NN_GX_CMDLIST_IS_RUNNING for the pname
parameter, or use the nngxWaitCmdlistDone function, which waits for the commands to complete.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 23 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Calling this function generates a GL_ERROR_8009_DMP error if a region has not been properly
allocated for the bound command list object’s command buffer and command requests.

3.3.6 Stopping Command List Objects
void nngxStopCmdlist(void);

Stops the command requests of an executing command list. When the nngxRunCmdlist function is
called, all command requests for command list objects will execute in order. Calling this function
(nngxStopCmdlist) will stop execution after any already-issued command requests finish executing.
(It is not possible to interrupt the execution of commands that have already started executing or that
have been issued in advance and are waiting to start execution. The number of commands that are
issued in advance is dependent on the system.) Call the nngxRunCmdlist function to resume
execution.

3.3.7 Scheduling Stops for Command List Objects
void nngxReserveStopCmdlist(GLint id);

Causes command requests to stop executing automatically after the idth command request has
finished executing for a bound command list object. When this is specified for a command list object
that is already executing, a GL_ERROR_800A_DMP error is generated. When the value specified for
the id argument is zero, negative, or exceeds the maximum command request count, a
GL_ERROR_800B_DMP error is generated.

3.3.8 Splitting the 3D Command Buffer
void nngxSplitDrawCmdlist(void);

Adds a 3D command loading complete command to the 3D command buffer of a bound command list
object and queues the resulting 3D execution command in the command requests. If executing
commands while accumulating them, the system will execute the 3D commands up to the split point
set using this function.

The final command in the 3D command buffer must be a loading complete command. A loading
complete command will be inserted at the end of the 3D command buffer even when calling functions
such as glCopyTexImage2D and glClear, which require that the 3D command buffer be
interrupted.

Calling this function generates a GL_ERROR_800C_DMP error when 0 is bound as the current
command list. A GL_ERROR_800D_DMP error is generated when the maximum number of
accumulated command requests has been reached. A GL_ERROR_800E_DMP error is generated
when, by adding a 3D command loading complete command, the accumulated 3D command buffer
exceeds its maximum size.

Some other system functions call this function internally and will output the error codes described in
this section if this function causes an error.

This function (nngxSplitDrawCmdlist) always adds a 3D command loading complete command
to the 3D command buffer and queues the 3D execution command, even if no other commands have

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 24  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

accumulated yet in the 3D command buffer. The nngxFlush3DCommand function adds a 3D
command loading complete command and queues the 3D execution command only when 3D
commands have already accumulated. To avoid unintentionally adding unneeded commands, we
recommend using the nngxFlush3DCommand function instead of this function.

3.3.9 Flushing the Accumulated 3D Command Buffer
void nngxFlush3DCommand(void);

Adds a 3D command loading complete command to the 3D command buffer of the bound command
list object and queues a 3D execution command as a command request. If executing commands
while accumulating them, the system will execute the 3D commands up to the split point that was set
using this function.

If no 3D commands have accumulated in the 3D command buffer since the last time it was split, this
function does not add a 3D command loading complete command or queue the 3D execution
command.

The final command in the 3D command buffer must be a loading complete command. A loading
complete command will be inserted at the end of the 3D command buffer even when calling functions
such as glCopyTexImage2D and glClear, which require that the 3D command buffer be
interrupted.

Calling this function generates a GL_ERROR_8084_DMP error when 0 is bound as the current
command list. A GL_ERROR_8085_DMP error is generated when the maximum number of
accumulated command requests has been reached. A GL_ERROR_8086_DMP error is generated
when, by adding a 3D command loading complete command, the accumulated 3D command buffer
exceeds its maximum size.

3.3.10 Clearing Command List Objects
void nngxClearCmdlist(void);

Clears a bound command list object. It restores the 3D command buffer and the command request
queue to the unused state (they revert to their state right after allocation).

A GL_ERROR_800F_DMP error is generated when this function is called on command list objects that
are executing.

3.3.11 Clearing Command List Objects and Filling Command Buffers
void nngxClearFillCmdlist(Gluint data);

Clears a bound command list object. The 3D command buffer and the command request queue
return to the unused state. The content of the 3D command buffer is initialized with the value given by
data.

A GL_ERROR_8065_DMP error is generated when this function is called on command list objects that
are executing.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 25 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

3.3.12 Registering Interrupt Handlers for Command Completion
void nngxSetCmdlistCallback(void (*func)(GLint));

Registers an interrupt handler that is called when command requests for a bound command list object
finish execution. When 0 is specified for the func argument, the handler will not be called. A
GL_ERROR_8010_DMP error is generated when this function is called on command list objects that
are executing.
void nngxEnableCmdlistCallback(GLint id);

void nngxDisableCmdlistCallback(GLint id);

If the nngxEnableCmdlistCallback function is called, the interrupt handler will be called once the
id'th accumulated command request of a bound command list object has completed. Calls to the
interrupt handler can be disabled with the nngxDisableCmdlistCallback function once they’ve
been enabled with the nngxEnableCmdlistCallback function. By default, calls to the interrupt
handler are disabled. It is also possible to call the interrupt handler on multiple command requests by
calling the nngxEnableCmdlistCallback function multiple times on a single command list object.

When -1 is specified for the id argument, the interrupt handler will be called when all command
requests have been completed for the given command list object.

The number of accumulated commands (the value specified for the id argument) will be passed to
the interrupt handler as an argument in order to identify which command request triggers the handler.

The value of id can be determined when accumulating commands by calling the
nngxGetCmdlistParameteri function to get the current number of accumulated command
requests.

Note that this sets a completion interrupt for the id'th command to be accumulated. It does not set a
completion interrupt for the id'th command to be executed. In parallel execution mode and
synchronous execution mode, the id'th accumulated command request won’t necessarily be the
same as the id'th executed command request.

It is possible to poll for completed commands even if you’re not using interrupt handlers. To get the
execution status, specify NN_GX_CMDLIST_IS_RUNNING to the nngxGetCmdlistParameteri
function.

A GL_ERROR_8012_DMP error is generated when the nngxEnableCmdlistCallback function is
called with the id argument set equal to 0, a negative number other than -1, or a value that exceeds
the maximum command request count.

A GL_ERROR_8014_DMP error is generated if the nngxDisableCmdlistCallback function is
called with the id argument set equal to 0, a negative number other than -1, or a value that exceeds
the maximum command request count.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 26  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

3.3.13 Setting Parameters for Command List Objects
void nngxSetCmdlistParameteri(GLenum pname, GLint param);

Sets the parameters of a bound command list object. The settings are listed below. Attempting to set
parameters for a command list object that is executing will result in a GL_ERROR_8015_DMP error.
When values not listed in the table below are set for the pname or param parameters, a
GL_ERROR_8016_DMP error is generated.

Table 3-1 Parameter List 1 for Command List Objects

pname param Description

NN_GX_CMDLIST_RUN_MODE NN_GX_CMDLIST_SERIAL_RUN
(The mode listed above is the only
one that is currently supported.)

Sets the execution mode.

NN_GX_CMDLIST_GAS_UPDATE GL_TRUE

GL_FALSE (Default)
If the nngxSplitDrawCmdlist or
nngxFlush3DCommand function is
called while GL_TRUE is set, the
accumulated 3D execution
commands will update the additive
blend results of the rendered gas
density values when execution
completes.
If GL_FALSE is set, ordinary
operation is restored and the
commands that accumulate will
update the gas density values only
when necessary.
This setting is configured separately
per each command list object.
To have effect, this setting must be
set to GL_TRUE when accumulating
commands (when the
nngxSplitDrawCmdlist or
nngxFlush3DCommand function is
called). If GL_TRUE is set when
executing commands, it has no effect
on command execution.
This setting only affects 3D execution
commands accumulated by the
nngxSplitDrawCmdlist and
nngxFlush3DCommand functions.
For more information on how the
additive blend result of rendered gas
density values is updated, also see
section 3.3.24 Updating Additive
Blend Results Rendered with Gas
Density Information.

3.3.14 Getting the Parameters of Command List Objects
void nngxGetCmdlistParameteri(GLenum pname, GLint* param);

Gets the parameters of a bound command list object and stores them in param. The various settings
are listed below. When values not listed in the table below are set for the pname parameter, a

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 27 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

GL_ERROR_8017_DMP error is generated. When pname is set equal to a value other than
NN_GX_CMDLIST_BINDING or when 0 is bound to the current command list, a
GL_ERROR_8018_DMP error is generated.

Table 3-2 Parameter List 2 for Command List Objects

pname Value Description

NN_GX_CMDLIST_RUN_MODE Gets the execution mode that is currently set.

NN_GX_CMDLIST_IS_RUNNING Gets the execution status of the command list.
If a value of GL_TRUE is obtained, the command list is executing. If a
value of GL_FALSE is obtained, the command list is not executing.

NN_GX_CMDLIST_USED_BUFSIZE Gets the size (in bytes) of the commands accumulated in the 3D
command buffer.

NN_GX_CMDLIST_USED_REQCOUNT Gets the number of command requests that are currently accumulated.

NN_GX_CMDLIST_MAX_BUFSIZE Gets the maximum size of the 3D command buffer. This gets the value
that was specified for the bufsize argument of the
nngxCmdlistStorage function.

NN_GX_CMDLIST_MAX_REQCOUNT Gets the maximum number of command requests.
This gets the value that was specified for the requestcount argument
of the nngxCmdlistStorage function.

NN_GX_CMDLIST_TOP_BUFADDR Gets the starting address of the 3D command buffer.

NN_GX_CMDLIST_BINDING Gets the ID of the command list object that is currently bound.

NN_GX_CMDLIST_RUN_BUFSIZE Gets the size (in bytes) of the 3D command buffer that has already been
run.

NN_GX_CMDLIST_RUN_REQCOUNT Gets the number of command requests that have already been run.

NN_GX_CMDLIST_TOP_REQADDR Gets the starting address of the data region for the command request
queue.

NN_GX_CMDLIST_NEXT_REQTYPE If command execution is stopped, this will get the command type of the
command request that will be run next. If a command is running, this will
get the command type of the command request being run. If all
command requests have already finished running, nothing will be
obtained. The macros below indicate the types of commands that are
obtained with this parameter.
NN_GX_CMDLIST_REQTYPE_DMA: DMA transfer command
NN_GX_CMDLIST_REQTYPE_RUN3D: 3D execution command
NN_GX_CMDLIST_REQTYPE_FILLMEM: Memory fill command
NN_GX_CMDLIST_REQTYPE_POSTTRANS: Post transfer command
NN_GX_CMDLIST_REQTYPE_COPYTEX: Render texture transfer
command

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 28  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

pname Value Description

NN_GX_CMDLIST_NEXT_REQINFO If command execution is stopped, this will get the parameter information
for the command request that will be run next. If a command is running,
this will get the parameter information for the command request being
run. If all command requests have already finished running, nothing will
be obtained.
This is only supported if the next command to be run or the command
currently running is a 3D execution command. If this parameter is used
when any other command is running or up next, nothing will be
obtained.
The address of the command buffer will be returned in the first element
of param, and the size (in bytes) of the command buffer will be stored in
the second element of param.

NN_GX_CMDLIST_HW_STATE Gets a 32-bit value indicating the hardware status. The definitions of
each bit are shown below:

[20]: Set (has a value of 1) when a post transfer is executing
[19]: Set when a memory fill is executing
[18]: Set when a FIFO underrun error occurred for the lower LCD
[17]: Set when a FIFO underrun error occurred for the upper LCD
[16]: Set when the post-vertex cache is busy
[15]: Set when bits [1:0] in Register 0x252 are set to the value 1
[14]: Set when vertex processor 3 is busy
[13]: Set when vertex processor 2 is busy
[12]: Set when vertex processor 1 is busy
[11]: Set when vertex processor 0 (which doubles as the geometry
shader processor) is busy
[10]: Set when bits [1:0] in register 0x229 are not 0
[9]: Set when input to the module that loads the command buffer
and the vertex array is busy
[8]: Set when output to the module that loads the command buffer
and the vertex array is busy
[7]: Set when the early depth test module is busy
[6]: Set when the per-fragment operations module is busy
processing the data from the previous-stage module
[5]: Set when the per-fragment operations module is busy in relation
to framebuffer access
[4]: Set when the texture combiners are busy
[3]: Set when fragment lighting is busy
[2]: Set when the texture units are busy
[1]: Set when the rasterization module is busy
[0]: Set when triangle setup is busy

3.3.15 Checking for V-Sync Updates
GLint nngxCheckVSync(GLenum display);

Used to check for V-Sync updates on the screen or screens specified by display. When
NN_GX_DISPLAY0 is specified for display, V-Syncs for screen 0 (the first screen) will be processed.
When NN_GX_DISPLAY1 is specified, V-Syncs for screen 1 (the second screen) will be processed.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 29 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

When NN_GX_DISPLAY_BOTH is specified, V-Syncs for both screens will be processed. When any
other value is specified for display, a GL_ERROR_8019_DMP error is generated. The return value in
this case will be undefined.

The driver's internal V-Sync counter will be the return value, and the V-Sync can be checked
asynchronously by checking whether this value has been updated. When NN_GX_DISPLAY_BOTH is
specified for display, the value will be updated by V-Syncs on both screens.

The internal counter for the return value will reset to 0 if the implementation-dependent maximum
count is exceeded. This maximum value may be changed without notice in the future when the driver
is updated.

3.3.16 V-Sync Synchronization
void nngxWaitVSync(GLenum display);

Used for V-Sync synchronization on the screen or screens specified by display. When
NN_GX_DISPLAY0 is specified for display, V-Syncs for screen 0 (the first screen) will be processed.
When NN_GX_DISPLAY1 is specified, V-Syncs for screen 1 (the second screen) will be processed.
When NN_GX_DISPLAY_BOTH is specified, V-Syncs for both screens will be processed. When any
other value is specified for display, a GL_ERROR_801A_DMP error is generated and control returns
immediately.

If this function is called, control will return after waiting for the next V-Sync.

3.3.17 Registering the V-Sync Callback Function
void nngxSetVSyncCallback(GLenum display, void (*func)(GLenum));

Registers the V-Sync callback. When NN_GX_DISPLAY0 is specified for display, a V-Sync callback
for screen 0 (the first screen) will be registered. When NN_GX_DISPLAY1 is specified, a V-Sync
callback for screen 1 (the second screen) will be registered. When NN_GX_DISPLAY_BOTH is
specified, a shared V-Sync callback for both screens will be registered. For func, specify a pointer to
the callback function. A screen identifier will be passed as an argument to the callback function. When
any other value is specified for display, a GL_ERROR_801B_DMP error is generated.

3.3.18 Waiting for a Command List Object to Complete Execution
void nngxWaitCmdlistDone(void);

Waits for an executing command list object to complete. Control returns when all of the accumulated
command requests finish executing. 3D execution commands are executed until they reach the
location where the command buffer was already split when this function was called. If you want to
ensure that the entire 3D command buffer is executed, call the nngxSplitDrawCmdlist function
before calling this function.

This function does not return until command execution has completed. See section 3.3.23 Setting the
Timeout for Waiting to Complete Command List Object Execution for details on setting a timeout.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 30  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

3.3.19 Transferring Data via DMA
void nngxAddVramDmaCommand(

 const GLvoid* srcaddr, GLvoid* dstaddr, Glsizei size);

Accumulates a DMA transfer command in the current command list. The DMA transfer command
transfers size bytes of data from the address specified by srcaddr to the address specified by
dstaddr.

A GL_ERROR_8062_DMP error is generated when a valid command list is not currently bound. A
GL_ERROR_8064_DMP error is generated when size is negative.

This function flushes the cache in the area specified by srcaddr. If it is not necessary to flush the
cache, you can use nngxAddVramDmaCommandNoCacheFlush to omit the cache flush.

3.3.20 Transferring Data via DMA (Without Cache Flush)
void nngxAddVramDmaCommandNoCacheFlush(

const GLvoid* srcaddr, GLvoid* dstaddr, GLsizei size);

Accumulates a DMA transfer command in the current command list. The DMA transfer command
transfers size bytes of data from the address specified by srcaddr to the address specified by
dstaddr. This function is the same as nngxAddVramDmaCommand, except it does not flush the
cache in the area specified by srcaddr.

A GL_ERROR_8090_DMP error is generated when a valid command list is not currently bound. A
GL_ERROR_8091_DMP error is generated when size has a negative value.

3.3.21 Transferring Block Images with an Anti-Aliasing Filter
void nngxFilterBlockImage(const GLvoid* srcaddr, GLvoid* dstaddr,

 GLsizei width, GLsizei height, Glenum format);

Accumulates a transfer command—with an anti-aliasing filter for block images—in the current
command list. A block image is a rendered image or an image that uses the 8-block addressing
format of a texture in the native PICA format. A 2x2 anti-aliasing filter is applied as data is transferred
from the address specified by srcaddr to the address specified by dstaddr. The width and height
of the original image are specified by width and height, respectively, in pixels. The following pixel
formats can be specified for format.

• GL_RGBA8_OES: 32-bit R8G8B8A8
• GL_RGB8_OES: 24-bit R8G8B8
• GL_RGBA4: 16-bit R4G4B4A4
• GL_RGB5_A1: 16-bit R5G5B5A1
• GL_RGB565: 16-bit R5G6B5

Calling this function generates a GL_ERROR_8068_DMP error when 0 is bound to the current
command list or when the command request queue is too small.

Both srcaddr and dstaddr must be 8-byte aligned. A GL_ERROR_8069_DMP error is generated
when either value is not 8-byte aligned.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 31 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

The value of format restricts the values of width and height, as shown in the following table.

Table 3-3 width and height in nngxFilterBlockImage

format width height

• GL_RGBA8_OES
• GL_RGB8_OES

A multiple of 64 that is greater than or
equal to 64

A multiple of 8 that is greater than or
equal to 64

• GL_RGBA4
• GL_RGB5_A1
• GL_RGB565

A multiple of 128 that is greater than or
equal to 128

A multiple of 8 that is greater than or
equal to 128

A GL_ERROR_806A_DMP error is generated when the specified values conflict with these restrictions.

A GL_ERROR_806B_DMP error is generated when an invalid format is specified.

3.3.22 Image Transfer Requests
void nngxTransferLinearImage(const GLvoid* srcaddr, GLuint dstid, GLenum target);

Adds to the current command list a command that transfers the region specified by the srcaddr
argument to the render buffer or texture specified by the dstid argument.

The srcaddr argument specifies the address of the source data to transfer. The dstid argument
specifies the object ID of the render buffer or texture where the data should be transferred. When the
target argument is GL_RENDERBUFFER, dstid must indicate a render buffer object. In this case, if
dstid specifies 0, the data will be transferred to the color buffer attached to the current framebuffer.
When the target argument is GL_TEXTURE_2D, dstid must indicate a 2D texture object. When the
target argument is GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, dstid must indicate a cube-map texture object.

The region specified by the srcaddr argument must store image data that has the same format,
width, and height as the render buffer or texture specified by the dstid argument. The source image
data will be converted to block addressing in the native PICA as it is transferred to the destination.
When the destination object is a render buffer, the data will be converted to either 8-block addressing
or 32-block addressing, depending on the block format setting that was set when this function was
called. When the destination object is a texture, the data will be converted to 8-block addressing. This
function will only convert the addressing, it will not perform V-flipping or byte-order conversion. Since
the render buffer and texture use the native PICA format for images, the source image data must
have V-flipping or byte-order conversion done in advance if necessary.

When the commands accumulated in the current 3D command buffer have not been split, a split
command is added before the transfer command.

When the destination is in 24-bit format, the source data must be in 32-bit format, and the first byte of
each four-byte sequence of the source data will be discarded when the data is transferred. (The
hardware does not support transfers from 24-bit format sources to 24-bit format destinations.)

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 32  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

If this function is called when the current command list is bound to 0, the GL_ERROR_805B_DMP error
will be generated. When the maximum number of accumulated command requests has been reached
in the current command list, the GL_ERROR_805C_DMP error will be generated. When the size of the
current 3D command buffer is insufficient, the GL_ERROR_805D_DMP error will be generated. When
the render buffer or texture specified to the dstid argument does not exist, or when the address has
not been allocated, the GL_ERROR_805E_DMP error will be generated.

When the 8-block format was configured when this function was called, the width and height of the
destination render buffer must be multiples of 8. Likewise, when the 32-block format was configured
when this function was called, the width and height of the destination render buffer must be multiples
of 32. The width and height must also be greater than or equal to 128. When these restrictions are
violated, the GL_ERROR_805F_DMP error will be generated.

When an invalid target is specified, the GL_ERROR_8060_DMP error will be generated. When the
size of the destination render buffer or texture is anything other than 32, 24, or 16 bits, the
GL_ERROR_8067_DMP error will be generated.

3.3.23 Setting the Timeout for Waiting to Complete Command List Object Execution
void nngxSetTimeout (GLint64EXT time, void (*callback)(void));

This function specifies the length of time that the nngxWaitCmdlistDone function, which waits for
the executing command list object to complete, will wait before timing out. The time argument
specifies the length of time until timeout as a system tick value. The callback argument specifies a
pointer to the callback function to call after timing out.

Once this timeout is set, any call to nngxWaitCmdlistDone that does not return before time has
elapsed will result in a call to the function specified in callback and the completion of the call to
nngxWaitCmdlistDone, whether command execution has completed or not.

The default value for time is 0, which generates no timeout. The default value for callback is NULL,
meaning no callback function is called when a timeout occurs.

This timeout feature is only enabled in debug and development builds.

3.3.24 Updating Additive Blend Results Rendered with Gas Density Information
void nngxSetGasAutoAccumulationUpdate (GLint id);

Updates INVERTED_ACC_MAX1, a value related to the results of additive blending when gas density
information is rendered. For more details on INVERTED_ACC_MAX1, see the DMPGL 2.0
Specifications.

When called, the nngxSetGasAutoAccumulationUpdate function configures the maximum value
of D1—a result of additive blending when gas density information is rendered—to be applied to
INVERTED_ACC_MAX1 within the interrupt handler that is invoked upon completion of the id’th
command request accumulated in the bound command list object. For example, when id is 1 this
setting affects the first command request, when id is 2 this setting affects the second command
request, and so on. You must specify a command request that is a 3D execution command.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 33 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

This function is required to implement the functionality of the fragment shader uniform
dmp_Gas.autoAcc using commands generated by the application. You must clear the maximum
value saved for the additive blending result D1 to 0 as necessary before you start rendering gas
density information. The maximum value is cleared (initialized) with bits [15:0] of register 0x125. After
rendering the gas density information, use this function again to update INVERTED_ACC_MAX1
before you start gas shading.

INVERTED_ACC_MAX1 is updated correctly when this function is called on a command request that
includes a command to render gas density information. However, note that it is impossible to update
INVERTED_ACC_MAX1 before gas shading when this function is called on a command request that
includes both a command to render gas density information and a command to start gas shading.
Furthermore, if a value is written to bits [15:0] of register 0x0e5 after this function has updated
INVERTED_ACC_MAX1, this function’s settings are overwritten and invalidated.

A GL_ERROR_806D_DMP error is generated when 0 is bound as the command list object. A
GL_ERROR_806E_DMP error is generated when id is less than or equal to 0, when id is greater than
the number of accumulated command requests, and when the command request specified by id is
not a 3D execution command.

Settings related to updating the additive blend result of rendering gas density information can be
configured using the nngxSetCmdlistParameteri function. For details, see the description of
NN_GX_CMDLIST_GAS_UPDATE in section 3.3.13 Setting Parameters for Command List Objects.

3.3.25 Transferring a Block Image That Is Converted into a Linear Image
void nngxAddB2LTransferCommand(

 const GLvoid* srcaddr, GLsizei srcwidth, GLsizei srcheight,

 GLenum srcformat, GLvoid* dstaddr, GLsizei dstwidth, GLsizei dstheight,

 GLenum dstformat, GLenum aamode, GLboolean yflip, GLsizei blocksize);

Adds commands to the command list to convert a block image into a linear image and then transfer it.

This function converts a block image in the rendering format into a linear image in the display format.
Although the nngxTransferRenderImage function provides equivalent functionality, this function
has more general uses. Also, like nngxTransferRenderImage, this function only adds a transfer
request command without adding a 3D split command.

The block image at the address specified by srcaddr is transferred as a linear image and stored at
the address specified by dstaddr. Both srcaddr and dstaddr must be 16-byte aligned.

The original image’s width and height in pixels are given by srcwidth and srcheight; the
transferred image’s width and height in pixels are given by dstwidth and dstheight. These
dimensions must all be multiples of the block size, which is either 8 or 32. However, if the transferred
image uses 24 bits per pixel and a block size of 8, both the original and transferred images must have
widths that are multiples of 16. This function exits without adding any commands if any of the image
dimensions is 0. The width and height of the transferred image must be less than or equal to the width
and height of the original image.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 34  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

The original and transferred images have pixel formats specified by srcformat and dstformat
using the following macros.

• GL_RGBA8_OES: 32-bit RGBA8
• GL_RGB8_OES: 24-bit RGB8
• GL_RGBA4: 16-bit RGBA4
• GL_RGB5_A1: 16-bit RGBA5551
• GL_RGB565: 16-bit RGB565

Conversions that increase the pixel size are not possible. For example, you cannot convert from a 24-
bit format to a 32-bit format or from a 16-bit format to either a 24- or 32-bit format.

The antialiasing filter mode is specified by aamode using the following macros.

• NN_GX_ANTIALIASE_NOT_USED: No antialiasing
• NN_GX_ANTIALIASE_2x1: Transfer with 2x1 antialiasing
• NN_GX_ANTIALIASE_2x2: Transfer with 2x2 antialiasing

When antialiasing is enabled, the transferred image is shrunk in half in the filtering direction.
Specifically, 2x2 antialiasing shrinks the image in half vertically and horizontally and 2x1 antialiasing
shrinks the image in half horizontally.

The transferred image is flipped vertically when yflip is GL_TRUE and is not flipped when yflip is
GL_FALSE. Nonzero values are considered to be GL_TRUE.

The original image is transferred using a block size of 8 or 32, specified by blocksize.

This function generates the following errors.

• GL_ERROR_807C_DMP when 0 is bound to the current command list or the command request
queue is full

• GL_ERROR_807D_DMP when srcaddr or dstaddr is not 16-byte aligned
• GL_ERROR_807E_DMP when blocksize is not 8 or 32
• GL_ERROR_807F_DMP when aamode is an invalid value
• GL_ERROR_8080_DMP when srcformat and dstformat are invalid values
• GL_ERROR_8081_DMP when dstformat has a larger pixel size than srcformat
• GL_ERROR_8082_DMP when either srcwidth, srcheight, dstwidth, or dstheight is invalid
• GL_ERROR_8083_DMP when the width or height of the transferred image is larger than the original

image

3.3.26 Transferring a Linear Image That Is Converted into a Block Image
void nngxAddL2BTransferCommand(

 const GLvoid* srcaddr, GLvoid* dstaddr,

 GLsizei width, GLsizei height, GLenum format, GLsizei blocksize);

Adds commands to the command list to convert a linear image into a block image and then transfer it.

This function converts a linear image in the display format into a block image in the rendering format.
Although the nngxTransferLinearImage function provides equivalent functionality, this function

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 35 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

has more general uses. Also, like nngxTransferLinearImage, this function only adds a transfer
request command without adding a 3D split command.

The linear image at the address specified by srcaddr is transferred as a block image and stored at
the address specified by dstaddr. Both srcaddr and dstaddr must be 16-byte aligned.

The width and height of both the original and transferred images (in pixels) are given by width and
height. Both images must have the same width and height and these dimensions must all be
multiples of the block size, which is either 8 or 32. However, if the transferred image uses 24 bits per
pixel and a block size of 8, the width must be a multiple of 32. This function exits without adding any
commands if either width or height is 0.

The transferred image has a pixel format specified by format. The original image must have the
same format as the transferred image unless format is a 24-bit format, in which case the original
image must use a 32-bit format. For each four-byte block of the original data that is transferred, the
first byte is discarded (the hardware does not support transfers between 24-bit formats). Specify the
pixel format using the following macros.

• GL_RGBA8_OES: 32-bit RGBA8
• GL_RGB8_OES: 24-bit RGB8
• GL_RGBA4: 16-bit RGBA4
• GL_RGB5_A1: 16-bit RGBA5551
• GL_RGB565: 16-bit RGB565

The transferred image has a block size of 8 or 32, specified by blocksize.

This function generates the following errors.

• GL_ERROR_806F_DMP when 0 is bound to the current command list or the command request
queue is full

• GL_ERROR_8070_DMP when srcaddr or dstaddr is not 16-byte aligned
• GL_ERROR_8071_DMP when blocksize is not 8 or 32
• GL_ERROR_8072_DMP when width or height is invalid
• GL_ERROR_8073_DMP when format is invalid

3.3.27 Transferring a Block Image
void nngxAddBlockImageCopyCommand(

 const GLvoid* srcaddr, GLsizei srcunit, GLsizei srcinterval,

 GLvoid* dstaddr, GLsizei dstunit, GLsizei dstinterval, GLsizei

totalsize);

Adds a block image transfer command to the current command list.

This function can copy images between textures and rendered render buffers. This function’s
distinguishing feature is its ability to transfer a specified amount of data with a specified skip size,
allowing you to cut a region out of the original image and fit an image into a partial region of the target
image.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 36  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Data is transferred from the address specified by srcaddr into the address specified by dstaddr.
Both addresses must be 16-byte aligned.

The total number of bytes to transfer is specified by totalsize, which must be a multiple of 16.

Data is transferred srcunit bytes at a time, with a skip size (in bytes) specified by srcinterval.
This process can be described as follows.

1. Read and transfer srcunit bytes of data.

2. Skip (do not transfer) the next srcinterval bytes of data.

3. Repeat until totalsize bytes have been transferred.

If srcinterval is 0, this function reads and transfers a continuous region of totalsize bytes. For
any other srcinterval value, data is alternatively read and skipped; this allows you to transfer
partial regions that are cut out of the original image.

The transferred data is written dstunit bytes at a time with a skip size of dstinterval bytes. This
process can be described as follows.

1. Write dstunit bytes of transferred data.

2. Advance the write address by (skip) dstinterval bytes.

3. Repeat until totalsize bytes have been transferred.

If dstinterval is 0, this function writes a continuous region of totalsize bytes. For any other
dstinterval value, data is alternatively written and skipped; this allows you to paste an image into
a partial region of the target image.

Figure 3-6 Transferring Partial Image Regions

srcinterval ・ ・ ・

dstinterval ・ ・ ・

srcintervalsrcunit srcunit

dstunit

C
op

y

dstintervaldstunit

The colored regions in the figure are transferred.

The srcunit, srcinterval, dstunit, and dstinterval arguments must all be non-negative
multiples of 16 that are less than 0x100000.

This function generates the following errors.

• GL_ERROR_8074_DMP when 0 is bound to the current command list or the command request
queue is full

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 37 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

• GL_ERROR_8075_DMP when srcaddr or dstaddr is not 16-byte aligned
• GL_ERROR_8076_DMP when totalsize is not a multiple of 16
• GL_ERROR_8077_DMP when srcunit, srcinterval, dstunit, or dstinterval is invalid

Note: When you set this function’s arguments to transfer a block image that is the result of rendering
(or some other process), remember that the transfer source and transfer destination image’s
starting address is at its upper-left corner (the origin for standard OpenGL ES is the bottom
left) and that, when it uses a block size of 8, its data is placed in 8x8 pixel blocks. For more
details about block formats, see the section on the native PICA format in the DMPGL 2.0
Specifications.

3.3.28 Filling Memory
void nngxAddMemoryFillCommand(

 GLvoid* startaddr0, GLsizei size0, GLuint data0, GLsizei width0,

 GLvoid* startaddr1, GLsizei size1, GLuint data1, GLsizei width1);

Adds commands to the current command list to fill the specified regions with the specified data.

By filling memory with a specified data pattern, this function can be used to clear the color and depth
(stencil) buffers. The glClear function provides equivalent functionality, but this function has more
general uses. You can fill two regions using separate parameters for each. Channel 1 is configured by
startaddr0, size0, data0, and width0. Channel 2 is configured by startaddr1, size1,
data1, and width1.

Memory is filled starting at addresses startaddr0 and startaddr1. These addresses must be 16-
byte aligned. If an address is specified as 0, its corresponding channel is not used. This function can
only fill VRAM. It cannot fill FCRAM.

size0 and size1 bytes of memory are filled. Both size0 and size1 must be multiples of 16.

Memory regions are filled by repeatedly storing the data specified by data0 and data1.

The number of bits in each fill pattern is specified by width0 and width1, which can be 16, 24, or 32.

• Given a value of 16, memory is filled 16 bits at a time using bits [15:0] of data0 and data1.
• Given a value of 24, memory is filled 24 bits at a time using bits [23:0] of data0 and data1.
• Given a value of 32, memory is filled 32 bits at a time using bits [31:0] of data0 and data1.

The following table shows which bits of data0 and data1 are used to clear various color buffer formats,
as well as the corresponding brightness values for each component and the required values for width0
and width1. For example, a GL_RGBA8_OES color buffer’s R, G, B, and A components are cleared
using bits [31:24], [23:16], [15:8], and [7:0], respectively, of data0 or data1; each component’s
brightness is a value between 0 and 255; and the value of width0 or width1 must be 32.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 38  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Table 3-4 Color Buffer Formats and nngxAddMemoryFillCommand Parameters

Color Buffer
Format

data0 / data1 Bits Brightness Values width0 /
width1 Value R G B A R G B A

GL_RGBA8_OES [31:24] [23:16] [15:8] [7:0] 0–255 0–255 0–255 0–255 32

GL_RGBA4 [15:12] [11:8] [7:4] [3:0] 0–15 0–15 0–15 0–15 16

GL_RGB5_A1 [15:11] [10:6] [5:1] [0:0] 0–31 0–31 0–31 0 or 1 16

GL_RGB565 [15:11] [10:5] [4:0] - 0–31 0–63 0–31 - 16

The following table shows which bits of data0 and data1 are used to clear various depth and stencil
buffer formats, as well as the required values for width0 and width1. For example, a
GL_DEPTH24_STENCIL8_EXT depth/stencil buffer’s depth and stencil values are cleared using bits
[23:0] and [31:24], respectively, of data0 or data1; the value of width0 or width1 must be 32.

Table 3-5 Depth/Stencil Buffer Formats and nngxAddMemoryFillCommand Parameters

Depth/Stencil Buffer Format
data0 / data1

Bits width0 /
width1 Value

Depth Stencil

GL_DEPTH24_STENCIL8_EXT [23:0] [31:24] 32

GL_DEPTH_COMPONENT24_OES [23:0] - 24

GL_DEPTH_COMPONENT16 [15:0] - 16

This function generates the following errors.

• GL_ERROR_8078_DMP when 0 is bound to the current command list or the command request
queue is full

• GL_ERROR_8079_DMP when startaddr0 or startaddr1 is not 16-byte aligned
• GL_ERROR_807A_DMP when size0 or size1 is not a multiple of 16
• GL_ERROR_807B_DMP when width0 or width1 is invalid

If startaddr0 is 0, size0, data0, and width0 are not checked for errors. Likewise, if
startaddr1 is 0, size1, data1, and width1 are not checked for errors.

Channel 0 and channel 1 are executed simultaneously. If they have overlapping regions, it is
undefined which result will ultimately be applied.

3.4 NN_GX_CMDLIST_HW_STATE
Several bits of the value obtained by passing NN_GX_CMDLIST_HW_STATE to the
nngxGetCmdlistParameteri function represent the busy states of hardware. If a problem occurs
with hardware operations, such as the GPU hanging, the NN_GX_CMDLIST_HW_STATE value may be
useful in determining the cause of the problem.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 39 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

The cause of hardware malfunction is usually due to one of the modules entering a continuously busy
state. However, because modules affect each other, it is not always obvious which module has the
problem. When modules operate in series (for instance, when triangle setup passes results to the
rasterization module, which passes results to the texture units, and so on), busy states are
propagated backward from later-stage modules to earlier-stage modules. If several modules
operating in series issue a busy signal, the last-stage module might be the cause. Conversely, the
per-fragment operations module represented by bit [6] sometimes issues a busy signal due to invalid
data from the previous stage. In such cases an earlier module might be the cause.

Propagation of busy signals can largely be classified into two categories: those issued by
rasterization and pixel operations represented by bits [0] through [7], and those issued by geometry
operations represented by bits [8] through [16].

Rasterization and pixel operations operate in series in the following order: triangle setup, rasterization
module, texture units, fragment lighting, texture combiners, and per-fragment operations module.
Busy signals from later-stage modules are propagated backward to earlier-stage modules. In other
words, busy states propagate through NN_GX_CMDLIST_HW_STATE from bit [5] to bit [4], bit [3], bit
[2], bit [1], and then bit [0].

Although bit [6] also represents the per-fragment operations module, its state propagates to bit [0] and
[1], but not to bit [2], bit [3], or bit [4].

The early depth test module represented by bit [7] becomes busy when waiting to clear the early
depth buffer (internal memory). The busy state of this bit does not propagate to other modules.

Busy signals do not propagate backward from triangle setup to earlier-stage modules. (These earlier-
stage modules are vertex caching and geometry creation, shown in the Overview Figure for the
DMPGL 2.0 Pipeline in the DMPGL 2.0 Specifications.) In short, busy signals do not propagate from
rasterization and pixel operations to geometry operations or vice versa.

Next is a description of geometry operations. The following modules operate in series in this order:
vertex input (modules for loading the command buffer and vertex arrays), vertex processers, and post
vertex cache. Busy signals propagate backward from later-stage to earlier-stage modules. In other
words, busy signals propagate from bit [16] to bits [11], [12], [13], and [14], then to bit [8] and to bit
[9].Although bit [11], bit [12], bit [13], and bit [14] correspond to the busy signals of vertex processors
0, 1, 2, and 3 respectively, the busy signal for the post vertex cache propagates to specific vertex
processors. This is because the vertex processors are placed in parallel between the vertex load
module and post vertex cache. (The busy signal of the post vertex cache does not necessarily
propagate to all four vertex processors.)

The above explanation applies only when geometry shaders are disabled. If geometry shaders are
enabled, vertex processor 0 serves as the geometry shader processor and is positioned after the
post-vertex cache in the pipeline. In this situation, the busy signal of the geometry shader processor
propagates to the post-vertex cache, and the busy signal of the post-vertex cache propagates to
vertex processors 1, 2, and 3. However, although a busy signal originating with the geometry shader
processor can propagate to the post-vertex cache, it does not propagate to stages earlier than that; in
contrast, a busy signal originating with the post-vertex cache does propagate to earlier stages. In
other words, busy signals propagate from bit [11] to bit [16], and from bit [16] to bits [12], [13]. and [14],
to bit [8], and then to bit [9].

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 40  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

4 Display Control API
This chapter describes the API for controlling the framebuffer (display buffer) in DMPGL 2.0.

This API allows you to perform the following types of operations.

• The applications can generate multiple new display buffers.
• The application can specify whether or not to transfer the rendered results to the display buffer.

Rendering results from individual render passes can also be transferred to multiple display buffers.
• The application can then freely specify which display buffer to display to.

These features allow the CPU to create render commands several frames ahead of time without
having to synchronize with the actual rendering. Furthermore, display buffers to which rendered
results have been transferred can be displayed again any number of times.

4.1 Processing Flow from Rendering Through Display

4.1.1 Rendering

In this phase, multiple display buffers and a single color buffer are prepared, and data is rendered to
the color buffer. (P3D is PICA's 3D rendering module.)

Figure 4-1 Rendering

Note: The example shown in the figure assumes that the color buffer has been allocated in VRAM,
and that the display buffers have been allocated in FCRAM.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 41 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

4.1.2 Transferring Rendered Results

In this phase, rendered results are transferred to one or more display buffers by means of a block-
linear transfer. Display buffers to which data has been transferred can then be displayed. (PPF stands
for PICA Post-Filter, the module that performs post-filtering. This module converts rendered results
from PICA's own native rendering format (block format) to the linear format used for display.)

Figure 4-2 Transferring Rendered Results

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 42  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

4.1.3 Displaying

In this phase, the display buffer(s) to which the rendered results have been transferred are displayed.
Switching between display buffers is done when V-Syncs occur. (PDC stands for PICA LCD
Controller.)

Figure 4-3 Displaying Images After Rendering

4.2 Specifying the Display Area
The figure below shows how the display area is specified during the transfer from the color buffer to
the display buffer, and during the subsequent transfer from the display buffer to the LCD.

Figure 4-4 Specifying the Display Area

Color Buffer

cw

ch

Display Buffer

dh

dw

dh

dw
cx

cy

LCD Display

lh

lw

lh
lw

dy

dx

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 43 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

The blocks shown in the figure above are the color buffer, the display buffer, and the LCD display
(from left to right). The dimensions cw and ch indicate the width and height of the color buffer, and
these values are specified using the glRenderbufferStorage function. The area defined by the
offsets cx and cy will be transferred to the display buffer. The offsets cx and cy are specified using
the nngxTransferRenderImage function. The dimensions dw and dh indicate the width and height
of the display buffer, and these values are specified using the nngxDisplaybufferStorage
function. The area defined by the offsets dx and dy will be displayed to the LCD. The offsets dx and
dy are specified using the nngxDisplayEnv function. The size of the display device is given by lw
and lh.

4.3 API
This section describes the functions in the API.

4.3.1 Generating Display Buffer Objects
void nngxGenDisplaybuffers(GLsizei n, GLuint* buffers);

Generates display buffer objects. It generates n display buffer objects and stores the object names in
buffers. When a negative value is specified for n, a GL_ERROR_801C_DMP error is generated.
When memory failed to be allocated for the management region, a GL_ERROR_801D_DMP error is
generated.

4.3.2 Deleting Display Buffer Objects
void nngxDeleteDisplaybuffers(GLsizei n, GLuint* buffers);

Deletes display buffer objects. Specifically, it will delete n display buffer objects whose names are
stored in the buffers argument. If you attempt to delete the current display buffer object, a value of
0 is first bound to the current display buffer target. When a negative value is specified for n, a
GL_ERROR_801E_DMP error is generated.

4.3.3 Activating Display Targets
void nngxActiveDisplay(GLenum display);

Specify NN_GX_DISPLAY0, NN_GX_DISPLAY1, or NN_GX_DISPLAY0_EXT for the display
argument. This will activate the specified display target and use the display buffer that is bound to the
active display target for subsequent operations. When any other value is specified for display, a
GL_ERROR_801F_DMP error is generated.

4.3.4 Binding Display Buffers
void nngxBindDisplaybuffer(GLuint buffer);

Binds the display buffer object that is specified for the buffer argument. The binding target will be
the display target that was activated using the nngxActiveDisplay function. It is used when
allocating display buffer regions or when specifying which display buffer to display on the LCD. If a
display buffer is bound using this function and the nngxSwapBuffers function is then called, the
bound display buffer will be displayed. At that point, the display buffer that is bound to

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 44  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

NN_GX_DISPLAY0 will be displayed to screen 0, and the display buffer that is bound to
NN_GX_DISPLAY1 will be displayed on screen 1. A new display buffer object is generated when
buffer refers to an unused object name. When memory fails to be allocated for the management
region at this time, a GL_ERROR_8020_DMP error is generated.

4.3.5 Allocating Display Buffers
void nngxDisplaybufferStorage(

 GLenum format, GLsizei width, GLsizei height, GLenum area);

Allocates a memory region for the display buffer object that is bound to the currently active display
target. Use the width and height arguments to specify the size of the display buffer. Use the
format argument to specify one of the following display buffer formats:

• GL_RGB8_OES: 24-bit R8G8B8
• GL_RGBA4: 16-bit R4G4B4A4
• GL_RGB5_A1: 16-bit R5G5B5A1
• GL_RGB565: 16-bit R5G6B5

Note that it is not possible to specify formats whose pixel sizes are larger than that of the color buffer.
The values for the width and height arguments must be multiples of 8. However, an error occurs if
the 32-block format is set and the nngxTransferRenderImage function is called with a display
buffer that has a width and height that are not multiples of 32. If memory has already been
allocated for the target display buffer object, that memory will be deallocated, and a new region will be
allocated.

Use area to specify one of the following values as the location of the area being allocated.

• NN_GX_MEM_FCRAM Allocates the region from FCRAM
• NN_GX_MEM_VRAMA Allocates the region from the A channel in VRAM
• NN_GX_MEM_VRAMB Allocates the region from the B channel in VRAM

A GL_ERROR_8021_DMP error is generated when 0 is bound to the active display target. A
GL_ERROR_8022_DMP error is generated when an invalid value is specified for width and height.
A GL_ERROR_8023_DMP error is generated when format is set equal to a value other than those
listed in this section. A GL_ERROR_8024_DMP error is generated when area is set equal to a value
other than those listed in this section. A GL_ERROR_8025_DMP error is generated when memory
failed to be allocated for the display buffer.

4.3.6 Specifying the Display Area
void nngxDisplayEnv(GLint displayx, GLint displayy);

Specifies the area of the active display target's display buffer to display. The coordinates (displayx,
displayy) are used to specify the starting positions of the display area within the display buffer.
(This will be the same size as the LCD's display area). The settings made using this function are not
associated with display buffer objects and are set for each display screen (screen 0 and screen 1).
When a negative value is set for either displayx or displayy, a GL_ERROR_8026_DMP error is
generated.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 45 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Values specified with this function affect the display buffer address set in the hardware, which must
be aligned to a 16-byte address. When you set a value that conflicts with this restriction, an error is
generated when the nngxSwapBuffers function is called. For details, see 4.3.8 Displaying
Rendered Screens (Swapping).

4.3.7 Requesting Transfers of Rendered Results
void nngxTransferRenderImage(GLuint buffer, GLenum mode,

 GLboolean yflip, GLint colorx, GLint colory);

Adds commands to the current command list that transfer rendering results from the current color
buffer to the display buffer specified by buffer. When the commands accumulated in the 3D
command buffer have not been split, a split command is added before the transfer command.

A GL_ERROR_8027_DMP error is generated when 0 is bound to the current command list. A
GL_ERROR_8028_DMP error is generated when the maximum number of accumulated command
requests has been reached. A GL_ERROR_8029_DMP error is generated when a valid display buffer
has not been bound. A GL_ERROR_802A_DMP error is generated when a valid color buffer has not
been bound. A GL_ERROR_802F_DMP error is generated when the 3D command buffer is not large
enough to add a split command.

The mode argument specifies the antialiasing mode using one of the following values.

• NN_GX_ANTIALIASE_NOT_USED No antialiasing
• NN_GX_ANTIALIASE_2x1 Transfer using 2x1 antialiasing
• NN_GX_ANTIALIASE_2x2 Transfer using 2x2 antialiasing

When any other value is specified for mode, a GL_ERROR_802B_DMP error is generated.

If yflip is GL_TRUE, the transferred image will be flipped in the y-direction. Any non-zero value
specified for the yflip argument will be treated in the same way as if GL_TRUE had been specified.

An area the size of the display buffer is transferred from the color buffer to the display buffer. The
starting positions of the data in the color buffer to transfer are specified using the coordinates
(colorx, colory). When the width1 and the height2 of the region of the color buffer to transfer are
smaller than the width and height of the display buffer, a GL_ERROR_802C_DMP error is generated.
When mode is set to NN_GX_ANTIALIASE_2x1, and the width of the region of the color buffer to
transfer is less than twice the width of the display buffer, a GL_ERROR_802C_DMP error is generated.
When mode is set to NN_GX_ANTIALIASE_2x2, and the width and height of the region of the color
buffer to transfer are less than twice the width and height of the display buffer, a
GL_ERROR_802C_DMP error is generated.

For the 8-block format, the arguments colorx and colory must both be positive integer multiples of
eight. For the 32-block format, they must both be positive integer multiples of 32. Specifying any other
value will cause a GL_ERROR_802D_DMP error.

1 The width of the color buffer in pixels minus colorx
2 The height of the color buffer in pixels minus colory

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 46  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

A GL_ERROR_802E_DMP error is generated when the size of the display buffer (in pixels) where the
data is being copied is greater than the size of the color buffer (in pixels) from which the data is being
copied. A GL_ERROR_8059_DMP error is generated when the source color buffer or the destination
display buffer has a width or height that is not a multiple of 32 while the 32-block format is set.

A GL_ERROR_805A_DMP error is generated when a color buffer is transferred to a display buffer that uses
24-bit pixels and the 8-block format when either buffer has a width or height that is not a multiple of 16.

When the current color buffer was rendered when the 32-block format was set, the 32-block format
must be set when calling this function as well. The same applies to the 8-block format. When the block
format setting when this function is called is not the same as the block format setting used when the
color buffer was rendered, the rendered results will not come out correctly. The block format setting is
configured using the glRenderBlockModeDMP function. For details, see the DMPGL 2.0 Specification.

4.3.8 Displaying Rendered Screens (Swapping)
void nngxSwapBuffers(GLenum display);

Displays the bound display buffer to the display target specified by display when the next V-Sync
occurs. When NN_GX_DISPLAY0 is specified for display, only screen 0 (the first screen) will be
processed. When NN_GX_DISPLAY1 is specified, only screen 1 (the second screen) will be
processed. When NN_GX_DISPLAY_BOTH is specified, both screens will be processed. When any
other value is specified for display, a GL_ERROR_8030_DMP error is generated. A
GL_ERROR_8031_DMP error is generated when a valid display buffer has not been bound. A
GL_ERROR_8032_DMP error is generated when the nngxDisplayEnv function sets a display region
that falls outside of the display buffer that will be displayed.

This function can be called at any time. Once this call has finished executing, it will display the display
buffer that was bound at the time of the call once the first V-Sync occurs. If this function is called
multiple times before the V-Sync occurs, only the most recent call will be applied.

This function sets a value in hardware indicating the address of the display buffer to show. The
display buffer address that is ultimately set in hardware is calculated from the address allocated by
the nngxDisplaybufferStorage function with consideration for the display buffer’s resolution and
pixel size, the LCD resolution, the offset values set by the nngxDisplayEnv function, and so on.
The address set in the hardware must be 16-byte aligned. A GL_ERROR_8053_DMP error is
generated for settings that conflict with this restriction. The address set in hardware is calculated by
the following equation.

Equation 4-1 Display Buffer Address in Hardware

𝑎𝑙𝑙𝑜𝑐𝑎𝑑𝑑𝑟 + 𝑝𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒 × (𝑑𝑏𝑤𝑖𝑑𝑡ℎ × (𝑑𝑏ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑙𝑐𝑑ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝑦) + 𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝑥)

In Equation 4-1 allocaddr is the address allocated by the nngxDisplaybufferStorage function;
pixelsize is the number of bytes per pixel in the display buffer; dbwidth and dbheight are the width and
height of the display buffer resolution; lcdheight is the height of the LCD screen resolution; and
displayx and displayy correspond to the displayx and displayy values in the nngxDisplayEnv
function.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 47 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

A GL_ERROR_9000_DMP error is generated when the display mode is
NN_GX_DISPLAYMODE_STEREO and NN_GX_DISPLAY0_EXT is bound to either 0 or a display buffer
without an allocated region. A GL_ERROR_9001_DMP error is generated when the display mode is
NN_GX_DISPLAY_MODE_STEREO and the nngxDisplayEnv function specifies a display region
outside of the display buffer. A GL_ERROR_9002_DMP error is generated when the display mode is
NN_GX_DISPLAYMODE_STEREO and the display buffers bound to NN_GX_DISPLAY0 and
NN_GX_DISPLAY0_EXT have a different resolution, format, or memory region.

4.3.9 Getting Parameters for Display Buffer Objects
void nngxGetDisplaybufferParameteri(GLenum pname, GLint* param);

Gets the parameters for the object bound to the active display target and stores them in param. The
settings are listed below. When values not listed in the table below are set for the pname parameter, a
GL_ERROR_8033_DMP error is generated.

Table 4-1 List of Parameters for Display Buffer Objects

pname Description

NN_GX_DISPLAYBUFFER_ADDRESS Gets the address of the display buffer.

NN_GX_DISPLAYBUFFER_FORMAT Gets the format of the display buffer.

NN_GX_DISPLAYBUFFER_WIDTH Gets the width of the display buffer.

NN_GX_DISPLAYBUFFER_HEIGHT Gets the height of the display buffer.

4.3.10 Display Mode Settings
void nngxSetDisplayMode(GLenum mode);

Sets the display mode. You can specify either NN_GX_DISPLAYMODE_NORMAL or
NN_GX_DISPLAYMODE_STEREO for mode. A GL_ERROR_9003_DMP error occurs when any other
value is specified.

When the display mode is NN_GX_DISPLAYMODE_NORMAL, 400 lines of the display buffer are shown
normally on screen 0. When the display mode is NN_GX_DISPLAYMODE_STEREO, the two display
buffers are displayed stereoscopically to screen 0 for the left and right eyes. Screen 1 is unaffected.

The display target NN_GX_DISPLAY0_EXT is used when the display mode is
NN_GX_DISPLAYMODE_STEREO. The display buffers bound to NN_GX_DISPLAY0 and
NN_GX_DISPLAY0_EXT are used for the left and right eyes, respectively. As with other display
targets, use the nngxActiveDisplay, nngxBindDisplaybuffer, and nngxDisplayEnv
functions to activate, bind a display buffer to, and specify a display region for NN_GX_DISPLAY0_EXT,
respectively. The display buffers for the left and right eyes must have the same resolution and format
and be placed in the same memory region. When any of these settings are different, an error occurs
when the nngxSwapBuffers function is called.

The default display mode setting is NN_GX_DISPLAYMODE_NORMAL.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 48  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

The display target macros NN_GX_DISPLAY0_LEFT and NN_GX_DISPLAY0_RIGHT are also
prepared as aliases for NN_GX_DISPLAY0 and NN_GX_DISPLAY0_EXT, respectively.

4.3.11 Screen Display by Specifying the Display Address (Swapping by Specifying
Addresses)

void nngxSwapBuffersByAddress(GLenum display, const GLvoid* addr,

 const GLvoid* addrB, GLsizei width, GLenum format);

The display argument specifies the display to which to display the contents of the buffers specified
by addr and addrB.

This function can be called at any time. The data stored in the specified addresses is displayed at the
first V-sync after this function call completes. If this function is called multiple times before a V-sync
occurs, the last call of this function in relation to each screen is the one applied to each screen.

If you specify NN_GX_DISPLAY0 in display, the upper screen is swapped. If you specify
NN_GX_DISPLAY1 the lower screen is swapped. If you specify any other value for display, the
error GL_ERROR_8087_DMP will result.

The addr argument specifies the starting address of the buffer to display. If stereoscopic display is
enabled (the display mode is NN_GX_DISPLAYMODE_STEREO), this is the address of the image to
display for the left eye. addr must be aligned to a 16-byte boundary. If not aligned correctly, the error
GL_ERROR_8088_DMP will result.

When stereoscopic display is enabled, the addrB argument specifies the starting address of the
buffer to display for the right eye. addrB is valid only for the upper screen. If stereoscopic display is
disabled and NN_GX_DISPLAY1 is specified in display, then addrB is ignored. addrB must be
aligned to a 16-byte boundary. If not aligned correctly, the error GL_ERROR_8089_DMP will result.

The width argument specifies the number of pixels of width of the display buffer. width represents
the width of the display buffer, not the width of the LCD screen. Although the pixel width of both the
upper and lower LCD screens is 240, you can specify a pixel width for the buffer greater than 240 if
you display only a portion of the display buffer. width must be a multiple of 8 and have a value of at
least 240. If an invalid value is specified, the error GL_ERROR_808A_DMP will result.

The format argument specifies the display buffer format. Any of the following formats may be
specified.

• GL_RGB8_OES R8G8B8 (24 bits)
• GL_RGBA4 R4G4B4A4 (16 bits)
• GL_RGB5_A1 R5G5B5A1 (16 bits)
• GL_RGB565 R5G6B5 (16 bits)

If a format other than given above is specified, the error GL_ERROR_808B_DMP will result.

When you use this function to display buffers, specifying display regions via nngxDisplayEnv
settings has no effect. Be sure to take offsets and any similar adjustments into account when
specifying addresses in addr and addrB.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 49 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5 Command List Extended API
This chapter explains the extended API related to the command list objects handled in Chapter 3
Execution Control API. This API allows you to reuse executed commands that are generated by the
DMPGL 2.0 API. Because you are reusing the commands themselves, you avoid the cost of calling
DMPGL 2.0 functions that are normally required to generate them, which in turn reduces the CPU
load. Hereafter, the mechanism for reusing command list objects is called the command cache.

5.1 Saving and Reusing Command List Objects
The command cache API represents a process for accumulating commands in command list objects.
You can specify when to start and stop saving commands, and then reuse the saved commands. It is
actually the command requests and 3D command buffers maintained by command list objects that
are saved and reused.

5.1.1 Saving Commands

To save commands, call the functions to start and stop saving commands as they accumulate in a
command list. For more details, see sections 5.4.1 Start Saving Command Lists and 5.4.2 Stop
Saving Command Lists.

Figure 5-1 Saving Command List Objects

Command List Object

3D Command Buffer

Command
Request

1

Command
Request

3
・ ・ ・

Command
Request

4

Command
Request

2

Start Saving Stop Saving

The red area in the figure indicates the commands that have been saved. You get the following save
information when you call the function to stop saving commands: the address at which you started
saving the 3D command buffer, the save size, the ID at which you started saving command requests,
and the number of command requests saved. To reuse saved commands, specify (as a set) the save
information obtained when you stopped saving, along with the command list object from which
content was saved.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 50  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

When this feature "saves commands" it is actually recording accumulated command information.
Command data itself is not saved outside of the region in which the command list object accumulates
commands. You therefore cannot reuse a saved command list object that has been deleted or cleared.

You can start and stop saving a single command list object as many times as you like.

5.1.2 Using Saved Commands

You can call a function to use saved commands (see section 5.4.3 Using Saved Command Lists).
When the function to use saved commands is called, saved commands are added to the command
list object that is currently bound. Command requests are added to the current command list object as
copies. You can choose whether or not to copy the 3D command buffer to the current command list
object.

5.1.2.1 The Method That Copies the 3D Command Buffer

With the method that copies the 3D command buffer, the saved 3D command buffer is copied by the
CPU to the current 3D command buffer. We recommend that you use a small 3D command buffer to
minimize the CPU load. If some of the copied command requests are 3D execution commands, their
execution address information is converted from the original 3D command buffer to the copied 3D
command buffer.

Figure 5-2 Using a Copy of a Saved 3D Command Buffer

Saved Command List

3D Command Buffer

Command
Request

1

Command
Request

3
・ ・ ・

Command
Request

4

Command
Request

2

Current Command List

3D Command Buffer

Command
Request

1

Command
Request

3

Command
Request

2

Command
Request

4

Copy the 3D
Command Buffer

Copy the Command
Requests

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 51 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.1.2.2 The Method That Does Not Copy the 3D Command Buffer

With the method that does not copy the 3D command buffer, only command requests are copied and
PICA directly accesses the 3D command buffer where it is saved. Because the CPU does not copy
the 3D command buffer, we recommend that you use this method for a low CPU load and a large 3D
command buffer. Copied 3D execution commands use the original 3D command buffer address
information. (However, the execution address of the first 3D execution command is converted to the
address at which saving began.)

Figure 5-3 Using a Saved 3D Command Buffer Directly

Saved Command List

3D Command Buffer

Command
Request

1

Command
Request

3
・ ・ ・

Command
Request

4

Command
Request

2

Current Command List

3D Command Buffer

Command
Request

1

Command
Request

3

Command
Request

2

Command
Request

4

Execute from the Original
3D Command Buffer

Copy the Command
Requests

The 3D command buffer execution address moves from the current 3D command buffer to the saved
3D command buffer when commands are executed. Once execution has finished in the saved 3D
command buffer, it continues again from the current 3D command buffer. A split command must be
inserted in the current 3D command buffer when its address returns to the current.

5.1.2.3 Copied Command Request Information

Though you can choose whether to copy the 3D command buffer, command requests are always
copied. Command requests maintain information that is fixed for each command type and is all
copied. This information does not change when a command is copied, even if the DMPGL state has
changed since it was saved. However, information may change for the first 3D execution command to
be copied.

• DMA Transfer Commands: The original and destination addresses, as well as the transfer size,
are preserved for a DMA transfer.

• 3D Execution Commands: The execution starting address and execution size in the 3D command

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 52  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

buffer are preserved. When the address of the 3D command buffer at which saving began is not
identical to the execution starting address, when the command request is copied, the execution
starting address is replaced with the starting save address. The execution size is also changed to
match.

• Memory Fill Commands: The starting address, size, and clear color are preserved for the color
buffer to fill. The starting address, size, clear depth value, and clear stencil value are preserved for
the depth stencil buffer.

• Post-Transfer Commands: The address, resolution, and format are preserved for both the source
color buffer and the destination display buffer.

• Render Texture Transfer Commands: The address and resolution are preserved for both the
source color buffer and the destination texture.

5.2 Editing Commands
You can edit a saved 3D command buffer directly to change commands. The 3D command buffer is a
collection of commands that write to PICA registers. By replacing the data to write appropriately in
accordance with register specifications, you can change settings that correspond to vertex shader
uniforms, reserved fragment shader uniforms, and so on before execution. For details, see section
5.7 3D Command Buffer Specifications.

5.3 Other Features
The following features have been provided to make command list objects more convenient.

5.3.1 Importing and Exporting Command Lists

Commands accumulated in a command list object can be exported as binary data to a specified
memory location. The exported data can be imported into any command list.

5.3.2 Copying Command List Objects

Commands accumulated in a command list object can be copied to another command list object.

5.3.3 3D Command Buffer Generation

A 3D command buffer is usually generated when a specific set of DMPGL 2.0 functions are called, but
you can also generate the commands in 3D command buffers as complete sets of the commands
relating to each feature.

Commands are normally generated only for states that have changed since commands were last
generated (this is called delta command generation), but you can specify that all commands to be
generated instead (this is called complete command generation).

With delta command generation, you also have the option to always generate commands related to
the functions that have been called, regardless of whether the state has been changed.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 53 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.3.4 Adding 3D Commands

You can copy any data to the current 3D command buffer to add commands. 3D execution
commands can be added with the specified data region as the 3D command buffer’s execution
address.

5.4 API
This section describes each function in the API.

5.4.1 Start Saving Command Lists
void nngxStartCmdlistSave(void);

Starts saving the current command list object. You can get the information that is saved by using the
nngxStopCmdlistSave function.

It is assumed that saved commands will be reused. As there is no way of knowing what the PICA
register values will be when the 3D command buffer is reused, you must save all commands that
need to be re-configured. If you call functions as usual when saving commands, only delta commands
will be generated. Because delta commands are only generated for states whose settings have
changed, some necessary commands may not be generated. To generate all of the necessary
commands, either use complete commands or configure the command output mode.

Complete commands refer to commands that are entirely generated together for each state.
Complete command generation is excessive because it generates all commands for each feature. For
details, see section 5.4.9 Updating the DMPGL State.

You can configure the command output mode to always generate commands related to certain
functions that are called, regardless of whether settings changed. For details, see section 5.4.10
Setting the Command Output Mode.

This combination of features allows you to generate and save the appropriate commands as
necessary.

A GL_ERROR_8034_DMP error is generated when this function is called to save commands and then
is called again before it finishes saving. A GL_ERROR_8035_DMP error is generated when 0 is bound
to the current command list.

Calls to this function sometimes cause dummy commands to be generated in the 3D command buffer
for padding.

5.4.2 Stop Saving Command Lists
void nngxStopCmdlistSave(

 GLuint* bufferoffset, GLsizei* buffersize,

 GLunit* requested, GLsizei* requestsize);

Stops saving the current command list object. When you stop saving commands, information is
returned as follows: bufferoffset is the offset (in bytes) to the address the 3D command buffer’s

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 54  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

save start address; buffersize is the number of bytes saved in the 3D command buffer;
requestid is the ID at which you started saving command requests; and requestsize is the
number of command requests saved. Reuse command lists with this save information.

The offset (in bytes) to the save start address is returned in bufferoffset, but this offset must be
added to the starting address of the 3D command buffer to find the actual 3D command buffer save
start address. To get the starting address of the 3D command buffer maintained by the command list
that is currently bound, call the nngxGetCmdlistParameteri function with pname set to
NN_GX_CMDLIST_TOP_BUFADDR.

Calling the nngxStopCmdlistSave function does not cause a split command to be generated in the
3D command buffer. Call the nngxSplitDrawCmdlist function explicitly if a split command is
required. 3D execution command requests may not be saved at all if the 3D command buffer has not
been split. If the 3D command buffer does not have any split commands, you must use the copy
method in order to reuse commands.

A GL_ERROR_8036_DMP error is generated when you have not started saving the command list.

Calls to this function sometimes cause dummy commands to be generated in the 3D command buffer
for padding.

5.4.3 Using Saved Command Lists
void nngxUseSavedCmdlist(GLuint cmdlist,

 GLuint bufferoffset, GLsizei buffersize,

 GLunit requestid, GLsizei requestsize,

 GLbitfield statemask, GLboolean copycmd);

Adds saved commands to the current command list. Specify a saved command list for cmdlist.
Specify the save information obtained by the nngxStopCmdlistSave function for bufferoffset,
buffersize, requestid, and requestsize. These are the offset (in bytes) from the starting
address of the 3D command buffer's save address, the number of bytes saved, the command request
save start ID, and the number of command requests saved, respectively, but you should always
specify the same set of values that you obtained from the nngxStopCmdlistSave function. The
save information specified to this function is not checked for errors (whether it matches the value
obtained when saving ended), so behavior is undefined if you specify invalid values.

Specify a bitwise OR of state flags for which to generate complete commands for statemask. The
DMPGL state and the actual PICA register settings will be in conflict after you call this function. To
resolve this, you must generate all commands and re-set the PICA registers. It is sometimes
redundant to generate all commands, however, so complete commands are generated only if they
correspond to state flags specified by statemask. For details on the state flags specified to statemask,
see section 5.5 State Flags.

When you specify GL_TRUE for copycmd, the 3D command buffer copy method is used when
commands are applied. When GL_FALSE is specified, the method that does not copy the 3D
command buffer is used when commands are applied. For further details on behavior, see section
5.1.2 Using Saved Commands. If the method that does not copy 3D command buffer is used, only

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 55 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

sections that have split commands properly configured are executed. Without a split command,
execution would not otherwise return from the external 3D command buffer to the current command
list. The 3D command buffer is ignored where it is not included in command request 3D execution
commands. If you are using a command list with the method that does not copy the 3D command
buffer, you must call the nngxSplitDrawCmdlist function to add a split command before you stop
saving.

If the method that does not copy the 3D command buffer is used when commands are applied, the
execution address will move from the 3D command buffer that is currently accumulating commands
to an external 3D command buffer. The driver therefore calls the nngxSplitDrawCmdlist function
to add a split command to the current 3D command buffer before it copies the command requests.
The nngxSplitDrawCmdlist function is not called immediately after the current 3D command
buffer is split.

When a) the copy method for the 3D command buffer is used, b) requestsize is nonzero, and c)
the first command of the saved command requests is not a 3D execution command, the driver calls
the nngxSplitDrawCmdlist function to add a split command to the current 3D command buffer
before it copies the command list. The nngxSplitDrawCmdlist function is not called immediately
after the current 3D command buffer is split.

A GL_ERROR_8037_DMP error is generated when 0 is bound to the current command list.
A GL_ERROR_8038_DMP error is generated when an invalid value is specified for cmdlist.
A GL_ERROR_8039_DMP error is generated when cmdlist specifies the current command list.
A GL_ERROR_803A_DMP error is generated when this function has added saved commands that
exceed either the maximum capacity of the current command list’s 3D command buffer or number of
command requests.

5.4.4 Exporting Command Lists
GLsizei nngxExportCmdlist(GLuint cmdlist,

 GLuint bufferoffset, GLsizei buffersize,

 GLuint requestid, GLsizei requestsize,

 GLsizei datasize, GLvoid* data);

Exports the command list specified by cmdlist into memory as binary data. A
GL_ERROR_803B_DMP error is generated if an invalid value is specified for cmdlist.

Specify the offset (in bytes) from the starting address of the 3D command buffer to the first address to
export for bufferoffset. Specify the number of bytes to export from the 3D command buffer for
buffersize. Specify the ID of the first command request to export for requestid. Command
request IDs start at 0 and increase sequentially in the order that commands are accumulated. Specify
the number of command requests to export for requestsize. To determine which values to specify
for bufferoffset, buffersize, requestid, and requestsize while commands are
accumulating, call the nngxGetCmdlistParameteri function and get both the size of the
accumulated 3D command buffer and the number of command requests. Set pname equal to
NN_GX_CMDLIST_USED_BUFSIZE or NN_GX_CMDLIST_USED_REQCOUNT to get the size of the

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 56  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

accumulated 3D command buffer or the number of accumulated command requests, respectively.
The values specified for bufferoffset, buffersize, requestid, and requestsize must not
conflict with each other. To be safe, we recommend that you either export data based on the save
information obtained by the nngxStopCmdlistSave function or use the values obtained by calling
the nngxGetCmdlistParameteri function twice: once for bufferoffset and requested, and
once for buffersize and requestsize.

Specify a pointer to a region used to store the exported data for data. Specify the size (in bytes) of
the data region for datasize. Nothing is exported when the data argument is set equal to 0. The
size (in bytes) of the exported data is returned.

You are expected to first call this function with data set equal to 0. Then, using the return value as
the required data size (for exporting), allocate a data region and call this function again. A
GL_ERROR_803C_DMP error is generated when the export data size is greater than datasize.

You can call the nngxImportCmdlist function to import and use the exported data.

A GL_ERROR_803D_DMP error is generated when bufferoffset, buffersize, requestid, and
requestsize specify a region without any accumulated commands. A GL_ERROR_803E_DMP error
is generated when bufferoffset or buffersize is not 8-byte aligned.

A GL_ERROR_803F_DMP error is generated when any of the command requests are 3D execution
commands added using the nngxUseSavedCmdlist function without the copy method for the 3D
command buffer.

A GL_ERROR_8040_DMP error is generated when bufferoffset or buffersize have not properly
specified the 3D command buffer that is used to execute an exported 3D execution command.

The address of the 3D command buffer that begins the export must be specified within the region
used to execute the first 3D execution command that is exported.

The following figure is an example of how to export correctly. This exports the entire 3D command
buffer where the first 3D execution command (command 1) is executed.

Figure 5-4 First Example of Specifying an Export Correctly

0 321 4 3D Execution
Command Requests

3D Command Buffer

Commands to
Export

bufferoffset

requestid=1

The following figure is also an example of how to export correctly. You can shift bufferoffset as
long as it is within the region used to execute the first 3D execution command (command 1).

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 57 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Figure 5-5 Second Example of Specifying an Export Correctly

0 321 4 3D Execution
Command Requests

3D Command Buffer

Commands to
Export

bufferoffset

requestid=1

You must export all split commands run by 3D execution commands. The following figure is an
example of how to export incorrectly. The split command for the 3D command buffer, executed by
command 3, is not exported.

Figure 5-6 First Example of Specifying an Export Incorrectly

0 321 4 3D Execution
Command Requests

3D Command Buffer

Commands to
Export

bufferoffset

requestid=1

As long as it does not contain any split commands, you can export the 3D command buffer past the
region where the last 3D execution command is executed. The following figure is an example of how
to export correctly. You can export the 3D command buffer until just before the split command
executed by command 4.

Figure 5-7 Third Example of Specifying an Export Correctly

0 321 4 3D Execution
Command Requests

3D Command Buffer

Commands to
Export

bufferoffset

requestid=1

If you do not export any 3D execution commands, the exported command buffer cannot contain any
split commands. When you export data in a way that conflicts with this restriction, you will run into
incorrect behavior when you import and use the data even though you will be unable to detect any
errors. The following figure is an example of how to export correctly.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 58  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Figure 5-8 Fourth Example of Specifying an Export Correctly

0 321 4 3D Execution
Command Requests

3D Command Buffer

Commands to
Export

bufferoffset

requestsize=0

As mentioned before, this function exports a 3D command buffer whose content is not checked;
consequently, the exported data may not behave correctly and errors may not be detected.

5.4.5 Importing Command Lists
void nngxImportCmdlist(GLuint cmdlist, GLvoid* data, GLsizei datasize);

Imports data exported by the nngxExportCmdlist function into a command list. Specify the
command list object to import for cmdlist. A GL_ERROR_8041_DMP error is generated when
cmdlist is set to an invalid value.

Specify a pointer to the exported data for data. Specify the size (in bytes) of the exported data for
datasize. A GL_ERROR_8042 error is generated when data is a pointer to invalid data. A
GL_ERROR_8043 error is generated when datasize does not match the exported data size.

You can specify either the command list that is currently bound or an unbound command list for
cmdlist. The imported commands are added after any commands that have already been
accumulated in cmdlist. A GL_ERROR_8044_DMP error is generated when, by adding the imported
commands, you have exceeded the maximum capacity of the 3D command buffer or number of
command requests. If a 3D execution command is not the first command request that you import into
a command list, bind that command list as the current one and then call the
nngxSplitDrawCmdlist function to add a split command before calling this function. A
GL_ERROR_8045_DMP error is generated when a 3D execution command is not the first command
request imported into a (command list’s) 3D command buffer that has not been split.

Calls to this function sometimes cause dummy commands to be generated for padding in the 3D
command buffer of the command list into which you are importing data.

5.4.6 Getting Command List Information for Exported Data
void nngxGetExportedCmdlistInfo(GLvoid* data,

 GLsizei* buffersize, GLsizei* requestsize, GLuint* bufferoffset);

Gets the size of the 3D command buffer, the number of command requests, and the offset (in bytes)
to the address at which the command buffer is stored in exported data. Specify a pointer to data
exported by the nngxExportCmdlist function for data. The buffersize argument gets the size
(in bytes) of the 3D command buffer. The requestsize argument gets the number of command
requests. The bufferoffset argument gets the offset (in bytes) to the region at which the 3D

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 59 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

command buffer is stored in data. A GL_ERROR_8046_DMP error is generated when data specifies
invalid data.

5.4.7 Copying Command Lists
void nngxCopyCmdlist(GLuint scmdlist, GLuint dcmdlist);

Copies the commands accumulated in a command list. Specify the command list to copy for
scmdlist and the destination command list for dcmdlist. Commands copied into the command list
overwrite any commands that have already been accumulated there.

A GL_ERROR_8047_DMP error is generated when dcmdlist is currently bound. A
GL_ERROR_8048_DMP error is generated when scmdlist is an invalid value. A
GL_ERROR_8049_DMP error is generated when dcmdlist is an invalid value. A
GL_ERROR_804A_DMP error is generated when scmdlist and dcmdlist are the same value. A
GL_ERROR_804B_DMP error is generated when dcmdlist is currently executing. An error is not
generated if execution has finished or stopped. A GL_ERROR_804C_DMP error is generated when the
size of the commands accumulated in scmdlist exceeds the dcmdlist maximums for the 3D
command buffer size or command requests.

5.4.8 Checking the DMPGL State and Generating Commands
void nngxValidateState (GLbitfield statemask, GLboolean drawelements);

Checks the DMPGL state and generates commands.

Commands are normally accumulated in the 3D command buffer when certain DMPGL 2.0 functions
are called. Most of these commands are generated by the glDrawElements and glDrawArrays
functions. DMPGL functions check the state and, if it is updated, generate the relevant commands.
This is called validation. Nearly all states are validated at once by the glDrawElements and
glDrawArrays functions, but you can validate particular groups of states with this function.

Specify a bitwise OR of the state flags to validate for statemask. For more details on state flags,
see section 5.5 State Flags. Specify GL_TRUE for drawelements when glDrawElements is called
and GL_FALSE when glDrawArrays is called for actual rendering. To validate within states, it is
sometimes necessary to know whether the glDrawElements or glDrawArrays function is used for
rendering.

The nngxValidateState function generates commands when the specified states have been
updated. You can use this function in combination with the nngxUpdateState function, which
updates states, to generate complete commands related to states.

When you use this function to generate commands for individual states, the commands may not be
generated in the same order as they originally would have been using the glDrawElements and
glDrawArrays functions. Several state flags depend on others and must be specified accordingly.
For details, see section 5.5.2 State Flag Dependencies.

A GL_ERROR_8066_DMP error is generated when there is an overflow in the 3D command buffer. A
GL_ERROR_806C_DMP error is generated when verification causes various types of DMPGL errors.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 60  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

The following conditions cause errors to occur during validation.

• Texture memory has not been allocated for a valid texture. You must call the glTexImage2D,
glCompressedTexImage2D, or glCopyTexImage2D function to allocate texture memory. All six
faces of a cube-map texture must be allocated.

• A texture was bound with an invalid format. Either a texture in the GL_SHADOW_DMP format was
bound as Texture 1 or Texture 2, or a texture in the GL_GAS_DMP format was bound as a cube-map
texture.

• The six faces of a cube-map texture use different settings. All six faces of a cube-map texture must
have the same width, height, format, and number of mipmap levels.

• The six faces of a cube-map texture have addresses that do not share a common value in the most
significant 7 bits. The most significant 7 bits of every face’s address must be identical.

• A lookup table object has not been bound correctly or a lookup table number has not been specified
correctly. A valid lookup table object must be bound to the appropriate lookup table number for
fragment lighting, procedural textures, fog, and gas when they are configured to use lookup tables.
The uniforms that specify the lookup table numbers must also be set correctly.

• The region required for storing the value of the internal lookup table format failed to be allocated.

5.4.9 Updating the DMPGL State
void nngxUpdateState (GLbitfield statemask);

Updates the DMPGL state. Complete commands are generated during validation when you use this
function to update the state.

The glDrawElements and glDrawArrays functions check the DMPGL state and, if it is updated,
generate the relevant commands. Commands are not usually generated when the state has not been
updated. Once you call this function, the state is updated and complete commands are configured to
be generated. This function does not itself generate commands. Commands are generated when a
function such as glDrawElements or glDrawArrays is called after this one.

After you call this function, complete commands are generated until the first call to the
glDrawElements or glDrawArrays functions. If you call the nngxValidateState function
before the glDrawElements or glDrawArrays function, complete commands cease to be
generated for each validated state flag.

Specify a bitwise OR of the state flags to update for statemask. For more information on state flags,
see section 5.5 State Flags.

You can use this function in combination with the nngxValidateState function to generate
complete commands for individual state flags.

5.4.10 Setting the Command Output Mode
void nngxSetCommandGenerationMode(GLenum mode);

Sets the command output mode.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 61 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

If you specify NN_GX_CMDGEN_MODE_CONDITIONAL for mode, commands are generated only for
states that have changed. If you specify NN_GX_CMDGEN_MODE_UNCONDITIONAL for mode,
commands are generated not only for states that have changed but also for functions that are called,
regardless of whether the state changed.

The mode is set to NN_GX_CMDGEN_MODE_CONDITIONAL by default.

The following settings are affected by the NN_GX_CMDGEN_MODE_UNCONDITIONAL mode.

• Uniform settings for the reserved fragment shader.
• Integer uniform settings for the vertex shader.
• Settings for lookup table data. If you set reserved uniform values that specify various lookup table

IDs, commands are generated during validation to load lookup tables. However, each lookup table
must be enabled. For details, see section 5.5.3 Lookup Table Command Generation.

• Functions other than glDrawArrays, glDrawElements, and nngxValidateState that
generate commands. For details, see section 5.6 DMPGL Functions That Generate Commands.

A GL_ERROR_804D_DMP error is generated if an invalid value is specified for mode.

5.4.11 Getting the Command Output Mode
void nngxGetCommandGenerationMode(GLenum* mode);

Gets the currently set command output mode and returns it in the mode argument.

5.4.12 Adding 3D Commands
void nngxAdd3DCommand (

 const GLvoid* bufferaddr, GLsizei buffersize, GLboolean copycmd);

Adds data from the specified region to the current 3D command buffer or adds a 3D execution
command that executes the specified region.

When copycmd is GL_TRUE, the data in the region specified by bufferaddr is copied to the current
3D command buffer. Specify the number of bytes to copy for buffersize. Behavior is not
guaranteed when a 3D command buffer with split commands is copied.

When copycmd is GL_FALSE, a 3D execution command is first generated with the region specified
by bufferaddr as its execution address and then added to the current command requests. Specify
the number of bytes in the 3D command buffer to execute for buffersize. If unsplit 3D commands
have accumulated in the current 3D command buffer, the nngxSplitDrawCmdlist function is
called internally, and then a newly created 3D execution command is added. Behavior is not
guaranteed if the last command in the specified region is not a split command.

You must specify a positive value for buffersize. When copycmd is GL_TRUE, buffersize must
be a multiple of 4. When copycmd is GL_FALSE, buffersize must be a multiple of 16.

The following errors will be generated under the conditions specified.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 62  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Error Generated When

GL_ERROR_804E_DMP A command list is not currently bound

GL_ERROR_804F_DMP buffersize is an invalid value

GL_ERROR_8050_DMP copycmd is GL_TRUE and the current 3D command buffer size is insufficient

GL_ERROR_8051_DMP copycmd is GL_FALSE and the current command request size is insufficient

GL_ERROR_8052_DMP copycmd is GL_FALSE and bufferaddr is not a multiple of 16

When copycmd is GL_FALSE, this function flushes the cache in the area specified by bufferaddr.
If you do not need to flush the cache, you can omit the cache flush by using
nngxAdd3DCommandNoCacheFlush.

5.4.13 Adding 3D Commands (Without Cache Flush)
void nngxAdd3DCommandNoCacheFlush (

const GLvoid* bufferaddr, GLsizei buffersize);

Adds a 3D execution command to be executed in the specified region as 3D command buffer. It does
not flush the cache in the specified region. This function is the same as nngxAdd3DCommand when
copycmd is set to GL_FALSE, except that it does not flush the cache in the area specified by
bufferaddr.

A 3D execution command is first generated with the region specified by bufferaddr as its execution
address and then added to the current command requests. Specify the number of bytes in the 3D
command buffer to execute for buffersize. If unsplit 3D commands have accumulated in the
current 3D command buffer, the nngxSplitDrawCmdlist function is called internally, and then a
newly created 3D execution command is added. Behavior is not guaranteed if the last command in
the specified region is not a split command.

buffersize must be a positive value that is a multiple of 16. bufferaddr must be a multiple of 16.

Error Generated When

GL_ERROR_808C_DMP A command list is not currently bound

GL_ERROR_808D_DMP buffersize is an invalid value

GL_ERROR_808E_DMP bufferaddr is not a multiple of 16

GL_ERROR_808F_DMP The current command request size is insufficient

5.4.14 Adding a Copied Command List
void nngxAddCmdlist (GLuint cmdlist);

Adds all commands accumulated in the command list specified by cmdlist to the current command
list object. The commands are added after any commands that have already been accumulated in the
current command list object.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 63 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

If the current 3D command buffer has not just been split and a 3D execution command is not the first
command request to add, this function calls the nngxSplitDrawCmdlist function internally to split
the command buffer before adding commands.

If the current 3D command buffer has not just been split and a 3D execution command is the first
command request to add, this function adds dummy commands to the current command buffer as
necessary to adjust the alignment before adding commands.

The following errors will be generated under the conditions specified.

Error Generated When

GL_ERROR_8054_DMP An invalid value is specified for cmdlist

GL_ERROR_8055_DMP A command list is not currently bound

GL_ERROR_8056_DMP The command list specified by cmdlist is the same as the current command list

GL_ERROR_8057_DMP The current command list is currently being executed

GL_ERROR_8058_DMP By adding a command buffer or command requests to the current command list,
the maximum buffer size has been exceeded.

The maximum size is checked when this function calls the nngxSplitDrawCmdlist function
internally, when dummy commands are added, and in other instances.

5.4.15 Getting the Updated DMPGL State
void nngxGetUpdatedState (GLbitfield* statemask);

Gets the updated DMPGL state.

Each of the DMPGL states is updated when DMPGL functions and the nngxUpdateState function
are called. When you call this function, any state flag that has currently been updated is set to 1 in
statemask. If you call this after the state has been validated by a function such as glDrawArrays,
glDrawElemnts, or nngxValidateState, the validated state flags are not set in statemask. This
function sets the NN_GX_STATE_OTHERS state flag only when it has been updated by the
nngxUpdateState function.

For more details on state flags, see section 5.5 State Flags.

5.4.16 Invalidating DMPGL State Updates
void nngxInvalidateState (GLbitfield statemask);

Disables updates to the DMPGL state. For the statemask argument, specify the bitwise sum of the
state flags for which you want to disable updates.

Calling this function will prevent generation of commands related to the state flags specified in the
statemask argument, even if the state is updated.

For more details on state flags, see section 5.5 State Flags.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 64  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

5.4.17 Moving the Command Buffer Pointer
void nngxMoveCommandbufferPointer (GLint offset);

Moves the current pointer position of the currently bound command buffer. Specify the number of
bytes to move the pointer in the offset argument. A GL_ERROR_8061_DMP error is generated if
there is no currently bound command buffer or if moving will place the pointer outside the command
buffer memory region.

5.5 State Flags
State flags consolidate settings by feature for DMPGL function calls. A single state corresponds to
one or more DMPGL functions or uniforms (and so on) and, when updated, causes relevant
commands to be generated. You must specify a bitwise OR of state flags as an argument to the
nngxUseSavedCmdlist, nngxValidateState, and nngxUpdateState functions.

5.5.1 State Flag Types

Each type of state flag is related to different commands and has different DMPGL 2.0 functions that
cause it to be updated. Table 5-1 summarizes each of the state flag types.

Table 5-1 State Flag Types

State Flag Name Summary

NN_GX_STATE_SHADERBINARY

The shader binary state. Commands are generated to load shader
assembly code.
This state is updated when the glUseProgram function switches the
program and the original and new program objects are linked to shader
objects that were loaded by separate calls to the glShaderBinary
function.

NN_GX_STATE_SHADERPROGRAM

The shader program state. Commands are generated for settings that
include the composition of vertex attributes.
This state is updated when the glUseProgram function switches the
program object.
Commands are generated only for registers whose settings have changed.
When this state is validated, its current settings are compared with its
settings when it was last validated; commands are generated only for the
settings that are different.

NN_GX_STATE_SHADERMODE

The shader mode state. Commands are generated to enable or disable the
geometry shader.
This state is updated when the glUseProgram function toggles the
geometry shader between enabled and disabled.

NN_GX_STATE_SHADERFLOAT

The shader floating-point state. Commands are generated to set floating-
point registers for which a def instruction has defined a value in shader
assembly.
This state is updated when the glUseProgram function switches to a
program object with a different shader object attached.

NN_GX_STATE_VSUNIFORM
The vertex shader uniform state. Commands are generated to set floating-
point registers, Boolean registers, and integer registers defined as uniforms
in shader assembly.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 65 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

State Flag Name Summary

This state is updated when the:
• glUseProgram function switches to a different program object.
• glUniform function sets the value of a vertex shader uniform.
The state is updated even if settings have not changed for floating-point
uniforms, but it is not updated if settings have not changed for integer
uniforms.

NN_GX_STATE_FSUNIFORM

The reserved fragment shader uniform state. Commands are generated to
set registers specific to reserved fragment shader uniforms.
This state is updated when a uniform value is changed because the
glUseProgram function switched the program object or the glUniform
function set a fragment shader uniform.

NN_GX_STATE_LUT

The lookup table state. Commands are generated to set lookup tables.
This state is updated when the:
• content of a lookup table object bound by the glBindTexture,
glTexImage1D, or glTexSubImage1D function changes.

• glDeleteTextures function deletes a bound lookup table object.
• glUseProgram or glUniform function changes the lookup table object

specifying the uniforms used to set each lookup table ID.

NN_GX_STATE_TEXTURE

The texture state. Commands specific to texture units are generated. This
does not include commands specific to procedural textures.
This state is updated when the following functions are called.
• glBindTexture
• glTexImage2D
• glCompressedTexImage2D
• glCopyTexImage2D
• glCopyTexSubImage2D
• glTexParameter
This state is also updated when the:
• glDeleteTextures function deletes texture objects in use.
• glUseProgram or glUniform function changes the reserved fragment

uniform, dmp_Texture[i].samplerType.

NN_GX_STATE_FRAMEBUFFER

The framebuffer information state. Commands specific to the framebuffer
format and buffer address are generated.
This state is updated when the following functions are called.
• glBindFramebuffer
• glBindFramebufferRenderbuffer
• glFramebufferTexture2D
• glDeleteFramebuffers
• glBindRenderbuffer
• glRenderbufferStorage
• glDeleteRenderbuffers

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 66  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

State Flag Name Summary

NN_GX_STATE_VERTEX

The vertex attribute data state. Commands specific to vertex attribute data
are generated.
This state is updated when the following functions are called.
• glBindBuffer
• glBufferData
• glBufferSubData
• glEnableVertexAttribArray
• glDisableVertexAttribArray
• glVertexAttribPointer
• glVertexAttrib
• glUseProgram
This state is also updated when the glDeleteBuffers function deletes
the current vertex buffer.

NN_GX_STATE_TRIOFFSET

The polygon offset state. Commands specific to polygon offsets are
generated.
This state is updated when the:
• glEnable or glDisable function changes the
GL_POLYGON_OFFSET_FILL setting.

• glDepthRangef or glPolygonOffset function changes settings.
• glUseProgram function is called.

NN_GX_STATE_FBACCESS

The framebuffer access method state. Commands are generated for the
framebuffer's R/W and other access methods.
This state is updated when the:
• glEnable or glDisable function changes the GL_COLOR_LOGIC_OP,
GL_BLEND, GL_DEPTH_TEST, GL_EARLY_DEPTH_TEST_DMP, or
GL_STENCIL_TEST setting.

• glDepthFunc, glEarlyDepthFuncDMP, glColorMask,
glDepthMask, or glStencilMask function changes settings.

• glUniform function sets the reserved fragment uniform
dmp_FragOperation.mode.

NN_GX_STATE_SCISSOR

A scissoring-related state. Commands specific to scissoring settings are
generated.
This state is updated when the:
• glEnable or glDisable function changes the GL_SCISSOR_TEST

setting.
• glScissor function changes settings.
• framebuffer size is changed with scissoring enabled.

NN_GX_STATE_OTHERS
This state flag represents a state related to commands generated by
functions other than the glDrawElements and glDrawArrays functions.
For details, see section 5.6 DMPGL Functions That Generate Commands.

Commands are generated by the first call to the glDrawElements, glDrawArrays, or
nngxValidateState function after any state represented by a state flag is updated. Commands are
also generated by a call to the glReadPixels or glClear function for the state flag
NN_GX_STATE_FRAMEBUFFER.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 67 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.5.2 State Flag Dependencies

Each state flag has commands related to it, some of which have dependencies on the order in which
they are specified. When you call the nngxValidateState function, commands are generated in
the order that they were specified by the application. This sometimes conflicts with dependency
restrictions. The following table shows dependency restrictions that apply when the
nngxValidateState function is called. Behavior is undefined when there is a conflict with these
restrictions.

Table 5-2 State Flag Dependencies

First Value
(Do Not Specify After the Second Value)

Second Value
(Do Not Specify Before the First Value)

• NN_GX_STATE_FBACCESS
• NN_GX_STATE_TRIOFFSET

• NN_GX_STATE_FSUNIFORM

• NN_GX_STATE_SHADERMODE

• NN_GX_STATE_SHADERBINARY
• NN_GX_STATE_SHADERPROGRAM
• NN_GX_STATE_SHADERFLOAT
• NN_GX_STATE_VSUNIFORM

• NN_GX_STATE_FRAMEBUFFER
• NN_GX_STATE_OTHERS

• NN_GX_STATE_FBACCESS

• NN_GX_STATE_FRAMEBUFFER • NN_GX_STATE_SCISSOR

5.5.3 Lookup Table Command Generation

Commands that update lookup table data are only generated for enabled lookup tables. Commands
are not generated for disabled lookup tables even if you call the nngxUseSavedCmdlist or
nngxUpdateState function while complete commands are configured to be generated for the state
flag NN_GX_STATE_LUT. The following table shows how to enable the various lookup tables.

Table 5-3 Conditions for Enabling Lookup Tables

Lookup Table Conditions to Enable

Fragment Light: Distribution 0 (D0)
• dmp_FragmentLighting.enabled is GL_TRUE and
• dmp_LightEnv.config is configured to use D0 and
• dmp_LightEnv.lutEnabledD0 is GL_TRUE

Fragment Light: Distribution 1 (D1)
• dmp_FragmentLighting.enabled is GL_TRUE and
• dmp_LightEnv.config is configured to use D1 and
• dmp_LightEnv.lutEnabledD1 is GL_TRUE

Fragment Light: Spotlight Attenuation
(SP)

• dmp_FragmentLighting.enabled is GL_TRUE and
• dmp_LightEnv.config is configured to use SP and
• dmp_FragmentLightSource[i].enabled is GL_TRUE and
• dmp_FragmentLightSource[i].spotEnabled is GL_TRUE

Fragment Light: Fresnel Factor (FR) • dmp_FragmentLighting.enabled is GL_TRUE and

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 68  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Lookup Table Conditions to Enable

• dmp_LightEnv.config is configured to use FR and
• dmp_LightEnv.fresnelSelector is not

GL_LIGHT_ENV_NO_FRESNEL_DMP

Fragment Light: Reflection Red (RR)
• dmp_FragmentLighting.enabled is GL_TRUE and
• dmp_LightEnv.config is configured to use RR and
• dmp_LightEnv.lutEnabledRefl is GL_TRUE

Fragment Light: Reflection Green
(RG)

• dmp_FragmentLighting.enabled is GL_TRUE and
• dmp_LightEnv.config is configured to use RG and
• dmp_LightEnv.lutEnabledRefl is GL_TRUE

Fragment Light: Reflection Blue (RB)
• dmp_FragmentLighting.enabled is GL_TRUE and
• dmp_LightEnv.config is configured to use RB and
• dmp_LightEnv.lutEnabledRefl is GL_TRUE

Fragment Light Distance Attenuation

• dmp_FragmentLighting.enabled is GL_TRUE and
• dmp_FragmentLightSource[i].enabled is GL_TRUE and
• dmp_FragmentLightSource[i].distanceAttenuationEnabled

is GL_TRUE

Procedural Textures:
RGB Mapping F Function

• dmp_Texture[3].samplerType is
GL_TEXTURE_PROCEDURAL_DMP

Procedural Textures:
Alpha Mapping F Function

• dmp_Texture[3].samplerType is
GL_TEXTURE_PROCEDURAL_DMP and

• dmp_Texture[3].ptAlphaSeparate is GL_TRUE

Procedural Textures: Noise
Modulation Function

• dmp_Texture[3].samplerType is
GL_TEXTURE_PROCEDURAL_DMP and

• dmp_Texture[3].ptNoiseEnable is GL_TRUE

Procedural Texture Color
• dmp_Texture[3].samplerType is

GL_TEXTURE_PROCEDURAL_DMP

Fog • dmp_Fog.mode is not GL_FALSE

Gas Shading • dmp_Fog.mode is GL_GAS

5.6 DMPGL Functions That Generate Commands
There are functions other than glDrawElements, glDrawArrays, and nngxValidateState that,
when called, immediately generate commands for those functions’ settings. Table 5-4 shows the
functions that generate commands immediately.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 69 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Table 5-4 Function List

Function Condition for Generating Commands

glBlendColor A setting value has changed.

glBlendEquation A setting value has changed.

glBlendEquationSeparate A setting value has changed.

glBlendFunc A setting value has changed.

glBlendFuncSeparate A setting value has changed.

glClearEarlyDepthDMP A setting value has changed.

glColorMask A setting value has changed.

glCullFace A setting value has changed.

glDepthFunc A setting value has changed.

glDepthMask A setting value has changed.

glDisable

One of the following settings values have changed.
• GL_COLOR_LOGIC_OP
• GL_BLEND
• GL_DEPTH_TEST
• GL_EARLY_DEPTH_TEST_DMP
• GL_STENCIL_TEST
• GL_CULL_FACE
Commands are not generated for any other settings.

glEarlyDepthFuncDMP A setting value has changed.

glEnable

One of the following settings values have changed.
• GL_COLOR_LOGIC_OP
• GL_BLEND
• GL_DEPTH_TEST
• GL_EARLY_DEPTH_TEST_DMP
• GL_STENCIL_TEST
• GL_CULL_FACE
Commands are not generated for any other settings.

glFrontFace A setting value has changed.

glLogicOp A setting value has changed.

glRenderBlockModeDMP A setting value has changed.

glStencilFunc A setting value has changed.

glStencilMask A setting value has changed.

glStencilOp A setting value has changed.

glViewport Always generated.

The functions in Table 5-4 generate commands according to the specified conditions.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 70  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

All of these functions generate every relevant command together during validation (when the
glDrawElements or glDrawArrays function is called, or when the nngxValidateState function
is called with statemask set to NN_GX_STATE_OTHERS) if statemask is set to
NN_GX_STATE_OTHERS in the nngxUseSavedCmdlist and nngxUpdateState functions.

Although these functions generate commands according to the given conditions, commands are
always generated when the functions are called if the mode has been set to
NN_GX_CMDGEN_MODE_UNCONDITIONAL by the nngxSetCommandGenerationMode function,
regardless of the conditions in the table.

5.7 3D Command Buffer Specifications
This section describes 3D command buffer specifications. The 3D command buffer is a collection of
commands that write to PICA registers. By replacing the 3D command buffers of saved and exported
command lists according these specifications, you can change values that correspond to vertex
shader and reserved fragment shader uniforms.

5.7.1 Basic Specifications

The 3D command buffer is a contiguous set of 64-bit commands, each of which comprises a 32-bit
header and 32 bits of data. The amount of data varies with the content of the header.

The following table describes each of the 64 bits.

Table 5-5 Command Bit Structure

Bits Name Description

[31:0] DATA 32 bits of data to write to a register.

[47:32] ADDR Address of the register to write to.

[51:48] BE

Byte enable.
Each bit corresponds to a byte of data, which is only written if that bit is set to 1.
(Even if a command has a byte enable value of 0, the command itself is still sent to the
module being set and can therefore be used as a dummy command to make internal
timing adjustments, among other things. You must be careful, though, because the act of
writing itself has meaning for some registers.)

[59:52] SIZE
Data count - 1.
If these bits have a value of 0, they indicate single access.
If they have a value of 1 or greater, they indicate burst access.

[63:63] SEQ
Indicates the burst access mode.
If this bit is 0, data is written to a single register.
If this bit is 1, data is written to consecutive registers.

Note: These bits use little-endian notation.

All commands are 64-bit aligned. The value of the SIZE bits indicates either single or burst access. In
burst access mode, the SEQ bits determine whether data is written to a single register or to
consecutive registers.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 71 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.7.2 Single Access

When the SIZE bits have a value of 0, commands are single-access. One unit of data (32 bits) is
written once to a single register. The ADDR bits indicate the address of the register to write to. The
DATA bits are the data to write. Each byte is only updated if its corresponding BE bit is set to 1. (A
command does not write to a register where the BE bits are 0.) The SEQ bit is ignored. The 64 bits of
data that follow a command represent the next command.

Consider the sample command, 0x000f011012345678. SIZE is 0, BE is 0xf, ADDR is 0x110,
and DATA is 0x12345678. This is single-access because the SIZE bits have a value of 0. This
command writes 0x12345678 to register 0x110.

5.7.3 Burst Access

When the SIZE bits have a value of 1 or greater, SIZE+1 units of data are written to registers. You
can set values up to 255 for the SIZE bits. The DATA bits are written first, followed by the data stored
in the next 64 bits. The least significant 32 bits are written before the most significant 32 bits.

Figure 5-9 Command Structure for Burst Access

Header Data 1
063

・・・
3132

Data 3 Data 2
063 3132

Data 5 Data 4
063 3132

Because SIZE+1 units of data are written, an even number of pieces are written when the SIZE bits
have an odd value. In this case, the most significant 32 bits of the last 64 bits of data are ignored.
(The next command always starts at an address that is 64-bit aligned.) The BE bits' byte enable
settings are applied to all writes uniformly.

If the SEQ bit is 0, data is written to a single register. If the SEQ bit is 1, data is written to consecutive
registers.

5.7.3.1 Writing to a Single Register

Multiple units of data are written consecutively to a single register. The ADDR bits indicate the address
of the register to write to. The DATA bits are written first, followed by the data stored in the next 64 bits.
The least significant 32 bits are written before the most significant 32 bits. The number of data units
written is one greater than the value of the SIZE bits.

Consider the following sample command.

• 0x004f008011111111

• 0x3333333322222222

• 0x5555555544444444

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 72  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

In this command, SIZE is 4, BE is 0xf, ADDR is 0x80, DATA is 0x11111111, and SEQ is 0.
Because SIZE is 4 and SEQ is 0, five units of data are written consecutively to the same register. In
other words, 0x11111111, 0x22222222, 0x33333333, 0x44444444, and 0x55555555 are written
to the register at address 0x80.

5.7.3.2 Writing to Consecutive Registers

Different values are written one at a time to multiple consecutive registers. The ADDR bits give the
address of the first register to write. The DATA bits are written to the first register and then the
following 64-bit data is written, starting with the least significant 32 bits, to addresses that increment
by one with each write. SIZE+1 units of data are written to SIZE+1 registers.

Consider the following sample command.

• 0x805f028011111111

• 0x3333333322222222

• 0x5555555544444444

• 0x7777777766666666

In this command, SIZE is 5, BE is 0xf, ADDR is 0x28, DATA is 0x11111111, and SEQ is 1. Because
SIZE is 5 and SEQ is 1, six units of data are written to consecutive registers. In other words,
0x11111111 is written to register 0x280; 0x22222222 is written to register 0x281; 0x33333333 is
written to register 0x282; 0x44444444 is written to register 0x283; 0x55555555 is written to
register 0x284; and 0x66666666 is written to register 0x285. The most significant 32 bits
(0x77777777 in this example) of the last 64 bits of data are not used because the SIZE bit has an
odd value. The next command is the 64 bits of data following 0x7777777766666666.

5.8 PICA Register Information
This section describes PICA register information corresponding to specific features. The register
information includes the register address, configuration method, value format, and so on. Using the
information in this section, you can change the values set for a feature by searching for and replacing
3D command buffer locations that write to the corresponding registers.

5.8.1 Render Start Registers

If a value of 1 is written to register 0x22f or 0x22e, the glDrawElements or glDrawArrays
function starts rendering using the vertex buffer, respectively. If a value of 0xf is written to register
0x232, the glDrawElements or glDrawArrays function starts rendering without using the vertex
buffer.

5.8.2 Vertex Shader Floating-Point Registers

There are 96 floating-point registers for the vertex shader. Each one comprises four components: x, y,
z, and w. These are written as c0 through c95 in shader assembly. You can use two methods to
define either uniforms or constants with the def instruction. Internally, PICA uses 24-bit floating-point

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 73 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

numbers with a 16-bit mantissa, 7-bit exponent, and 1-bit sign in order from the least significant to the
most significant bit.

You can set either 24-bit or 32-bit PICA floating-point numbers. The DMPGL driver uses 24 bits to
define a constant with def and 32 bits to define a uniform. The only difference between setting a 24-
bit floating-point number and a 32-bit floating-point number is an increase in the number of
commands to process. There is no processing overhead associated with a conversion between
floating-point formats.

The 32-bit floating-point numbers mentioned here use the IEEE 754 single-precision format. When
you set 32-bit values, PICA automatically converts them to 24 bits internally.

5.8.2.1 Address Information

Bits [7:0] of register 0x2c0 set the floating-point register index. (This is 0 for c0 and 0x0a for c10.)
When 1 or 0 is simultaneously written to bit [31:31], floating-point numbers are input in 32-bit or 24-bit
mode, respectively.

Data is written to the xyzw components of a floating-point register between 0x2c1 and 0x2c8.
Writing a value anywhere between 0x2c1 and 0x2c8 has the same effect. After you write an index to
0x2c0, data is written from 0x2c1 to 0x2c8.

5.8.2.2 How to Set the Input Mode for 32-Bit Floating-Point Numbers

When floating-point numbers are entered in 32-bit mode, 32 bits of data are written four times in wzyx
order to any register between 0x2c1 and 0x2c8. Once data is written four times, the index of the
next floating-point register to write is automatically incremented by one.

Code 5-1 Sample 32-Bit Floating-Point Input
0x2c0 <= 0x80000023 // [31] = 1 for 32-bit input mode and [7:0] = 35

0x2c1 <= 0x40800000 // The value of c35.w

0x2c2 <= 0x40400000 // The value of c35.z

0x2c3 <= 0x40000000 // The value of c35.y

0x2c4 <= 0x3f800000 // The value of c35.x

0x2c1 <= 0x40800000 // The value of c36.w

0x2c2 <= 0x40400000 // The value of c36.z

0x2c3 <= 0x40000000 // The value of c36.y

0x2c4 <= 0x3f800000 // The value of c36.x

If you set register values as shown here, c35.xyzw and 36.xyzw will be {1.f, 2.f, 3.f, 4.f}.

5.8.2.3 How to Set the Input Mode for 24-Bit Floating-Point Numbers

When floating-point numbers are entered in 24-bit mode, the w, z, y, and x components are converted
into a 24-bit format and then packed into 32 bits of data, which is then written three times to any
register between 0x2c1 and 0x2c8. For details on how values are converted into 24-bit floating-point
numbers, see section 5.9.1 Converting from float32 to float24. The following figure shows the 24-bit
data layout.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 74  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Figure 5-10 How to Set 24-Bit Floating-Point Numbers

w[23:0] z[23:16]Data 1
31 8 7 0

y[23:8]z[15:0]Data 2
31 1615 0

x[23:0]y[7:0]Data 3
31 24 23 0

Data 1, Data 2, and Data 3 in the figure are written in that order. Once data is written three times, the
index of the next floating-point register to write is automatically incremented by one.

Code 5-2 Sample 24-Bit Floating-Point Input
0x2c0 <= 0x00000023 // [31] = 0 for 24-bit input mode and [7:0] = 35

0x2c1 <= 0x41000040 // [31:8] = w[23:0] and [7:0] = z[23:16]

0x2c2 <= 0x80004000 // [31:16] = z[15:0] and [15:0] = y[23:8]

0x2c3 <= 0x003f0000 // [31:24] = y[7:0] and [23:0] = x[23:0]

When registers are set this way, the following values are set.

• c35.x = 0x3f0000

• c35.y = 0x400000

• c35.z = 0x408000

• c35.w = 0x410000

The value of c35.xyzw is therefore {1.f, 2.f, 3.f, 4.f}.

5.8.3 Vertex Shader Boolean Registers

There are 16 Boolean registers for the vertex shader. These are written as b0-b15 in shader
assembly. You can use these to define either uniforms or constants with the defb instruction.

Bits [15:0] of register 0x2b0 correspond to the vertex shader Boolean registers. Bits 0-15 correspond
to b0-b15, respectively. A value of 1 is equivalent to true, 0 is equivalent to false.

5.8.4 Vertex Shader Integer Registers

There are 4 integer registers for the vertex shader. Each integer register comprises three
components: x, y, and z. These are written as i0-i3 in shader assembly. You can use these to define
either uniforms or constants with the defi instruction.

The 0x2b1, 0x2b2, 0x2b3, and 0x2b4 registers correspond to i0, i1, i2, and i3, respectively. For
each register, bits [7:0] correspond to the x component, bits [15:8] correspond to the y component,
and bits [23:16] correspond to the z component.

5.8.5 Vertex Shader Starting Address Setting Registers

Bits [15:0] of register 0x2ba set the starting address of the vertex shader. This specifies the address
of the main label defined in shader assembly.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 75 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.8.6 Registers That Set the Number of Input Vertex Attributes

Bits [3:0] of registers 0x2b9 and 0x242 each set a value that is one less than the number of vertex
attributes input to the vertex shader.

5.8.7 Registers That Set the Number of Output Registers Used by the Vertex
Shader

These set the number of output registers written by the vertex shader. The specified value is the
number of output registers defined by #pragma output_map in shader assembly. When #pragma
output_map defines multiple attributes to be packed into a single output register, count those
attributes as a single output register.

Bits [2:0] of register 0x4f set the number of output registers to use. Bits [3:0] of registers 0x24a,
0x25e, and 0x251 each set a value that is one less than the number of output registers to use.

5.8.8 Registers That Set the Vertex Shader Output Mask

These use a bitmask to specify the output registers written by the vertex shader. Bits [15:0] of register
0x2bd correspond to each of the 16 output registers (bit [0:0] corresponds to o0, bit [1:1]
corresponds to o1, and bit [15:15] corresponds to o15).

A bit is set (1) if it corresponds to an output register defined by #pragma output_map in shader
assembly. A bit is cleared (0) if it corresponds to an undefined output register.

5.8.9 Registers That Set Vertex Shader Output Attributes

These configure the vertex attributes output by the vertex shader. Data written to the output registers
defined by #pragma output_map is output starting with the smallest index (so that o0, o1, o2, and
o3 are output in order and nothing is output for an output register that is not defined by output_map).
Data attributes output by the vertex shader are specified one by one in registers, starting with data for
the first register. The following table indicates register information.

Table 5-6 Registers That Set Output Attributes from the Vertex Shader

Setting Register Description

0x50: bits [4:0]

Attribute for the x-component of the first set of output data.
• 0x00: Vertex coordinate x
• 0x01: Vertex coordinate y
• 0x02: Vertex coordinate z
• 0x03: Vertex coordinate w
• 0x04: Quaternion x
• 0x05: Quaternion y
• 0x06: Quaternion z
• 0x07: Quaternion w
• 0x08: Vertex color R
• 0x09: Vertex color G
• 0x0a: Vertex color B

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 76  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Register Description

• 0x0b: Vertex color A
• 0x0c: Texture coordinate 0, u
• 0x0d: Texture coordinate 0, v
• 0x0e: Texture coordinate 1, u
• 0x0f: Texture coordinate 1, v
• 0x10: Texture coordinate 0, w
• 0x12: View vector x
• 0x13: View vector y
• 0x14: View vector z
• 0x16: Texture coordinate 2, u
• 0x17: Texture coordinate 2, v
• 0x1f: Invalid

0x50: bits [12:8] The same settings as bits [4:0] of register 0x50 for the y-component
attribute of the first set of output data.

0x50: bits [20:16] The same settings as bits [4:0] of register 0x50 for the z-component
attribute of the first set of output data.

0x50: bits [28:24] The same settings as bits [4:0] of register 0x50 for the w-component
attribute of the first set of output data.

0x51: bits [4:0], [12:8], [20:16], [28:24] The same settings as register 0x50 for the second set of output data
attributes.

0x52: bits [4:0], [12:8], [20:16], [28:24] The same settings as register 0x50 for the third set of output data
attributes.

0x53: bits [4:0], [12:8], [20:16], [28:24] The same settings as register 0x50 for the fourth set of output data
attributes.

0x54: bits [4:0], [12:8], [20:16], [28:24] The same settings as register 0x50 for the fifth set of output data
attributes.

0x55: bits [4:0], [12:8], [20:16], [28:24] The same settings as register 0x50 for the sixth set of output data
attributes.

0x56: bits [4:0], [12:8], [20:16], [28:24] The same settings as register 0x50 for the seventh set of output data
attributes.

0x64: bit [0:0] Set equal to 1 when texture coordinates are output by the vertex
shader and 0 when they are not.

For example, consider the following vertex shader definitions.

Code 5-3 Sample Vertex Shader Definitions
#pragma output_map(position, o0)

#pragma output_map(color, o1)

#pragma output_map(texture0, o2.xy)

#pragma output_map(texture0w, o2.z)

#pragma output_map(texture1, o3.xy)

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 77 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

The registers are set as follows.

• 0x50 <- 0x03020100

• 0x51 <- 0x0b0a0908

• 0x52 <- 0x1f100d0c (w is invalid)
• 0x53 <- 0x1f1f0f0e (zw are invalid)
• 0x54 <- 0x1f1f1f1f (the fifth attribute is invalid)
• 0x55 <- 0x1f1f1f1f (the sixth attribute is invalid)
• 0x56 <- 0x1f1f1f1f (the seventh attribute is invalid)

5.8.10 Clock Control Setting Registers for Vertex Shader Output Attributes

The attributes output by the vertex shader cause the clock control register settings to change. When
the bit that corresponds to an attribute is set equal to 0, the clock supply for the related module is
stopped; this is effective in decreasing power consumption. The following table shows the registers
that correspond to each attribute.

Table 5-7 Clock Control Setting Registers for Vertex Shader Output Attributes

Setting Register Description

0x6f: bit [0:0]
• 1 when vertex coordinate z is output
• 0 when vertex coordinate z is not output

0x6f: bit [1:1]
• 1 when the vertex color is output
• 0 when the vertex color is not output

0x6f: bit [8:8]
• 1 when texture coordinate 0 is output
• 0 when texture coordinate 0 is not output

0x6f: bit [9:9]
• 1 when texture coordinate 1 is output
• 0 when texture coordinate 1 is not output

0x6f: bit [10:10]
• 1 when texture coordinate 2 is output
• 0 when texture coordinate 2 is not output

0x6f: bit [16:16]
• 1 when the w component of texture coordinate 0 is output
• 0 when the w component of texture coordinate 0 is not output

0x6f: bit [24:24]
• 1 when the view vector and quaternions are output
• 0 when the view vector and quaternions are not output

5.8.11 Vertex Shader Program Code Setting Registers

The following table shows registers that set the program code executed by the vertex shader.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 78  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Table 5-8 Vertex Shader Program Code Setting Registers

Setting Register Description

0x2cb: bits [11:0] Sets the load address for program code.

0x2cc–0x2d3: bits [31:0] Sets program code data.

When data is set in bits [31:0] of registers 0x2cc–0x2d3, program data is loaded into the load
address set by bits [11:0] of register 0x2cb. Each time data is written to bits [31:0] of registers
0x2cc–0x2d3, the load address is automatically incremented by 1. (The address advances by a
single instruction in program code, or 32 bits.) Behavior is the same regardless of where the register
between 0x2cc and 0x2d3 is written.

After the program code is updated, some command must write a value of 1 to any bit in register
0x2bf to send a notification that the program update is complete.

In addition to the program code just described, swizzle pattern data must be loaded. The following
table shows the registers that set swizzle patterns.

Table 5-9 Vertex Shader Swizzle Pattern Setting Registers

Setting Register Description

0x2d5: bits [11:0] Sets the load address for swizzle patterns.

0x2d6–0x2dd: bits [31:0] Sets swizzle pattern data.

When data is set in bits [31:0] of registers 0x2d6–0x2dd, swizzle patterns are loaded into the load
address set by bits [11:0] of register 0x2d5. Each time data is written to bits [31:0] of registers
0x2d6–0x2dd, the load address is automatically incremented by 1. (The address advances by one
set of data, or 32 bits.) Behavior is the same regardless of where the register between 0x2d6 and
0x2dd is written.

5.8.12 Registers That Map Vertex Attributes to Input Registers

These configure which input registers of the vertex shader are used to store input vertex attribute
data and are shown in the following table.

Table 5-10 Registers That Map Vertex Attributes to Input Registers

Setting Register Description

0x2bb: bits [3:0] Index of the input register in which to store the 1st input vertex attributes.

0x2bb: bits [7:4] Index of the input register in which to store the 2nd input vertex attributes.

0x2bb: bits [11:8] Index of the input register in which to store the 3rd input vertex attributes.

0x2bb: bits [15:12] Index of the input register in which to store the 4th input vertex attributes.

0x2bb: bits [19:16] Index of the input register in which to store the 5th input vertex attributes.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 79 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting Register Description

0x2bb: bits [23:20] Index of the input register in which to store the 6th input vertex attributes.

0x2bb: bits [27:24] Index of the input register in which to store the 7th input vertex attributes.

0x2bb: bits [31:28] Index of the input register in which to store the 8th input vertex attributes.

0x2bc: bits [3:0] Index of the input register in which to store the 9th input vertex attributes.

0x2bc: bits [7:4] Index of the input register in which to store the 10th input vertex attributes.

0x2bc: bits [11:8] Index of the input register in which to store the 11th input vertex attributes.

0x2bc: bits [15:12] Index of the input register in which to store the 12th input vertex attributes.

The input register indices are set so that index 0 corresponds to v0, index 1 corresponds to v1, and
so on up to index 15, which corresponds to v15. Vertex attributes are not input to the vertex shader in
an order that corresponds to index in the glBindAttribLocation function. The input order
instead corresponds to the internal vertex attribute numbers described in section 5.8.14 Registers for
Vertex Attribute Array Settings. Please refer to that section together with this one.

5.8.13 Registers That Set Fixed Vertex Attribute Values

The fixed vertex attribute values set by the glVertexAttrib4f function and other functions are
converted into 24-bit floating-point numbers and sent to the hardware. To do so, a value is first written
to bits [3:0] of register 0x232 indicating the order in which vertex attributes are input to the vertex
shader. Next, the fixed vertex attribute value is converted into three 24-bit floating-point numbers that
are stored as 32-bit values and written to registers 0x233, 0x234, and 0x235.

The values that are converted into 24-bit floating-point numbers and stored as 32-bit data follow the
same data creation method as the one described in section 5.8.2.3 How to Set the Input Mode for 24-
Bit Floating-Point Numbers. Vertex attributes are not input to the vertex shader in an order that
corresponds to index in the glBindAttribLocation function. The input order instead
corresponds to the internal vertex attribute numbers described in section 5.8.14 Registers for Vertex
Attribute Array Settings. Please refer to that section together with this one.

Although these fixed vertex attribute settings are applied individually to each numbered internal vertex
attribute, if an internal vertex attribute is switched to be used as a vertex array by the settings
described in section 5.8.14 Registers for Vertex Attribute Array Settings, the fixed vertex attribute
value configured for it by this setting is invalidated. Therefore, if a vertex array is changed back to a
fixed vertex attribute, you must set its fixed vertex attribute value again.

Hardware specifications do not allow all the vertex attributes to be used as fixed vertex attributes, with
no vertex arrays used at all. At least one vertex array must be used.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 80  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

5.8.14 Registers for Vertex Attribute Array Settings

This section describes registers that set the address, type, and other information for vertex attribute
arrays when vertex buffers are in use. The register-setting commands explained in this section are
generated by NN_GX_STATE_VERTEX validation. The registers are shown in the following table.

Table 5-11 Registers for Vertex Attribute Array Settings

Name Register Description

Base address 0x200, bits [28:1] The common base address for all vertex arrays. This
is specified as a 128-bit address.

Type of internal vertex attribute 0 0x201, bits [3:0]

Specifies the type of internal vertex attribute 0. The
following list shows combinations of size and type
to the glVertexAttribPointer function when it is
called on a GL attribute number corresponding to
internal vertex attribute 0.
• 0x0: size = 1, type = GL_BYTE
• 0x1: size = 1, type = GL_UNSIGNED_BYTE
• 0x2: size = 1, type = GL_SHORT
• 0x3: size = 1, type = GL_FLOAT
• 0x4: size = 2, type = GL_BYTE
• 0x5: size = 2, type = GL_UNSIGNED_BYTE
• 0x6: size = 2, type = GL_SHORT
• 0x7: size = 2, type = GL_FLOAT
• 0x8: size = 3, type = GL_BYTE
• 0x9: size = 3, type = GL_UNSIGNED_BYTE
• 0xa: size = 3, type = GL_SHORT
• 0xb: size = 3, type = GL_FLOAT
• 0xc: size = 4, type = GL_BYTE
• 0xd: size = 4, type = GL_UNSIGNED_BYTE
• 0xe: size = 4, type = GL_SHORT
• 0xf: size = 4, type = GL_FLOAT

Type of internal vertex attribute 1 0x201, bits [7:4] Sets internal vertex attribute 1 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 2 0x201, bits [11:8] Sets internal vertex attribute 2 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 3 0x201, bits [15:12] Sets internal vertex attribute 3 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 4 0x201, bits [19:16] Sets internal vertex attribute 4 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 5 0x201, bits [23:20] Sets internal vertex attribute 5 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 6 0x201, bits [27:24] Sets internal vertex attribute 6 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 7 0x201, bits [31:28] Sets internal vertex attribute 7 in the same way as
internal vertex attribute 0.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 81 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Name Register Description

Type of internal vertex attribute 8 0x202, bits [3:0] Sets internal vertex attribute 8 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 9 0x202, bits [7:4] Sets internal vertex attribute 9 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 10 0x202, bits [11:8] Sets internal vertex attribute 10 in the same way as
internal vertex attribute 0.

Type of internal vertex attribute 11 0x202, bits [15:12] Sets internal vertex attribute 11 in the same way as
internal vertex attribute 0.

Fixed vertex attribute mask 0x202, bits [27:16] Sets the internal vertex attribute mask for fixed vertex
attributes.

Vertex attribute count 0x202, bits [31:28]
Sets a number that is one less than the total vertex
attribute count (this is one less than the total number
of fixed vertex attributes and vertex attribute arrays).

Load array N address offset 0x203+N×3,
bits [27:0]

The address of load array N. (N=0, 1, …, 11) Sets an
offset (in bytes) from the base address.

1st component of load array N
0x204+N×3,
bits [3:0]

Sets the first component of load array N.
• 0x0: Internal vertex attribute 0
• 0x1: Internal vertex attribute 1
• 0x2: Internal vertex attribute 2
• 0x3: internal vertex attribute 3
• 0x4: Internal vertex attribute 4
• 0x5: Internal vertex attribute 5
• 0x6: Internal vertex attribute 6
• 0x7: internal vertex attribute 7
• 0x8: Internal vertex attribute 8
• 0x9: Internal vertex attribute 9
• 0xa: Internal vertex attribute 10
• 0xb: internal vertex attribute 11
• 0xc: 4-byte padding
• 0xd: 8-byte padding
• 0xe: 12-byte padding
• 0xf: 16-byte padding

2nd component of load array N
0x204+N×3,
bits [7:4]

Sets the 2nd component of load array N in the same
way as the 1st component.

3rd component of load array N
0x204+N×3,
bits [11:8]

Sets the 3rd component of load array N in the same
way as the 1st component.

4th component of load array N
0x204+N×3,
bits [15:12]

Sets the 4th component of load array N in the same
way as the 1st component.

5th component of load array N
0x204+N×3,
bits [19:16]

Sets the 5th component of load array N in the same
way as the 1st component.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 82  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Name Register Description

6th component of load array N
0x204+N×3,
bits [23:20]

Sets the 6th component of load array N in the same
way as the 1st component.

7th component of load array N
0x204+N×3,
bits [27:24]

Sets the 7th component of load array N in the same
way as the 1st component.

8th component of load array N
0x204+N×3,
bits [31:28]

Sets the 8th component of load array N in the same
way as the 1st component.

9th component of load array N
0x205+N×3,
bits [3:0]

Sets the 9th component of load array N in the same
way as the 1st component.

10th component of load array N
0x205+N×3,
bits [7:4]

Sets the 10th component of load array N in the same
way as the 1st component.

11th component of load array N
0x205+N×3,
bits [11:8]

Sets the 11th component of load array N in the same
way as the 1st component.

12th component of load array N
0x205+N×3,
bits [15:12]

Sets the 12th component of load array N in the same
way as the 1st component.

Byte count for load array N
0x205+N×3,
bits [23:16]

Number of bytes for a single vertex in load array N.

Load array N component count 0x205+N×3,
bits [31:28] The number of components in load array N.

Index array address offset 0x227, bits [27:0] The address of the index array. This is an offset (in
bytes) from the base address.

There are settings for the base address, vertex attribute types, a fixed vertex attribute mask, the total
number of vertex attributes, the byte offset to each load array, information on load array components,
the number of load array components, the load array byte count, and the index array offset.

5.8.14.1 Base Address

The addresses of all vertex arrays and the vertex index array are set as offsets from a 128-bit base
address (the byte address divided by 16), which is itself specified in bits [28:1] of register 0x200.

The base address is 16-byte aligned and is smaller than the addresses of all vertex arrays and of the
index array. When the vertex arrays and index array use a range of addresses that has been fixed in
advance, commands to this register do not need to be re-set for each vertex array combination.

5.8.14.2 Internal Vertex Attributes

Internal vertex attributes are vertex attribute numbers that are determined internally and used by
PICA to load vertex arrays. Although they differ from GL vertex attribute numbers, which are the
vertex attribute numbers specified as index to the glEnableVertexAttribArray function,
internal vertex attribute numbers and GL vertex attribute numbers have a one-to-one correspondence.

Vertex arrays enabled by the glEnableVertexAttribArray function are assigned continuously in
ascending order starting at internal vertex attribute 0. For example, when vertex arrays are enabled
for the GL vertex attribute numbers 0 and 3, they are assigned to the internal vertex attributes 0 and 1.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 83 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

However, GL vertex attribute number 0 does not necessarily correspond to internal vertex attribute 0.
The assignment of internal vertex attributes is driver implementation-dependent. The current
implementation sorts vertex array addresses in ascending order and then assigns GL vertex attributes
one by one starting with the first attribute, which is assigned to internal vertex attribute 0. (Because
this is dependent on the driver implementation, it may change in the future.)

The vertex shader’s input vertex attribute data is ordered according to the internal vertex attributes.
See section 5.8.12 Registers That Map Vertex Attributes to Input Registers for more information.

Bits [31:0] of register 0x201 and bits [15:0] of register 0x202 specify the internal vertex attribute
types; for each internal vertex attribute, a value is set for the combination of size and type given to
the glVertexAttribPointer function for the corresponding GL vertex attribute.

5.8.14.3 Fixed Vertex Attribute Mask

As many vertex attributes are enabled as are defined by #pragma bind_symbol in the vertex
shader assembly code, but if any of those enabled vertex attributes have a disabled vertex array
(either because the glDisableVertexAttribArray function has been called on this vertex
attribute or the glEnableVertexAttribArray function has not been called on it), a fixed vertex
attribute is used in its place.

Fixed vertex attributes are assigned to internal vertex attributes in the same way as vertex arrays are
assigned. Continuous internal numbers are assigned in ascending order following the numbers
assigned to vertex arrays.

Bits [27:16] of register 0x202 set a mask for assigned internal vertex attributes. Bit [16+i:16+i]
corresponds to internal vertex attribute i and is set to 1 if it is assigned to a fixed vertex attribute.

Hardware specifications do not allow all the vertex attributes to be used as fixed vertex attributes, with
no vertex arrays used at all. At least one vertex array must be used.

If an internal vertex attribute has had its vertex array toggled between enabled and disabled or vice
versa, configuring this register setting will disable the fixed vertex attribute value previously set for
that vertex attribute, and the value must be reset. See section 5.8.13 Registers That Set Fixed Vertex
Attribute Values for details.

5.8.14.4 Vertex Attribute Count

Bits [31:28] of register 0x202 set a value that is one less than the total number of fixed vertex
attributes and vertex attributes that use vertex arrays.

5.8.14.5 Load Arrays

A load array is an internally managed data array unit that PICA uses to load vertex attributes. PICA
loads data from 12 load arrays. (There is a register for each load array. The register address notation
“0x203+N×3” indicates that there are 12 registers corresponding to values of N between 0 and 11.)

The 12 load arrays each comprise up to 12 components. A load array component is either vertex
array data that makes up that load array or padding in 4-byte units. Basically, when vertex data is
defined as an array of structures with multiple vertex attributes (called an interleaved array), a single
interleaved array corresponds to a single load array. On the other hand, when vertex data is defined

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 84  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

as a single vertex attribute array (called an independent array), that single vertex attribute
corresponds to a single load array.

Because hardware performance improves as the number of used load arrays decreases, the DMPGL
driver is configured to be able to load data with a small number of load arrays.

Bits [31:0] of registers 0x204+N×3 and bits [15:0] of register 0x205 specify the components that
make up each load array in order from the first component. When bits [3:0] of register 0x204 specify
0, for example, the first component of load array 0 becomes internal vertex attribute 0 and the data
placed at the start of load array 0 is placed according to internal vertex attribute 0’s type, which is set
by bits [3:0] of register 0x201.

Bits [23:16] of registers 0x205+N×3 set the number of bytes in a single vertex for each load array. A
load array with elements of more than one type may be automatically padded. The number of bytes
per vertex must be set to the correct value that includes padding. Behavior is undefined if this setting
does not match the total size of the load array elements.

Bits [31:28] of registers 0x205+N×3 set the number of components in each load array. A load array is
not used when 0 is specified.

To find the actual address of a vertex attribute array, add the offset specified by ptr in the
glVertexAttribPointer function to the address allocated by the glBufferData function. Bits
[27:0] of registers 0x203+N×3 are set so that this actual address is equal to

.

Similarly, the vertex index array’s address offset is set in bits [27:0] of register 0x227 as an offset
from the base address. See section 5.8.38 Settings Registers Specific to the Rendering API for more
information.

Consider the following example of an interleaved array.

Code 5-4 Sample Interleaved Array
struct vertex_t {

 float position[3];

 float color[4];

 float texcoord[2];

} vertex[NUM_VERTEX];

Vertex data created with this structure uses the following vertex array settings.

Code 5-5 Vertex Array Settings for an Interleaved Array
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(struct vertex t), 0);

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof(struct vertex t), 12);

glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(struct vertex t), 28);

The three GL vertex attributes 0, 1, and 2 are components of a single load array. If a total of four
vertex attributes are used—the three in Code 5-5 and one fixed vertex attribute—vertex attributes 0, 1,

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 85 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

and 2 correspond to internal vertex attributes 0, 1, and 2 and the fixed vertex attribute corresponds to
internal vertex attribute 3. Consequently, the relevant registers are set as follows.

• 0x201 <- 0x000007fb

Internal vertex attributes 0, 1, and 2 are of type FLOAT_VEC3, FLOAT_VEC4, and FLOAT_VEC2,
respectively.

• 0x202 <- 0x30080000

There are a total of four vertex attributes; internal vertex attribute 3 is a fixed vertex attribute.

• 0x203 <- 0x00000000

Because we are only using one load array, the base address is set equal to the actual address.

• 0x204 <- 0x00000210

The components of load array 0 are internal vertex attributes 0, 1, and 2.

• 0x205 <- 0x30240000

Load array 0 uses 36 bytes (float×9) per vertex and has three components.

• 0x206–0x226 <- 0x00000000

Other load arrays are not used.

Now consider the following example of an independent array.

Code 5-6 Sample Independent Array
#define NUM_VERTEX (3)

struct attribute0_t {

 float position[3];

} attribute0[NUM_VERTEX];

struct attribute1_t {

 float color[4];

} attribute1[NUM_VERTEX];

struct attribute2_t {

 float tex[2];

} attribute2[NUM_VERTEX];

Vertex data created with this structure uses the following vertex array settings (a single vertex buffer
object is shared and data is placed in order).

Code 5-7 Vertex Array Settings for an Independent Array
glBindBuffer(GL_ARRAY_BUFFER, 1);

glBufferData(GL_ARRAY_BUFFER,

 sizeof(attribute0)+sizeof(attribute1)+sizeof(attribute2), 0, GL_STATIC_DRAW);

glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(attribute0), attribute0);

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 86  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

glBufferSubData(GL_ARRAY_BUFFER,

 sizeof(attribute0), sizeof(attribute1), attribute1);

glBufferSubData(GL_ARRAY_BUFFER,

 sizeof(attribute0)+sizeof(attribute1), sizeof(attribute2), attribute2);

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 0,

 (GLvoid*)(sizeof(attribute0)));

glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 0,

 (GLvoid*)(sizeof(attribute0)+sizeof(attribute1)));

GL vertex attributes 0, 1, and 2 are each separate load array components that correspond to internal
vertex attributes 0, 1, and 2. The relevant registers settings are as follows.

• 0x201 <- 0x000007fb

Internal vertex attributes 0, 1, and 2 are of type FLOAT_VEC3, FLOAT_VEC4, and FLOAT_VEC2,
respectively.

• 0x202 <- 0x20000000

There are a total of three vertex attributes and no fixed vertex attributes.

• 0x203 <- 0x00000000

Load array 0 is placed at the beginning.

• 0x204 <- 0x00000000

Load array 0 has a single component: internal vertex attribute 0.

• 0x205 <- 0x100c0000

Load array 0 uses 12 bytes (float×3) per vertex and has one component.

• 0x206 <- 0x00000024

The offset of load array 1 is sizeof(attribute0).

• 0x207 <- 0x00000001

Load array 1 has a single component: internal vertex attribute 1.

• 0x208 <- 0x10100000

Load array 1 uses 16 bytes (float×4) per vertex and has one component.

• 0x209 <- 0x00000054

Load array 2 has an offset of sizeof(attribute0)+sizeof(attribute1).

• 0x20a <- 0x00000002

Load array 2 has a single component: internal vertex attribute 2.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 87 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

• 0x20b <- 0x10080000

Load array 2 uses 8 bytes (float×2) per vertex and has one component.

• 0x20c–0x226 <- 0x00000000

Other load arrays are not used.

5.8.14.6 Padding Components and Automatic Padding for the Load Array

Bits [31:0] of registers 0x204+N×3 and bits [15:0] of register 0x205 have four load array component
values for padding: 0xc, 0xd, 0xe, and 0xf. These are used in load arrays with unused regions.

Consider vertex data created with the following structure.

Code 5-8 Sample Vertex Data Structure with Padding Components
struct vertex_t

{

 float position[3];

 float color[4];

 float texcoord[2];

} vertex[NUM_VERTEX];

Assume that texcoord is not used as a vertex attribute. Because the size of a single vertex is
float×9, the last float×2 bytes are unused. Internal vertex attributes are specified as the first and
second components of the load array corresponding to this vertex data, but 0xd (8-byte padding) is
specified as the third component.

You cannot specify a padding element as the first element. Operation is undefined in such cases.
Adjust the load array address offset so that the first element is not a padding element.

If the components of a single load array are vertex attributes with multiple different data types
(GL_FLOAT, GL_SHORT, GL_BYTE, and GL_UNSIGNED_BYTE), less than four bytes of padding may
automatically be inserted even if it is not specified in the load array components. Each component
that makes up a load array is either a 4-byte type (corresponding to an internal vertex attribute type of
GL_FLOAT or padding), a 2-byte type (corresponding to an internal vertex attribute type of
GL_SHORT), or a 1-byte type (corresponding to an internal vertex attribute type of GL_BYTE or
GL_UNSIGNED_BYTE). Each component in a load array is automatically padded to the alignment of
the component type in that load array.

For example, consider vertex data with the following structure.

Code 5-9 Sample Vertex Data Structure with Automatic Padding
struct vertex_t

{

 GLfloat position[3];

 GLubyte color[3];

 GLfloat texcoord[2];

} vertex[NUM_VERTEX];

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 88  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Assume that the load array’s components are the three vertex attributes position, color, and
texcoord. Although color uses 3 bytes, texcoord is 4-byte aligned because it is a GLfloat. In
other words, a single byte of padding is automatically inserted immediately after color.

If a single load array’s elements comprise vertex attributes of multiple data types (GL_FLOAT,
GL_SHORT, GL_BYTE, and GL_UNSIGNED_BYTE), padding is automatically added at the end of each
vertex’s data to align it with the size of the load array element that has the largest data type.

For example, consider vertex data with the following structure.

Code 5-10 Another Sample Vertex Data Structure with Automatic Padding
struct vertex_t

{

 GLubyte color[3];

 GLfloat position[3];

 GLubyte param;

} vertex[NUM_VERTEX];

The load array can be thought to have three vertex attributes—color, position, and param—as
elements. The largest of these three attributes is a GLfloat, which uses four bytes. Consequently,
vertex[0], vertex[1], and so on through vertex[NUM_VERTEX-1] are all 4-byte aligned. In
other words, three bytes of padding are automatically inserted immediately after param.

When padding is automatically inserted, the per-vertex size that includes this padding must be set in
bits [23:16] of registers 0x205+N×3.

5.8.14.7 Setting the Load Array and Performance

The load performance for vertex data depends on factors such as the size of the load array being
used and factors such as the type of array elements.

The GPU accesses memory in units of load arrays, and there is no cache. The load cost is the same
whether accessing multiple load arrays from the same address or from different addresses.

To load one vertex array into multiple vertex shader input registers, you can either load that vertex
array from multiple load arrays, or duplicate the vertex array and create an interleaved array from
those duplicates to load the whole as one load array. The latter approach can produce better runtime
performance, but at the expense of greater data sizes.

Performance is also affected by the number of elements in the load arrays, even if the total number of
data items is the same. For example, loading one load array with six float-type data elements will
produce better performance than loading two load arrays each with three float-type elements. Note
that performance in both cases will also be affected by the vertex index ordering and by any FCRAM
access by other modules. The performance difference between these two cases declines when the
vertex index ordering is optimized (such that indices are as sequential as possible). In our example
here, and assuming no FCRAM access collisions between the GPU and another module, it will take
between 30% and 100% longer to load the two load arrays than the single load array. Note that this
performance gap will disappear when allocating the vertex arrays in VRAM.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 89 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.8.15 Other Setting Registers Related to the Vertex Shader

See section 5.8.39 Settings Registers Specific to the Geometry Shader when you use the geometry
shader. Even if you only use the vertex shader, section 5.8.39.13 Miscellaneous Registers mentions
register settings that are required when the geometry shader is not in use.

5.8.16 Texture Address Setting Registers

This section describes registers that set texture data addresses. You must update the registers
described in this section when a texture object is changed or placed at a different address.

Table 5-12 Texture Data Address Setting Registers

Texture Unit Target Registers

Texture 0 GL_TEXTURE_2D 0x85, bits [27:0]

Texture 0 GL_TEXTURE_CUBE_MAP_POSITIVE_X 0x85, bits [27:0]

Texture 0 GL_TEXTURE_CUBE_MAP_NEGATIVE_X
0x86, bits [21:0]
0x85, bits [27:22]

Texture 0 GL_TEXTURE_CUBE_MAP_POSITIVE_Y
0x87, bits [21:0]
0x85, bits [27:22]

Texture 0 GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
0x88, bits [21:0]
0x85, bits [27:22]

Texture 0 GL_TEXTURE_CUBE_MAP_POSITIVE_Z
0x89, bits [21:0]
0x85, bits [27:22]

Texture 0 GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
0x8a, bits [21:0]
0x85, bits [27:22]

Texture 1 GL_TEXTURE_2D 0x95, bits [27:0]

Texture 2 GL_TEXTURE_2D 0x9d, bits [27:0]

All texture memory addresses are set as 8-byte physical addresses. (This value is the physical
address divided by 8.) The six cube map faces have 28-bit texture addresses. The most significant 6
bits of every address share bits [27:22] in register 0x85.

Using the information in this section, you can change texture data addresses to adjust texture data
placement. The texture resolution, filter mode, number of mipmap levels, and other information are
not expected to change.

5.8.17 Render Buffer Setting Registers

This section shows register settings related to the render buffer. The register setting commands
described in this section are generated by NN_GX_STATE_FRAMEBUFFER validation.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 90  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Table 5-13 Block Format Setting Registers

Setting Setting Register Setting Value

Color buffer address 0x11d, bits [27:0] Sets a value equal to the color buffer’s byte address
divided by 8.

Depth buffer address 0x11c, bits [27:0] Sets a value equal to the depth buffer’s byte address
divided by 8.

Color buffer pixel size 0x117, bits [1:0]
• 0 when the color buffer format has a 16-bit pixel size
• 2 when the color buffer format has a 32-bit pixel size

Color buffer format 0x117, bits [18:16]

• 0: GL_RGBA8_OES or GL_GAS_DMP
• 2: GL_RGB5_A1
• 3: GL_RGB565
• 4: GL_RGBA4

Depth buffer format 0x116, bits [1:0]
• 0: GL_DEPTH_COMPONENT16
• 2: GL_DEPTH_COMPONENT24_OES
• 3: GL_DEPTH24_STENCIL8_EXT

Color and depth buffer width
0x11e, bits [10:0]

Sets the color and depth buffer width in pixels.
0x6e, bits [10:0]

Color and depth buffer height
0x11e, bits [21:12] Sets the color and depth buffer height in pixels. This

value is one less than the actual height.
0x6e, bits [21:12]

5.8.18 Texture Combiner Setting Registers

This section describes registers related to reserved fragment shader uniforms with dmp_TexEnv[i]
in their names. The following table shows the texture combiner registers.

Table 5-14 Texture Combiner Setting Registers

Uniform Register Setting Value

srcRgb: 1st component Starting register + 0
bits [3:0]

• 0x0 : GL_PRIMARY_COLOR
• 0x1 : GL_FRAGMENT_PRIMARY_COLOR_DMP
• 0x2 : GL_FRAGMENT_SECONDARY_COLOR_DMP
• 0x3 : GL_TEXTURE0
• 0x4 : GL_TEXTURE1
• 0x5 : GL_TEXTURE2
• 0x6 : GL_TEXTURE3
• 0xd : GL_PREVIOUS_BUFFER_DMP
• 0xe : GL_CONSTANT
• 0xf : GL_PREVIOUS

srcRgb: 2nd component Starting register + 0
bits [7:4]

Same as the 1st component of srcRgb.

srcRgb: 3rd component Starting register + 0 Same as the 1st component of srcRgb.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 91 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Uniform Register Setting Value

bits [11:8]

srcAlpha: 1st component Starting register + 0
bits [19:16]

Same as the 1st component of srcRgb.

srcAlpha: 2nd component Starting register + 0
bits [23:20]

Same as the 1st component of srcRgb.

srcAlpha: 3rd component Starting register + 0
bits [27:24]

Same as the 1st component of srcRgb.

operandRgb: 1st component Starting register + 1
bits [3:0]

• 0x0 : GL_SRC_COLOR
• 0x1 : GL_ONE_MINUS_SRC_COLOR
• 0x2 : GL_SRC_ALPHA
• 0x3 : GL_ONE_MINUS_SRC_ALPHA
• 0x4 : GL_SRC_R_DMP
• 0x5 : GL_ONE_MINUS_SRC_R_DMP
• 0x8 : GL_SRC_G_DMP
• 0x9 : GL_ONE_MINUS_SRC_G_DMP
• 0xc : GL_SRC_B_DMP
• 0xd : GL_ONE_MINUS_SRC_B_DMP

operandRgb: 2nd component Starting register + 1
bits [7:4]

Same as the 1st component of operandRgb.

operandRgb: 3rd component Starting register + 1
bits [11:8]

Same as the 1st component of operandRgb.

operandAlpha: 1st component Starting register + 1
bits [14:12]

• 0x0 : GL_SRC_ALPHA
• 0x1 : GL_ONE_MINUS_SRC_ALPHA
• 0x2 : GL_SRC_R_DMP
• 0x3 : GL_ONE_MINUS_SRC_R_DMP
• 0x4 : GL_SRC_G_DMP
• 0x5 : GL_ONE_MINUS_SRC_G_DMP
• 0x6 : GL_SRC_B_DMP
• 0x7 : GL_ONE_MINUS_SRC_B_DMP

operandAlpha: 2nd component Starting register + 1
bits [18:16]

Same as the 1st component of operandAlpha.

operandAlpha: 3rd component Starting register + 1
bits [22:20]

Same as the 1st component of operandAlpha.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 92  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Uniform Register Setting Value

combineRgb
Starting register + 2

bits [3:0]

• 0x0 : GL_REPLACE
• 0x1 : GL_MODULATE
• 0x2 : GL_ADD
• 0x3 : GL_ADD_SIGNED
• 0x4 : GL_INTERPOLATE
• 0x5 : GL_SUBTRACT
• 0x6 : GL_DOT3_RGB
• 0x7 : GL_DOT3_RGBA
• 0x8 : GL_MULT_ADD_DMP
• 0x9 : GL_ADD_MULT_DMP

combineAlpha
Starting register + 2

bits [19:16]

• 0x0 : GL_REPLACE
• 0x1 : GL_MODULATE
• 0x2 : GL_ADD
• 0x3 : GL_ADD_SIGNED
• 0x4 : GL_INTERPOLATE
• 0x5 : GL_SUBTRACT
• 0x6 : GL_DOT3_RGB
• 0x7 : GL_DOT3_RGBA
• 0x8 : GL_MULT_ADD_DMP
• 0x9 : GL_ADD_MULT_DMP

constRgba: 1st component Starting register + 3
bits [7:0]

Floating-point number between 0 and 1 that was
mapped to an integer value between 0 and 255. For
details on how this value is converted, see section
5.9.16 Converting a 32-Bit Floating-Point Number (0–
1) into an 8-Bit Unsigned Integer.

constRgba: 2nd component Starting register + 3
bits [15:8]

Same as the 1st component of constRgba.

constRgba: 3rd component Starting register + 3
bits [23:16]

Same as the 1st component of constRgba.

constRgba: 4th component Starting register + 3
bits [31:24]

Same as the 1st component of constRgba.

scaleRgb
Starting register + 4

bits [1:0]

• 0x0 : 1.0
• 0x1 : 2.0
• 0x2 : 4.0

scaleAlpha
Starting register + 4

bits [17:16]
Same as scaleRgb.

bufferColor: 1st component
0x0fd

bits [7:0]

A floating-point number between 0 and 1 that was
mapped to an integer between 0 and 255. For details
on how this value is converted, see section 5.9.16
Converting a 32-Bit Floating-Point Number (0–1) into
an 8-Bit Unsigned Integer.

bufferColor: 2nd component
0x0fd

bits [15:8]
Same as the 1st component of bufferColor.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 93 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Uniform Register Setting Value

bufferColor: 3rd component
0x0fd

bits [23:16]
Same as the 1st component of bufferColor.

bufferColor: 4th component
0x0fd

bits [31:24]
Same as the 1st component of bufferColor.

bufferInput: 1st component

0x0e0

bit [7+i:7+i]
(i corresponds to

the i in
dmp_TexEnv[i]
and can have a

value of 1, 2, 3, or 4)

• 0: GL_PREVIOUS_BUFFER_DMP
• 1: GL_PREVIOUS

bufferInput: 2nd component

0x0e0

bit [11+i:11+i]
(i corresponds to

the i in
dmp_TexEnv[i]
and can have a

value of 1, 2, 3, or 4)

• 0: GL_PREVIOUS_BUFFER_DMP
• 1: GL_PREVIOUS

The names in the Uniform column of the table are preceded by “dmp_TexEnv[i].” The "starting
register" in the Register column varies with the texture combiner number (this corresponds to the i in
dmp_TexEnv[i], but there is only one register for bufferColor because it can only be set when
i=0).

The following table shows the address of the starting register.

Table 5-15 Texture Combiner Numbers and Starting Registers

Combiner Number Starting Register

0 0x0c0

1 0x0c8

2 0x0d0

3 0x0d8

4 0x0f0

5 0x0f8

5.8.19 Registers That Set Fragment Lighting

This section describes registers related to reserved fragment shader uniforms with
dmp_FragmentLighting, dmp_FragmentMaterial, dmp_FragmentLightSource[i], or
dmp_LightEnv in their names.

5.8.19.1 Enabling and Disabling Lighting

The following table shows register settings that enable and disable lighting.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 94  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Table 5-16 Registers That Enable or Disable Lighting

Uniform Setting Register Setting Value

dmp_FragmentLighting.enabled

0x1c6, bits [0:0]
• 0: GL_TRUE
• 1: GL_FALSE

0x8f, bits [0:0]
• 0: GL_FALSE
• 1: GL_TRUE

dmp_FragmentLightSource[i].enabled

0x1c2, bits [2:0]
This sets a value that is one less than the
number of enabled light sources. This is
set equal to 0 when all light sources are
disabled.

0x1d9, bits [2:0] The ID of the 1st enabled light source

0x1d9, bits [6:4] The ID of the 2nd enabled light source

0x1d9, bits [10:8] The ID of the 3rd enabled light source

0x1d9, bits [14:12] The ID of the 4th enabled light source

0x1d9, bits [18:16] The ID of the 5th enabled light source

0x1d9, bits [22:20] The ID of the 6th enabled light source

0x1d9, bits [26:24] The ID of the 7th enabled light source

0x1d9, bits [30:28] The ID of the 8th enabled light source

The IDs of the enabled light sources are specified in 0x1d9 in ascending order (starting at light
source 0). For example, when light sources 0, 1, 3, and 5 are enabled
(dmp_FragmentLightSource[0].enabled, dmp_FragmentLightSource[1].enabled,
dmp_FragmentLightSource[3].enabled, and dmp_FragmentLightSource[5].enabled
are all GL_TRUE), 0x1d9 is set equal to 0x00005310. When all light sources are enabled, a value of
0x76543210 is set. When all light sources are disabled, a value of 0 is set.

5.8.19.2 Global Ambient Settings

This section describes global ambient settings. Before each RGB component is set in a register, it is
first calculated as dmp_FragmentMaterial.emission + dmp_FragmentMaterial.ambient ×
dmp_FragmentLighting.ambient, clamped to a value between 0 and 1, and then mapped to an
unsigned, 8-bit integer between 0 and 255. Bits [29:20], [19:10], and [9:0] of register 0x1c0 set the R,
G, and B components, respectively. For information on how to convert a floating-point number
clamped between 0 and 1 into an 8-bit integer between 0 and 255, see section 5.9.16 Converting a
32-Bit Floating-Point Number (0–1) into an 8-Bit Unsigned Integer. Although settings values are set in
the lower 8 bits of every 10 bits of register 0x1c0 (bits [29:20], [19:10], and [9:0]), make absolutely
sure the upper two bits of every 10 bits are set to 0. Operations are undefined if these bits are set to a
value other than 0.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 95 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

If light source 0 is not enabled, 0 will be applied as the global ambient term of the primary color, even
if something is set for it in this settings register.

When lighting is enabled and all light sources are disabled (dmp_FragmentLighting.enabled is
set to GL_TRUE and dmp_FragmentLightSource[i].enabled is set to GL_FALSE for all light
sources), only the global ambient is applied to the primary color. Because enabling lighting also
always enables one light source (due to the fact that bits [2:0] of register 0x1c2 set the number of
light sources minus one), the DMPGL driver generates a command that sets 0x140, 0x141, 0x142,
and 0x143 to 0. This command sets all light source colors for light source 0 to black (0.0, 0.0,
0.0, 0.0).

The driver also generates two commands: one that enables light source 0 by taking the first enabled
light source as light source 0 (setting bits [2:0] of register 0x1d9 to 0), and one that improves
performance by setting dmp_LightEnv.config to GL_LIGHT_ENV_LAYER_CONFIG0_DMP (setting
bits [7:4] of register 0x1c3 to 0).

5.8.19.3 Per-Light Settings

This section describes how to configure individual light sources.

Register addresses and bits corresponding to per-light settings are calculated from light source
numbers. A light source number corresponds to i in the uniform name,
dmp_FragmentLightSource[i].XXX.

When dmp_FragmentLightSource[0].enabled and
dmp_FragmentLightSource[3].enabled are set equal to GL_TRUE, for example, light sources 0
and 3 are enabled. The light source colors (explained later under Light Source Color Settings)
dmp_FragmentSource[0].specular0 and dmp_FragmentSource[3].specular0 affect
registers 0x140 and 0x170, respectively.

Light Source Color Settings

There are ambient, diffuse, specular 0, and specular 1 settings for each enabled light source. The
following table shows the registers that set each component.

Table 5-17 Registers That Set Each Color Component

Component Setting Register Setting Value
(for each RGB component)

Specular 0 0x140 + (light source #) x
0x10

dmp_FragmentMaterial.specular0 x
dmp_FragmentLightSource[i].specular0

Specular 1 0x140 + (light source #) x
0x10 + 1

When dmp_LightEnv.lutEnabledRef1 is GL_FALSE:
dmp_FragmentMaterial.specular1 x
dmp_FragmentLightSource[i].specular1

When dmp_LightEnv.lutEnabledRef1 is GL_TRUE:
dmp_FragmentLightSource[i].specular1

Diffuse 0x140 + (light source #) x
0x10 + 2

dmp_FragmentMaterial.diffuse x
dmp_FragmentLightSource[i].diffuse

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 96  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Component Setting Register Setting Value
(for each RGB component)

Ambient 0x140 + (light source #) x
0x10 + 3

dmp_FragmentMaterial.ambient x
dmp_FragmentLightSource[i].ambient

The specular 0, specular 1, diffuse, and ambient RGB components are calculated as shown in
Table 5-17 to produce floating-point numbers between 0 and 1, which are then mapped to integers
between 0 and 255 and set in the corresponding registers. Bits [29:20], [19:10], and [9:0] are used for
the R, G, and B components, respectively. For information on how to convert floating-point values into
integer values, see section 5.9.16 Converting a 32-Bit Floating-Point Number (0–1) into an 8-Bit
Unsigned Integer.

Setting Light Source Positions

The reserved uniform dmp_FragmentLightSource[i].position specifies the light source
positions. The x, y, and z coordinates specified by the uniform are converted into 16-bit floating-point
numbers before they are set as register values. For information on how to convert these numbers,
see section 5.9.2 Converting from float32 to float16.

The following table shows the registers that set each component.

Table 5-18 Registers That Set Individual Components of Light Source Coordinates

Coordinate
Component Setting Register Bits Setting Value

X 0x140 + (light source #) × 0x10 + 4 [15:0] 16-bit floating-point number

Y 0x140 + (light source #) × 0x10 + 4 [31:16] 16-bit floating-point number

Z 0x140 + (light source #) × 0x10 + 5 [15:0] 16-bit floating-point number

W 0x140 + (light source #) × 0x10 + 9 [0:0]
1 when the fourth component of
dmp_FragmentLightSource[i].
position is 0 and 0 otherwise.

Setting the Spotlight Direction

The reserved uniform dmp_FragmentLightSource[i].spotDirection specifies the spotlight
direction. The x, y, and z components specified by the register are first negated, then converted into
13-bit signed fixed-point numbers with 11 fractional bits, and finally set as register values. For each of
these values, the most significant bit indicates the sign and is followed by a single integer bit and 11
fractional bits, respectively. Negative values are represented in two’s complement. For information on
how to convert these numbers, see section 5.9.9 Converting a 32-Bit Floating-Point Number into a
13-Bit Signed Fixed-Point Number with 11 Fractional Bits.

The following table shows the registers that set each component.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 97 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Table 5-19 Registers That Set Individual Components of the Spotlight Direction

Component Setting Register Bits Setting Value

X 0x140 + (light source #) x 0x10 + 6 [12:0] 13-bit fixed-point number

Y 0x140 + (light source #) x 0x10 + 6 [28:16] 13-bit fixed-point number

Z 0x140 + (light source #) x 0x10 + 7 [12:0] 13-bit fixed-point number

Bias and Scale Settings for Distance Attenuation

The reserved uniforms dmp_FragmentLightSource[i].distanceAttenuationBias and
dmp_FragmentLightSource[i].distanceAttenuationScale specify the bias and scale
values for distance attenuation, respectively. The values set for each of these registers are converted
into 20-bit floating-point numbers and set in the registers. For more information on this conversion,
see section 5.9.4 Converting from float32 to float20. The following table shows the registers to set.

Table 5-20 Setting Registers for the Bias and Scale with Distance Attenuation

Component Setting Register Bits Setting Value

Bias 0x140 + (light source #) x 0x10 + 0x0a [19:0] 20-bit floating-point number

Scale 0x140 + (light source #) x 0x10 + 0x0b [19:0] 20-bit floating-point number

Miscellaneous Settings for Individual Lights

The following table shows registers used by other miscellaneous settings for individual light sources.

Table 5-21 Registers Used by Other Miscellaneous Settings for Individual Light Sources

Uniform Setting Register Setting Value

dmp_FragmentLightSource[i].
shadowed

0x1c4, bit
[(𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 #) :(𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 #)]

• 0: GL_TRUE
• 1: GL_FALSE

dmp_FragmentLightSource[i].
spotEnabled

0x1c4, bit [8 + (𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 #) :8 +
(𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 #)]

• 0: GL_TRUE
• 1: GL_FALSE

dmp_FragmentLightSource[i].
distanceAttenuationEnabled

0x1c4, bit [24 + (𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 #) :24 +
(𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 #)]

• 0: GL_TRUE
• 1: GL_FALSE

dmp_FragmentLightSource[i].
twoSideDiffuse

0𝑥140 + (𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 #) × 0𝑥10 + 9, bit
[1:1]

• 0: GL_FALSE
• 1: GL_TRUE

dmp_FragmentLightSource[i].
geomFactor0

0𝑥140 + (𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 #) × 0𝑥10 +
90x140, bit [2:2]

• 0: GL_FALSE
• 1: GL_TRUE

dmp_FragmentLightSource[i].
geomFactor1

0𝑥140 + (𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 #) × 0𝑥10 +
90x140, bit [3:3]

• 0: GL_FALSE
• 1: GL_TRUE

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 98  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

5.8.19.4 Lookup Table Settings

This section describes settings for the reserved uniforms
dmp_FragmentMaterial.sampler{RR,RG,RB,D0,D1,SP,FR},
dmp_FragmentLightSource[i].samplerSP, and
dmpFragmentLightSource[i].samplerDA. Each type of lookup table for fragment lighting has
256 data elements. The following table shows the registers used for each setting.

Table 5-22 Registers That Configure Lookup Tables for Fragment Lighting

Setting Register Description

0x1c5, bits [7:0] Specifies the index at which to set data in the lookup table.

0x1c5, bits [12:8]

Specifies the type of lookup table for which to set data.
• 0: dmp_FragmentMaterial.samplerD0
• 1: dmp_FragmentMaterial.samplerD1
• 3: dmp_FragmentMaterial.samplerFR
• 4: dmp_FragmentMaterial.samplerRB
• 5: dmp_FragmentMaterial.samplerRG
• 6: dmp_FragmentMaterial.samplerRR
• 8+i: dmp_FragmentLightSource[i].samplerSP
• 16+i: dmp_FragmentLightSource[i].samplerDA

0x1c8–0x1cf, bits [23:0] Sets the lookup table data.

Use bits [12:8] of 0x1c5 to select the type of lookup table to configure. Before configuring more than
one type of lookup table, you need to switch the table type with the same register. Use bits [7:0] of
0x1c5 to specify the index of the data to set. An index value of 0 indicates the start of the lookup
table and 255 indicates the end.

Set lookup table data anywhere between 0x1c8 and 0x1cf. When data is written, it updates the
content of the lookup table at the specified index. The index is incremented by one for each data
element that is written.

The i'th element and the (i + 256)’th element of the 512 data elements loaded by the
glTexImage1D function are packed into a value that is written to index i of the lookup table object
bound to the lookup table number specified by the uniform value. Convert the i'th data element into a
12-bit unsigned fixed-point number with 12 fractional bits and write it to bits [11:0] of any register
between 0x1c8 and 0x1cf. Convert the (i+256)’th data element into a 12-bit signed fixed-point
number with 11 fractional bits and write it to bits [11:0] of any register between 0x1c8 and 0x1cf.
Results are the same regardless of where you write data between 0x1c8 and 0x1cf.

For information on how to convert 12-bit unsigned fixed-point numbers with 12 fractional bits, see
section 5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point Number
with 12 Fractional Bits.

For a 12-bit signed fixed-point number with 11 fractional bits, the most significant bit indicates the sign
and is followed by 11 fractional bits that specify an absolute value (negative values are not

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 99 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

represented in two’s complement). For more details on converting into this format, see section 5.9.6
Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11
Fractional Bits.

5.8.19.5 Setting the Range of Lookup Table Arguments

The following table shows register settings specific to the range of lookup table arguments.

Table 5-23 Registers That Set the Range of Lookup Table Arguments

Uniform Setting Register Setting Value

dmp_LightEnv.absLutInputD0 0x1d0, bit [1:1]
• 0: GL_TRUE
• 1: GL_FALSE

dmp_LightEnv.absLutInputD1 0x1d0, bit [5:5] Same as dmp_LightEnv.absLutInputD0.

dmp_LightEnv.absLutInputSP 0x1d0, bit [9:9] Same as dmp_LightEnv.absLutInputD0.

dmp_LightEnv.absLutInputFR 0x1d0, bit [13:13] Same as dmp_LightEnv.absLutInputD0.

dmp_LightEnv.absLutInputRB 0x1d0, bit [17:17] Same as dmp_LightEnv.absLutInputD0.

dmp_LightEnv.absLutInputRG 0x1d0, bit [21:21] Same as dmp_LightEnv.absLutInputD0.

dmp_LightEnv.absLutInputRR 0x1d0, bit [25:25] Same as dmp_LightEnv.absLutInputD0.

5.8.19.6 Setting Lookup Table Input Values

The following table shows register settings specific to lookup table input values.

Table 5-24 Registers That Set Lookup Table Input Values

Uniform Setting Register Setting Value

dmp_LightEnv.lutInputD0 0x1d1, bits [2:0]

• 0: GL_LIGHT_ENV_NH_DMP
• 1: GL_LIGHT_ENV_VH_DMP
• 2: GL_LIGHT_ENV_NV_DMP
• 3: GL_LIGHT_ENV_LN_DMP
• 4: GL_LIGHT_ENV_SP_DMP
• 5: GL_LIGHT_ENV_CP_DMP

dmp_LightEnv.lutInputD1 0x1d1, bits [6:4] Same as dmp_LightEnv.lutInputD0.

dmp_LightEnv.lutInputSP 0x1d1, bits [10:8] Same as dmp_LightEnv.lutInputD0.

dmp_LightEnv.lutInputFR 0x1d1, bits [14:12] Same as dmp_LightEnv.lutInputD0.

dmp_LightEnv.lutInputRB 0x1d1, bits [18:16] Same as dmp_LightEnv.lutInputD0.

dmp_LightEnv.lutInputRG 0x1d1, bits [22:20] Same as dmp_LightEnv.lutInputD0.

dmp_LightEnv.lutInputRR 0x1d1, bits [26:24] Same as dmp_LightEnv.lutInputD0.

5.8.19.7 Setting the Output Scaling for Lookup Tables

The following table shows the register settings specific to output scaling for lookup tables.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 100  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Table 5-25 Registers That Set the Output Scaling for Lookup Tables

Uniform Setting Register Setting Value

dmp_LightEnv.lutScaleD0 0x1d2, bits [2:0]

• 0: 1.0
• 1: 2.0
• 2: 4.0
• 3: 8.0
• 6: 0.25
• 7: 0.5

dmp_LightEnv.lutScaleD1 0x1d2, bits [6:4] Same as dmp_LightEnv.lutScaleD0.

dmp_LightEnv.lutScaleSP 0x1d2, bits [10:8] Same as dmp_LightEnv.lutScaleD0.

dmp_LightEnv.lutScaleFR 0x1d2, bits [14:12] Same as dmp_LightEnv.lutScaleD0.

dmp_LightEnv.lutScaleRB 0x1d2, bits [18:16] Same as dmp_LightEnv.lutScaleD0.

dmp_LightEnv.lutScaleRG 0x1d2, bits [22:20] Same as dmp_LightEnv.lutScaleD0.

dmp_LightEnv.lutScaleRR 0x1d2, bits [26:24] Same as dmp_LightEnv.lutScaleD0.

5.8.19.8 Shadow Attenuation Settings

The following table shows register settings specific to shadow attenuation.

Table 5-26 Registers for Shadow Attenuation Settings

Uniform Setting Register Setting Value

dmp_LightEnv.shadowSelector 0x1c3, bits [25:24]

• 0: GL_TEXTURE0
• 1: GL_TEXTURE1
• 2: GL_TEXTURE2
• 3: GL_TEXTURE3

dmp_LightEnv.shadowPrimary 0x1c3, bit [16:16]
• 0: GL_FALSE
• 1: GL_TRUE

dmp_LightEnv.shadowSecondary 0x1c3, bit [17:17]
• 0: GL_FALSE
• 1: GL_TRUE

dmp_LightEnv.invertShadow 0x1c3, bit [18:18]
• 0: GL_FALSE
• 1: GL_TRUE

dmp_LightEnv.shadowAlpha 0x1c3, bit [19:19]
• 0: GL_FALSE
• 1: GL_TRUE

Common 0x1c3, bit [0:0]

1 when any of the following are equal to
GL_TRUE and 0 when all of the following
are equal to GL_FALSE.
• dmp_LightEnv.shadowPrimary
• dmp_LightEnv.shadowSecondary
• dmp_LightEnv.shadowAlpha

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 101 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.8.19.9 Miscellaneous Settings

The following table shows register settings specific to other miscellaneous fragment lighting.

Table 5-27 Registers for Other Miscellaneous Fragment Lighting Settings

Uniform Setting Register Setting Value

dmp_LightEnv.
config 0x1c3, bits [7:4]

• 0: GL_LIGHT_ENV_LAYER_CONFIG0_DMP
• 1: GL_LIGHT_ENV_LAYER_CONFIG1_DMP
• 2: GL_LIGHT_ENV_LAYER_CONFIG2_DMP
• 3: GL_LIGHT_ENV_LAYER_CONFIG3_DMP
• 4: GL_LIGHT_ENV_LAYER_CONFIG4_DMP
• 5: GL_LIGHT_ENV_LAYER_CONFIG5_DMP
• 6: GL_LIGHT_ENV_LAYER_CONFIG6_DMP
• 8: GL_LIGHT_ENV_LAYER_CONFIG7_DMP

dmp_LightEnv.
fresnelSelector

0x1c3, bits [3:2]

• 0: GL_LIGHT_ENV_NO_FRESNEL_DMP
• 1: GL_LIGHT_ENV_PRI_ALPHA_FRESNEL_DMP
• 2: GL_LIGHT_ENV_SEC_ALPHA_FRESNEL_DMP
• 3: GL_LIGHT_ENV_PRI_SEC_ALPHA_FRESNEL_DMP

0x1c4, bit [19:19]
• 0: Not GL_LIGHT_ENV_NO_FRESNEL_DMP
• 1: GL_LIGHT_ENV_NO_FRESNEL_DMP

dmp_LightEnv.
bumpSelector 0x1c3, bits [23:22]

• 0: GL_TEXTURE0
• 1: GL_TEXTURE1
• 2: GL_TEXTURE2
• 3: GL_TEXTURE3

dmp_LightEnv.
bumpMode 0x1c3, bits [29:28]

• 0: GL_LIGHT_ENV_BUMP_NOT_USED_DMP
• 1: GL_LIGHT_ENV_BUMP_AS_BUMP_DMP
• 2: GL_LIGHT_ENV_BUMP_AS_TANG_DMP

dmp_LightEnv.
bumpRenorm 0x1c3, bit [30:30]

• 0 when dmp_LightEnv.bumpRenorm is GL_TRUE or
dmp_LightEnv.bumpMode is
GL_LIGHT_ENV_BUMP_NOT_USED

• 1 otherwise

dmp_LightEnv.
clampHighlights 0x1c3, bit [27:27]

• 0: GL_FALSE
• 1: GL_TRUE

dmp_LightEnv.
lutEnabledD0 0x1c4, bit [16:16]

• 0: GL_TRUE
• 1: GL_FALSE

dmp_LightEnv.
lutEnabledD1 0x1c4, bit [17:17]

• 0: GL_TRUE
• 1: GL_FALSE

dmp_LightEnv.
lutEnabledRef1 0x1c4, bits [22:20]

• 0: GL_TRUE
• 7: GL_FALSE

Note: The dmp_LightEnv.config settings, specifically the values set in bits [7:4] of register
0x1c3, change the number of cycles used for per-pixel operations. This setting has an effect
even when lighting is disabled. For performance reasons, if you disable lighting at any point,

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 102  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

at that point arrange to configure dmp_LightEnv.config so that the number of cycles is 1.
The DMPGL driver sets bits [7:4] of register 0x1c3 to 0 when lighting is disabled.

5.8.20 Texture Setting Registers

This section describes registers related to general texture parameters and reserved uniforms with
dmp_Texture[i] in their names. Also see section 5.8.16 Texture Address Setting Registers. The
register-setting commands for texture parameters described in this section are generated during
NN_GX_STATE_TEXTURE validation.

5.8.20.1 Shadow Texture Settings

The following table shows register settings specific to reserved uniforms for shadow textures.

Table 5-28 Shadow Texture Setting Registers

Uniform Setting Register Setting Value

dmp_Texture[0].perspectiveShadow 0x8b, bit [0:0]
• 0: GL_TRUE
• 1: GL_FALSE

dmp_Texture[0].shadowZBias 0x8b, bits [23:1] The uniform value converted into a 23-bit,
unsigned, fixed-point number.

dmp_Texture[0].shadowZScale 0x8b, bits [31:24] An 8-bit integer that represents the index -127
from the 32-bit floating-point uniform value

The setting value of dmp_Texture[0].shadowZBias is converted into a 24-bit fixed-point number,
of which the most significant 23 bits are set in the register. For information on converting to a 24-bit
fixed-point number, see section 5.9.14 Converting a 32-Bit Floating-Point Number into a 24-Bit
Unsigned Fixed-Point Number with 24 Fractional Bits.

5.8.20.2 Setting the Texture Sampler Type

The following table shows register settings specific to reserved uniforms for the texture sampler type.

Table 5-29 Registers That Set the Texture Sampler Type

Uniform Setting Register Setting Value

dmp_Texture[0].samplerType

0x80, bit [0:0]
• 0: GL_FALSE
• 1: A setting other than GL_FALSE

0x83, bits [30:28]

• 0: GL_TEXTURE_2D
• 1: GL_TEXTURE_CUBE_MAP
• 2: GL_TEXTURE_SHADOW_2D_MAP
• 3: GL_TEXTURE_PROJECTION_DMP
• 4: GL_TEXTURE_SHADOW_CUBE_MAP

dmp_Texture[1].samplerType 0x80, bit [1:1]
• 0: GL_FALSE
• 1: GL_TEXTURE_2D

dmp_Texture[2].samplerType 0x80, bit [2:2]
• 0: GL_FALSE
• 1: GL_TEXTURE_2D

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 103 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Uniform Setting Register Setting Value

dmp_Texture[3].samplerType 0x80, bit [10:10]
• 0: GL_FALSE
• 1: GL_TEXTURE_PROCEDURAL_DMP

Note: Note that commands to set the setting registers for dmp_Texture[0].samplerType,
dmp_Texture[1].samplerType, and dmp_Texture[2].samplerType are generated
not when the state flag is NN_GX_STATE_FSUNIFORM but when the glDrawElements or
glDrawArrays function is called.

5.8.20.3 Setting the Texture Coordinate Selection

The following table shows register settings specific to reserved uniforms for texture coordinate
selection.

Table 5-30 Registers for Texture Coordinate Selection

Uniform Setting Register Setting Value

dmp_Texture[2].texcoord 0x80, bit [13:13]
• 0: GL_TEXTURE2
• 1: GL_TEXTURE1

dmp_Texture[3].texcoord 0x80, bits [9:8]
• 0: GL_TEXTURE0
• 1: GL_TEXTURE1
• 2: GL_TEXTURE2

5.8.20.4 Procedural Texture Settings

The following table shows register settings specific to reserved uniforms for procedural textures.

Table 5-31 Registers for Procedural Texture Settings

Uniform Setting Register Setting Value

dmp_Texture[3].ptRgbMap 0x0a8, bits [9:6]

• 0: GL_PROCTEX_U_DMP
• 1: GL_PROCTEX_U2_DMP
• 2: GL_PROCTEX_V_DMP
• 3: GL_PROCTEX_V2_DMP
• 4: GL_PROCTEX_ADD_DMP
• 5: GL_PROCTEX_ADD2_DMP
• 6: GL_PROCTEX_ADDSQRT2_DMP
• 7: GL_PROCTEX_MIN_DMP
• 8: GL_PROCTEX_MAX_DMP
• 9: GL_PROCTEX_RMAX_DMP

dmp_Texture[3].ptAlphaMap 0x0a8, bits [13:10] Same as dmp_Texture[3].ptRgbMap

dmp_Texture[3].ptAlphaSeparate 0x0a8, bit [14:14]
• 0: GL_FALSE
• 1: GL_TRUE

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 104  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Uniform Setting Register Setting Value

dmp_Texture[3].ptClampU 0x0a8, bits [2:0]

• 0: GL_CLAMP_TO_ZERO_DMP
• 1: GL_CLAMP_TO_EDGE
• 2: GL_SYMMETRICAL_REPEAT_DMP
• 3: GL_MIRRORED_REPEAT
• 4: GL_PULSE_DMP

dmp_Texture[3].ptClampV 0x0a8, bits [5:3] Same as dmp_Texture[3].ptClampU

dmp_Texture[3].ptShiftU 0x0a8, bits [17:16]
• 0: GL_NONE_DMP
• 1: GL_ODD_DMP
• 2: GL_EVEN_DMP

dmp_Texture[3].ptShiftV 0x0a8, bits [19:18] Same as dmp_Texture[3].ptShiftU

dmp_Texture[3].ptMinFilter 0x0ac, bits [2:0]

• 0: GL_NEAREST
• 1: GL_LINEAR
• 2: GL_NEAREST_MIPMAP_NEAREST
• 3: GL_LINEAR_MIPMAP_NEAREST
• 4: GL_NEAREST_MIPMAP_LINEAR
• 5: GL_LINEAR_MIPMAP_LINEAR

dmp_Texture[3].ptTexOffset 0x0ad, bits [7:0] Sets the uniform value

dmp_Texture[3].ptTexWidth 0x0ac, bits [18:11] Sets the uniform value

dmp_Texture[3].ptTexBias

0x0a8, bits [27:20]
Sets the least significant 8 bits of the uniform
value after it is converted into a 16-bit floating-
point number

0x0ac, bits [26:19]
Sets the most significant 8 bits of the uniform
value after it is converted into a 16-bit floating-
point number

dmp_Texture[3].ptNoiseEnable 0x0a8, bit [15:15]
• 0: GL_FALSE
• 1: GL_TRUE

dmp_Texture[3].ptNoiseU

0x0a9, bits [31:0]

Bits [31:16] are set equal to a 16-bit floating-
point number converted from the second
component of the uniform.
Bits [15:0] are set equal to a 16-bit fixed-point
number, signed with 12 decimal bits, converted
from the third component of the uniform.

0x0ab, bits [15:0] The first uniform component, converted into a
16-bit floating-point number.

dmp_Texture[3].ptNoiseV 0x0aa, bits [31:0]

Bits [31:16] are set with the second uniform
component, converted into a 16-bit floating-point
number.
Bits [15:0] are set with the third uniform
component, converted into a signed, 16-bit
fixed-point number with 12 decimal bits.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 105 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Uniform Setting Register Setting Value

0x0ab, bits [31:16] The first uniform component, converted into a
16-bit floating-point number.

For details on converting the first and second uniform component of dmp_Texture[3].ptTexBias,
dmp_Texture[3].ptNoiseU, and dmp_Texture[3].ptNoiseV, see section 5.9.2 Converting
from float32 to float16.

The third uniform component of dmp_Texture[3].ptNoiseU and dmp_Texture[3].ptNoiseV
is converted into a 16-bit fixed-point number in which the most significant bit indicates the sign and is
followed by three integer bits and 12 fractional bits, respectively. Negative values are represented in
two’s complement. For details on converting into this format, see section 5.9.10 Converting a 32-Bit
Floating-Point Number into a 16-Bit Signed Fixed-Point Number with 12 Fractional Bits.

5.8.20.5 Lookup Table Settings for Procedural Textures

This section describes settings specific to the reserved uniforms
dmp_Texture[3].ptSampler{RgbMap,AlphaMap,NoiseMap,R,G,B,A}. There are four types
of lookup table data for procedural textures: RGB-mapping F functions, alpha-mapping F functions,
noise-modulation functions, and color. Each table has a different number of elements. The following
table shows the registers used for each setting.

Table 5-32 Registers That Configure Lookup Tables for Procedural Textures

Setting Register Description

0x0af, bits [7:0] Specifies the index at which to set data in the lookup table.

0x0af, bits [11:8]

Specifies the type of lookup table for which to set data.
• 0: Noise-modulation functions
• 2: RGB-mapping F functions
• 3: Alpha-mapping F functions
• 4: Color (color values)
• 5: Color (difference values)

0x0b0–0x0b7, bits [31:0] Sets the lookup table data.

Use bits [11:8] of 0x0af to select the type of lookup table to configure. If you want to configure more
than one type of lookup table, you must change the table type in this same register each time before
setting data in each individual table. Use bits [7:0] of 0x0af to specify the index of the data to set. An
index value of 0 indicates the start of the lookup table and 1 indicates the second element.

Although only the three bits [10:8] of 0x0af are needed to specify values from 0 through 5, you must
always specify 0 for bit [11:11] because this bit is enabled by the hardware implementation. The
lookup table cannot be set correctly if the value of bit [11:11] is 1.

Set lookup table data anywhere between 0x0b0 and 0x0b7. When data is written, it updates the
content of the lookup table at the specified index. The index is incremented by one for each data
element that is written. Results are the same regardless of where you write data between 0x0b0 and
0x0b7. A value of 1 must be written to bit [10:10] of register 0x80 (to enable procedural textures)

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 106  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

when you set a value in registers 0x0b0–0x0b7. If bit [10:10] of register 0x80 is 0, attempts to set
registers 0x0b0–0x0b7 are ignored.

The format and size of data to write to the lookup table varies with the lookup table type.

Lookup Tables for RGB-Mapping F Functions, Alpha-Mapping F Functions, and Noise
Modulation Functions

The lookup table for RGB-mapping F functions uses data loaded by the glTexImage1D function for
the lookup table object bound to the lookup table number specified by
dmp_Texture[3].ptSamplerRgbMap.

Similarly, the lookup table for alpha-mapping F functions uses data from the lookup table object
specified by dmp_Texture[3].ptSamplerAlphaMap, and the lookup table for noise modulation
functions uses data from the lookup table object specified by
dmp_Texture[3].ptSamplerNoiseMap. There are 128 data items in the lookup table, and the
index in 0x0af bits [7:0] can specify values from 0 to 127.

The data to write to index i of the lookup table is a value that packs the i'th and (i+128)'th element of
the 256 data elements loaded by the glTexImage1D function. Convert the i'th data element into a
12-bit unsigned fixed-point number with 12 fractional bits and write it to bits [11:0]. Convert the
(i+128)’th data element into a 12-bit signed fixed-point number with 11 fractional bits and write it to
bits [23:12].

For details on converting 12-bit unsigned fixed-point numbers with 12 fractional bits, see section
5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point Number with 12
Fractional Bits.

For a 12-bit signed fixed-point number with 11 fractional bits, the most significant bit indicates the sign
and is followed by 11 fractional bits. Negative values are represented in two’s complement. For more
details on converting into this format, see section 5.9.7 Converting a 32-Bit Floating-Point Number
into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits (Alternate Method).

Color Lookup Tables

Color lookup tables use data loaded by the glTexImage1D function on the lookup table object bound
to the lookup table number specified by dmp_Texture[3].ptSampler{R,G,B,A}. The color value
and delta value halves of lookup tables both contain 256 data items, and the index in 0x0af bits [7:0]
can specify values from 0 to 255.

A packed value (the color value) is written to index i of a color lookup table using the i’th data
element (of a maximum of 512) loaded by the glTexImage1D function for each RGBA color channel.
The first 256 elements (of 512) are used. The i’th floating-point number between 0 and 1 is mapped
to an integer between 0 and 255, and then data is written with the R, G, B, and A components in bits
[7:0], [15:8], [23:16], and [31:24], respectively. For more details on this conversion, see section 5.9.16
Converting a 32-Bit Floating-Point Number (0–1) into an 8-Bit Unsigned Integer.

A packed value (the delta value) is written to index i of a color lookup table using the (256+i)’th data
element (of a maximum of 512) loaded by the glTexImage1D function for each RGBA channel. The

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 107 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

last 256 elements (of 512) are used. The (i+256)’th floating-point number is converted into an 8-bit
signed fixed-point number with 7 fractional bits and then data is written with the R, G, B, and A
components in bits [7:0], [15:8], [23:16], and [31:24], respectively. For each of these values, the most
significant bit indicates the sign and is followed by 7 fractional bits. Negative values are represented
in two’s complement. For details on this conversion, see section 5.9.5 Converting a 32-Bit Floating-
Point Number into an 8-Bit Signed Fixed-Point Number with 7 Fractional Bits.

5.8.20.6 Texture Resolution

The following table shows registers that set the width and height of textures.

Table 5-33 Registers That Set the Texture Resolution

Setting Register Description

0x82, bits [26:16] Texture 0’s width

0x82, bits [10:0] Texture 0’s height

0x92, bits [26:16] Texture 1’s width

0x92, bits [10:0] Texture 1’s height

0x9a, bits [26:16] Texture 2’s width

0x9a, bits [10:0] Texture 2’s height

5.8.20.7 Texture Formats

The following table shows registers that set the texture format.

Table 5-34 Registers for Texture Format Settings

Setting Register Description

0x83, bits [5:4]
Configures texture 0’s format using the following values.
• 0: Any value except GL_ETC1_RGB8_NATIVE_DMP
• 2: GL_ETC1_RGB8_NATIVE_DMP

0x93, bits [5:4] Configures texture 1’s format using the same values as bits [5:4] of 0x83.

0x9b, bits [5:4] Configures texture 2’s format using the same values as bits [5:4] of 0x83.

0x8e, bits [3:0]

Sets the following values corresponding to the format and type arguments to the
glTexImage2D function and the internalformat argument to the
glCompressedTexImage2D function for texture 0.
• 0: GL_RGBA and GL_UNSIGNED_BYTE; GL_SHADOW_DMP and GL_UNSIGNED_INT; or

GL_GAS_DMP and GL_UNSIGNED_SHORT
• 1: GL_RGB, GL_UNSIGNED_BYTE
• 2: GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1
• 3: GL_RGB, GL_UNSIGNED_SHORT_5_6_5
• 4: GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4
• 5: GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 108  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Register Description

• 6: GL_HILO8_DMP, GL_UNSIGNED_BYTE
• 7: GL_LUMINANCE, GL_UNSIGNED_BYTE
• 8: GL_ALPHA, GL_UNSIGNED_BYTE
• 9: GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE_4_4_DMP
• 10: GL_LUMINANCE, GL_UNSIGNED_4BITS_DMP
• 11: GL_ALPHA, GL_UNSIGNED_4BITS_DMP
• 12: GL_ETC1_RGB8_NATIVE_DMP
• 13: GL_ETC1_ALPHA_RGB8_A4_NATIVE_DMP
(The native formats use the same setting values as the corresponding non-native formats
above.)

0x96, bits [3:0] Configures texture 1’s format using the same values as bits [3:0] of 0x8e.

0x9e, bits [3:0] Configures texture 2’s format using the same values as bits [3:0] of 0x8e.

5.8.20.8 Texture WRAP Modes

The following table shows registers that set texture WRAP modes.

Table 5-35 Registers for Texture WRAP Mode Settings

Setting Register Description

0x83, bits [14:12]

Sets the following values for texture 0’s GL_TEXTURE_WRAP_S parameter.
• 0: GL_CLAMP_TO_EDGE
• 1: GL_CLAMP_TO_BORDER
• 2: GL_REPEAT
• 3: GL_MIRRORED_REPEAT

0x83, bits [10:8] Sets a value for texture 0’s GL_TEXTURE_WRAP_T parameter using the same settings as
bits [14:12] of 0x83.

0x93, bits [14:12] Sets a value for texture 1’s GL_TEXTURE_WRAP_S parameter using the same settings as
bits [14:12] of 0x83.

0x93, bits [10:8] Sets a value for texture 1’s GL_TEXTURE_WRAP_T parameter using the same settings as
bits [14:12] of 0x83.

0x9b, bits [14:12] Sets a value for texture 2’s GL_TEXTURE_WRAP_S parameter using the same settings as
bits [14:12] of 0x83.

0x9b, bits [10:8] Sets a value for texture 2’s GL_TEXTURE_WRAP_T parameter using the same settings as
bits [14:12] of 0x83.

5.8.20.9 Texture Filter Modes

The following table shows registers that set texture filter modes.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 109 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Table 5-36 Registers for Texture Filter Mode Settings

Setting Register Description

0x83, bit [1:1]
Sets the following values for texture 0’s GL_TEXTURE_MAG_FILTER parameter.
• 0: GL_NEAREST
• 1: GL_LINEAR

0x83, bit [2:2]
Sets the following values for texture 0’s GL_TEXTURE_MIN_FILTER parameter.
• 0: GL_NEAREST, GL_NEAREST_MIPMAP_XXX
• 1: GL_LINEAR, GL_LINEAR_MIPMAP_XXX

0x83, bit [24:24]
Sets the following values for texture 0’s GL_TEXTURE_MIN_FILTER parameter.
• 0: GL_NEAREST, GL_LINEAR, GL_XXX_MIPMAP_NEAREST
• 1: GL_XXX_MIPMAP_LINEAR

0x93, bit [1:1] Sets a value for texture 1’s GL_TEXTURE_MAG_FILTER parameter using the same settings
as bit [1:1] of 0x83.

0x93, bit [2:2] Sets a value for texture 1’s GL_TEXTURE_MIN_FILTER parameter using the same settings
as bit [2:2] of 0x83.

0x93, bit [24:24] Sets a value for texture 1’s GL_TEXTURE_MIN_FILTER parameter using the same settings
as bit [24:24] of 0x83.

0x9b, bit [1:1] Sets a value for texture 2’s GL_TEXTURE_MAG_FILTER parameter using the same settings
as bit [1:1] of 0x83.

0x9b, bit [2:2] Sets a value for texture 2’s GL_TEXTURE_MIN_FILTER parameter using the same settings
as bit [2:2] of 0x83.

0x9b, bit [24:24] Sets a value for texture 2’s GL_TEXTURE_MIN_FILTER parameter using the same settings
as bit [24:24] of 0x83.

5.8.20.10 Texture Level of Detail

The following table shows registers that configure texture level of detail (LOD) settings.

Table 5-37 Registers for Texture LOD Settings

Setting Register Description

0x84, bits [27:24]

Sets the minimum LOD for texture 0.
This is 0 when the GL_TEXTURE_MIN_FILTER parameter is configured to not use LOD
(GL_LINEAR or GL_NEAREST).
This is the value of GL_TEXTURE_MIN_LOD (or 0 if GL_TEXTURE_MIN_LOD ≤ 0) when the
GL_TEXTURE_MIN_FILTER parameter is configured to use LOD (GL_XXX_MIPMAP_XXX).

0x84, bits [19:16]

Sets the maximum LOD for texture 0.
This is 0 when the GL_TEXTURE_MIN_FILTER parameter is configured to not use LOD
(GL_LINEAR or GL_NEAREST).
This is one less than the number of mipmap levels loaded by the glTexImage2D or
glCompressedTexImage2D function when the GL_TEXTURE_MIN_FILTER parameter is
configured to use LOD (GL_XXX_MIPMAP_XXX).

0x94, bits [27:24] This sets the minimum LOD for texture 1 in the same way as bits [27:24] of 0x84.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 110  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Register Description

0x94, bits [19:16] This sets the maximum LOD for texture 1 in the same way as bits [19:16] of 0x84.

0x9c, bits [27:24] This sets the minimum LOD for texture 2 in the same way as bits [27:24] of 0x84.

0x9c, bits [19:16] This sets the maximum LOD for texture 2 in the same way as bits [19:16] of 0x84.

5.8.20.11 Texture Border Color

The following table shows registers that set the texture border color.

Table 5-38 Registers for Texture Border Color Settings

Setting Register Description

0x81, bits [31:0]

Sets the border color for texture 0. Each value set by the GL_TEXTURE_BORDER_COLOR
parameter is first converted according to the method described in section 5.9.17 Alternate
Conversion from a 32-Bit Floating-Point Number (0–1) into an 8-Bit Unsigned Integer. The
red, green, blue, and alpha components are then set in bits [7:0], [15:8], [23:16], and
[31:24], respectively.

0x91, bits [31:0] Sets the border color for texture 1 in the same way as bits [31:0] of 0x81.

0x99, bits [31:0] Sets the border color for texture 2 in the same way as bits [31:0] of 0x81.

5.8.20.12 Registers for Texture LOD Bias Settings

The following table shows registers that set texture LOD biases.

Table 5-39 Registers for Texture LOD Bias Settings

Setting Register Description

0x84, bits [12:0]
Sets the LOD bias for texture 0. This is converted from the value set for the
GL_TEXTURE_LOD_BIAS parameter according to the method described in section 5.9.8
Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 8
Fractional Bits.

0x94, bits [12:0] Sets the LOD bias for texture 1 in the same way as bits [12:0] of 0x84.

0x9c, bits [12:0] Sets the LOD bias for texture 2 in the same way as bits [12:0] of 0x84.

5.8.20.13 Shadow Texture Settings

When shadow textures are in use, GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T apply the
GL_CLAMP_TO_BORDER setting for 2D textures and the GL_CLAMP_TO_EDGE setting for cube map
textures, regardless of the values set by the glTexParameter function. GL_TEXTURE_MAG_FILTER
and GL_TEXTURE_MIN_FILTER apply the GL_LINEAR setting for both 2D textures and cube map
textures. Shadow textures cannot use mipmaps.

Bit [20:20] of register 0x83 is also set equal to 1 (the same bit is 0 for formats other than shadow
textures).

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 111 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.8.20.14 Gas Texture Use Settings

When gas textures are in use, GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T apply the
GL_CLAMP_TO_EDGE setting regardless of the values set by the glTexParameter function.
GL_TEXTURE_MAG_FILTER and GL_TEXTURE_MIN_FILTER apply the GL_NEAREST setting. Gas
textures cannot use mipmaps.

5.8.20.15 Clearing the Texture Caches

All texture caches (both Level 1 and Level 2) are cleared when 1 is written to bit [16:16] of register
0x80. The caches must be cleared when texture unit settings are changed but they do not need to be
cleared when textures continue to be used with the same settings.

The texture caches must be cleared when any of the registers 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a,
0x95, or 0x9d are modified (these registers set texture addresses), and when texture data has been
loaded. The caches must also be cleared when the texture format is modified, even if the texture
address and data itself does not change.

Each texture unit has a Level 1 (L1) texture cache. To clear it, the texture unit must be enabled. In
other words, texture units must be enabled by bits [2:0] of register 0x80 before a value of 1 is written
to bit [16:16] of register 0x80.

Even though register 0x80 holds the bits that are used to enable and disable texture units as well as
the bit that is used to clear the texture caches, a single command cannot both enable texture units
that are disabled and properly clear the texture caches. A separate command must be set to enable
textures before the command that clears the texture caches.

If texture units are already enabled, however, a single command can disable those texture units and
properly clear the texture caches.

5.8.21 Registers for Gas Settings

This section describes settings registers specific to gas features.

5.8.21.1 Gas-Related Reserved Uniform Settings

The following table shows register settings specific to gas reserved uniforms.

Table 5-40 Registers for Gas Settings

Uniform Setting Register Setting Value

dmp_Gas.lightXY 0x120, bits [23:0]
Each uniform component is converted into an 8-bit
integer between 0 and 255. The first, second, and
third components are written to bits [7:0], [15:8], and
[23:16], respectively.

dmp_Gas.lightZ
0x121, bits [23:0]

Each uniform component is converted into an 8-bit
integer between 0 and 255. The first, second, and
third components are written to bits [7:0], [15:8], and
[23:16], respectively.

0x122, bits [7:0] The fourth uniform component is converted into an
8-bit integer between 0 and 255 before it is set.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 112  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Uniform Setting Register Setting Value

dmp_Gas.deltaZ 0x126, bits [23:0]
The uniform value is converted into a 24-bit
unsigned fixed-point number with 8 fractional bits
before it is set.

dmp_Gas.accMax 0x0e5, bits [15:0] The uniform value is converted into a 16-bit floating-
point number before it is set.

dmp_Gas.attenuation 0x0e4, bits [15:0] The uniform value is converted into a 16-bit floating-
point number before it is set.

dmp_Gas.colorLutInput 0x122, bit [8:8]
• GL_GAS_DENSITY_DMP
• GL_GAS_LIGHT_FACTOR_DMP

dmp_Gas.shadingDensitySrc 0x0e0, bit [3:3]
• GL_GAS_PLAIN_DENSITY_DMP
• GL_GAS_DEPTH_DENSITY_DMP

dmp_Gas.autoAcc 0x125, bits [15:0]

This setting is cleared to 0 before density
information is rendered and is updated by
nngxSetGasAutoAccumulationUpdate after
density information is rendered. For details, see the
description of this uniform following the table.

The uniform values for dmp_Gas.lightXY and dmp_Gas.lightZ are floating-point numbers
between 0 and 1; they are converted (mapped) into 8-bit integers between 0 and 255 before they are
set. For more information on how to convert these numbers, see section 5.9.16 Converting a 32-Bit
Floating-Point Number (0–1) into an 8-Bit Unsigned Integer.

The value of the dmp_Gas.deltaZ uniform is converted into a 24-bit unsigned fixed-point number
with 8 fractional bits before it is set. For more information on how to convert these numbers, see
section 5.9.15 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number
with 8 Fractional Bits.

The uniform values for dmp_Gas.accMax and dmp_Gas.attenuation are converted into 16-bit
floating-point numbers (with a 1-bit sign, 5-bit exponent, and 10-bit mantissa) before they are set. For
more information on how to convert these numbers, see section 5.9.2 Converting from float32 to
float16.

The value of dmp_Gas.autoAcc must be set differently from other formats. To implement
dmp_Gas.autoAcc, set bits [15:0] of register 0x0e5 equal to the maximum value for the additive
blend result D1, which is automatically calculated when gas density information is rendered. The
maximum value of the additive blend result D1 is cleared to 0 before density information is rendered.
You can clear this value by writing 0 to bits [15:0] of register 0x125 (the value is initialized by the
contents of this register). After density information has been rendered, use the
nngxSetGasAutoAccumulationUpdate function to apply the maximum value of the additive blend
result D1, which is automatically calculated, to bits [15:0] of register 0x0e5. For more details, see
section 3.3.24 Updating Additive Blend Results Rendered with Gas Density Information.

5.8.21.2 Shading Lookup Table Settings

This section describes shading lookup table settings. The shading lookup table has 16 data elements.
Data loaded by the glTexImage1D function is set in the lookup table objects bound to the lookup

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 113 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

table numbers specified by the reserved uniforms dmp_Gas.sampler{TR,TG,TB} for each RGB
channel. The following table shows the registers used to set values.

Table 5-41 Registers That Set the Shading Lookup Table

Setting Register Description

0x123, bits [15:0] Specifies the lookup table index for which to set data.

0x124, bits [31:0] Sets the lookup table data.

Bits [15:0] of register 0x123 specify the lookup table index. There are 16 data elements in the lookup
table, so valid specifiable index values range from 0 to 15.

Lookup table data is set by 0x124. When data is written, it updates the content of the lookup table at
the specified index. The index is incremented by one for each data element that is written. The first
and last eight elements of the lookup table are set differently.

For the first eight elements, a packed value is written to index i (i < 8) using the (i+8)’th of 16 data
units loaded by the glTexImage1D function for each RGB channel. Data is converted into an 8-bit
signed integer for each RGB component. The R, G, and B components are written to bits [7:0], [15:8],
and [23:16], respectively. For more information on how to convert these numbers, see section 5.9.18
Converting a 32-Bit Floating-Point Number [-1, 1] into an 8-Bit Signed Integer.

For the last eight elements, a packed value is written to index i (i >= 8) using the (i-8)’th of 16 data
units loaded by the glTexImage1D function for each RGB channel. The RGB components are
multiplied by 255 and then converted into 8-bit unsigned fixed-point numbers with no fractional bits.
The R, G, and B components are written to bits [7:0], [15:8], and [23:16], respectively. For more
information on how the numbers are converted after they are multiplied by 255, see section 5.9.11
Converting a 32-Bit Floating-Point Number into an 8-Bit Unsigned Fixed-Point Number with No
Fractional Bits.

Dummy commands are sometimes required before commands that set the gas shading lookup table.
Specifically, 45 dummy commands are necessary before the gas shading lookup table can be set
immediately following a command that sets registers 0x100–0x13f, registers 0x0–0x35, or any
other register address not mentioned in this document. Any command that sets a register other than
the ones just mentioned can be used as a dummy command. A single dummy command that uses a
byte enable setting of 0 is also required for register 0x100 following a command that sets the shading
lookup table.

A value of 7 must have been written to bits [2:0] of register 0x0e0 when you set register 0x124.
Attempts to set register 0x124 are ignored when bits [2:0] of register 0x0e0 have a value other
than 7.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 114  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

5.8.22 Fog Setting Registers

This section describes register settings specific to fog features.

5.8.22.1 Fog-related Reserved Uniform Settings

The table below shows the register settings specific to reserved uniforms for fog.

Table 5-42 Fog Setting Registers

Uniform Setting Register Setting Value

dmp_Fog.mode 0x0e0, bits [2:0] • 0: GL_FALSE
• 5: GL_FOG
• 7: GL_GAS_DMP

dmp_Fog.color 0x0e1, bits [23:0] Each element of the uniform is converted to an 8-bit integer value
from 0 to 255, with the first element stored in bits [7:0], the second
element in bits [15:8], and the third element in bits [23:16].

dmp_Fog.zFlip 0x0e0, bits [16:16] • 0: GL_FALSE
• 1: GL_TRUE

The dmp_Fog.color uniform value is set by mapping the floating point values in the [0, 1] range to
8-bit integers in the [0, 255] range. See section 5.9.16 Converting a 32-Bit Floating-Point Number (0–
1) into an 8-Bit Unsigned Integer for details on the conversion method.

5.8.22.2 Fog Lookup Table Settings

This section describes the fog lookup table settings. The fog lookup table contains 128 pieces of data.
The data loaded by the glTexImage1D function is set to the lookup table object bound to the lookup
table number specified by the dmp_Fog.sampler reserved uniform. The table below shows the
registers used for these settings.

Table 5-43 Fog Lookup Table Setting Registers

Setting Register Description

0x0e6, bits [15:0] Specifies the index of the lookup table to which data is set.

0x0e8–0x0ef, bits [23:0] Sets lookup table data.

Set the lookup table index in register 0x0e6, bits [15:0]. There are 128 data values in the lookup table,
so valid specifiable index values range from 0 to 127.

Set the lookup table data anywhere in registers 0x0e8 through 0x0ef. Writing the data updates the
location within the lookup table pointed to by the index. The index is incremented by one every time a
unit of data is written. Data may be written anywhere in registers 0x0e8 through 0x0ef.

The data written to index i is the ith data unit of the 256 units of data loaded by the glTexImage1D
function packed together with the (i + 128)th data unit. The ith data unit is converted to an 11-bit
unsigned fixed-point with 11 fractional bits, which is then written to bits [23:13], while the (i + 128)th
data unit is converted to a 13-bit signed fixed-point with 11 fractional bits, which is then written to bits
[12:0].

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 115 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

See section 5.9.12 Converting a 32-Bit Floating-Point Number into an 11-Bit Unsigned Fixed-Point
Number with 11 Fractional Bits for details on conversion to an 11-bit unsigned fixed-point number with
11 fractional bits.

For a 13-bit signed fixed-point number with 11 fractional bits, the most significant bit indicates the sign
and is followed by 1 integer bit and 11 fractional bits, respectively. See section 5.9.9 Converting a 32-
Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 11 Fractional Bits for details
on conversion to a 13-bit signed fixed-point number with 11 fractional bits.

5.8.23 Fragment Operation Setting Registers

The table below shows the register settings specific to reserved uniforms for fragment operations.

Table 5-44 Fragment Operation Setting Registers

Uniform Setting
Register Setting Value

dmp_FragOperation.mode 0x100, bits [1:0] • 0: GL_FRAGOP_MODE_GL_DMP
• 1: GL_FRAGOP_MODE_GAS_ACC_DMP
• 3: GL_FRAGOP_MODE_SHADOW_DMP

The values described in section 5.8.28 Framebuffer Access Control Setting Registers must also be
changed when register values are changed for this uniform.

5.8.24 Shadow Attenuation Factor Setting Registers

The table below shows the register settings for reserved uniforms specific to shadow attenuation
factors.

Table 5-45 Shadow Attenuation Factor Setting Register

Uniform Register Settings

dmp_FragOperation.penumbraScale 0x130, bits [31:0] The sign for
dmp_FragOperation.penumbraScale is
reversed, then that value is converted to a 16-bit
floating-point value (with 1 bit as the sign, 5 bits
as the exponent, and 10 bits as the significand),
which is then written to bits [31:16].

The sum of
dmp_FragOperation.penumbraScale and
dmp_FragOperation.penumbraBias is
converted to a 16-bit floating-point value (with the
same format as above), which is then written to
bits [15:0].

dmp_FragOperation.penumbraBias

See section 5.9.2 Converting from float32 to float16 for details on conversion to a 16-bit floating-point
value.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 116  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

5.8.25 w Buffer Setting Registers

The following table shows the register settings specific to reserved uniforms for the w buffer.

Table 5-46 w Buffer Setting Registers

Uniform Register Settings

dmp_FragOperation.wScale

0x6d, bits [0:0] If uniform value is 0, value set to 1; if uniform value is not
0, value set to 0.

0x4d, bits [23:0] These bits set the scale value for the z clip coordinate;
they are configured by the uniform value and the
glDepthRangef setting. For more details, see the
explanation following this table.

0x4e, bits [23:0] These bits set the bias value for the z clip coordinate;
they are configured by the uniform value and the
glDepthRangef and glPolygonOffset settings. For
more details, see the explanation following this table.

The value set in bits [23:0] of register 0x4d has its sign reversed when the
dmp_FragOperation.wScale uniform value is nonzero. These bits are set equal to (zNear -
zFar), using the zNear and zFar arguments to the glDepthRangef function, when the
dmp_FragOperation.wScale uniform value is 0. The actual values set in the registers are first
converted into 24-bit floating-point numbers (with a single sign bit, a 7-bit exponent, and a 16-bit
mantissa).

Bits [23:0] of register 0x4e are set equal to 0 when the dmp_FragOperation.wScale uniform
value is nonzero. These bits are set equal to the zNear argument to the glDepthRangef function
when the dmpFragOperation.wScale uniform value is 0. If polygon offset is enabled (glEnable
is called with GL_POLYGON_OFFSET_FILL as an argument), the offset calculated from the units
argument to the glPolygonOffset function is added to the value set in bits [23:0] of register 0x4e.
The value added by the polygon offset depends on the depth buffer format: it is units/65535 for a
16-bit depth buffer and units/16777215 for a 24-bit depth buffer. These values are converted into
24-bit floating-point numbers (with a single sign bit, 7-bit exponent, and 16-bit mantissa) before being
set in the register.

See section 5.9.1 Converting from float32 to float24 for details on conversion to a 24-bit floating-point
value.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 117 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.8.26 User Clip Setting Registers

The table below shows the register settings specific to reserved uniforms for user clipping.

Table 5-47 User Clip Setting Registers

Uniform Setting
Register Setting Value

dmp_FragOperation.enableClippingPlane 0x47, bits [0:0] • 0: GL_FALSE
• 1: GL_TRUE

dmp_FragOperation.clippingPlane

0x48, bits [23:0] Value is the first element of the uniform
converted to a 24-bit floating-point
value.

0x49, bits [23:0] Value is the second element of the
uniform converted to a 24-bit floating-
point value.

0x4a, bits [23:0] Value is the third element of the uniform
converted to a 24-bit floating-point
value.

0x4b, bits [23:0] Value is the fourth element of the
uniform converted to a 24-bit floating-
point value.

See section 5.9.1 Converting from float32 to float24 for details on conversion to a 24-bit floating-point
value.

5.8.27 Alpha Test Setting Registers

The table below shows the register settings specific to reserved uniforms for alpha tests.

Table 5-48 Alpha Test Setting Registers

Uniform Setting Register Setting Value

dmp_FragOperation.enableAlphaTest 0x104, bits [0:0] • 0: GL_FALSE
• 1: GL_TRUE

dmp_FragOperation.alphaTestFunc 0x104, bits [6:4] • 0: GL_NEVER
• 1: GL_ALWAYS
• 2: GL_EQUAL
• 3: GL_NOTEQUAL
• 4: GL_LESS
• 5: GL_LEQUAL
• 6: GL_GREATER
• 7: GL_GEQUAL

dmp_FragOperation.alphaRefValue 0x104, bits [15:8] Value is the uniform value mapped to an 8-
bit integer in the [0, 255] range.

See section 5.9.16 Converting a 32-Bit Floating-Point Number (0–1) into an 8-Bit Unsigned Integer for
details on the dmp_FragOperation.alphaRefValue conversion method.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 118  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

5.8.28 Framebuffer Access Control Setting Registers

This section describes the registers for setting the framebuffer read-write access controls. These
might need to be changed when changing other registers specific to certain functions and reserved
uniforms.

Table 5-49 Framebuffer Access Control Setting Registers

Setting
Register Setting Value

0x112, bits [3:0] Value set to 0x0f if color buffer reads are required, and set to 0 if reads are not required.
Color buffer reads are required if any of the following conditions are met.
• A value other than GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode

reserved uniform.
• The glColorMask function defines one or more components as writable, and the
glEnable function has enabled GL_BLEND.

• The glColorMask function defines one or more components as writable, and one or
more components as not writable.

• The glColorMask function defines one or more components as writable, and the
glEnable function has enabled GL_COLOR_LOGIC_OP.

0x113, bits [3:0] Value set to 0x0f if color buffer writes are required, and set to 0 if writes are not required.
Color buffer writes are required if any of the following conditions are met.
• A value other than GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode

reserved uniform.
• The glColorMask function defines one or more components as writable.

0x114, bits [1:0] Bit [1:1] set to 1 if depth buffer reads are required, and bit [0:0] set to 1 if stencil buffer reads
are required. Set to 0 if not required.
Depth buffer reads are required if any of the following conditions are met.
• GL_FRAGOP_MODE_GAS_ACC_DMP is set in the dmp_FragOperation.mode reserved

uniform.
• GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform,

the glEnable function has enabled GL_DEPTH_TEST, and GL_TRUE was set for the
glDepthMask function.

• GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform,
the glEnable function has enabled GL_DEPTH_TEST, and the glColorMask function
defines one or more components as writable.

Stencil buffer reads are required if any of the following conditions are met.
• GL_FRAGOP_MODE_GAS_ACC_DMP is set in the dmp_FragOperation.mode reserved

uniform.
• GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform,

the glEnable function has enabled GL_STENCIL_TEST, and a value other than 0 was
set for the glStencilMask function.

• GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform,
the glEnable function has enabled GL_STENCIL_TEST, and the glColorMask function
defines one or more components as writable.

0x115, bits [1:0] Bit [1:1] set to 1 if depth buffer writes are required, and bit [0:0] set to 1 if stencil buffer writes
are required. Set to 0 if not required.
Depth buffer writes are required if all of the following conditions are met.
• GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform.
• The glEnable function has enabled GL_DEPTH_TEST.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 119 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting
Register Setting Value

• GL_TRUE was set for the glDepthMask function.
Stencil buffer writes are required if all of the following conditions are met.
• GL_FRAGOP_MODE_GL_DMP is set in the dmp_FragOperation.mode reserved uniform.
• The glEnable function has enabled GL_STENCIL_TEST.
• A value other than 0 is set for the glStencilMask function.

The hardware does not support certain combinations of read and write access to the color, depth, and
stencil buffers. Behavior is undefined if any of these unsupported combinations are set. See the
following table for more information on which combinations are supported.

Table 5-50 Combinations of Framebuffer Access Control Setting Registers

0x112, Bits [3:0] 0x113, Bits [3:0] 0x114, Bits [1:0] 0x115, Bits [1:0] Supported?

0 0 0 0 No

Nonzero 0 0 0 No

0 Nonzero 0 0 Yes

Nonzero Nonzero 0 0 Yes

0 0 Nonzero 0 No

Nonzero 0 Nonzero 0 No

0 Nonzero Nonzero 0 Yes

Nonzero Nonzero Nonzero 0 Yes

0 0 0 Nonzero No

Nonzero 0 0 Nonzero No

0 Nonzero 0 Nonzero No

Nonzero Nonzero 0 Nonzero No

0 0 Nonzero Nonzero Yes

Nonzero 0 Nonzero Nonzero No

0 Nonzero Nonzero Nonzero Yes

Nonzero Nonzero Nonzero Nonzero Yes

When access to the color, depth, and stencil buffers is needed, set the bits of registers 0x112, 0x113,
0x114, and 0x115 shown above to 1, and when access is not needed, clear these bits to 0. Because
memory access is limited when these bits are 0, performance should improve. Accordingly, we
recommend setting these bits to 0 whenever possible.

The settings for the various per-fragment operations determine whether or not access to the buffers is
needed. The following table describes the conditions that must be met by the per-fragment operations

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 120  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

register settings in order to set the bits above to 0 and disable read and/or write access to the various
buffers.

Table 5-51 Conditions for Disabling Access to the Framebuffer

Setting Register Conditions Under Which It Is Possible to Set These Bits to 0

0x112, bits [3:0]
(color buffer read
access)

Either Conditions 1 or 2 must be met, and Conditions 3 and 4 must always both
be met.

Condition 1: If bit [8:8] of 0x100 is 1, the settings for bits [19:16], [23:20],
[27:24], and [31:28] of 0x101 must be among the following:
0x0: GL_ZERO
0x1: GL_ONE
0x2: GL_SRC_COLOR
0x3: GL_ONE_MINUS_SRC_COLOR
0x6: GL_SRC_ALPHA
0x7: GL_ONE_MINUS_SRC_ALPHA
0xA: GL_CONSTANT_COLOR
0xB: GL_ONE_MINUS_CONSTANT_COLOR
0xC: GL_CONSTANT_ALPHA
0xD: GL_ONE_MINUS_CONSTANT_ALPHA
0xE: GL_SRC_ALPHA_SATURATE
(If blending is enabled, the DST color is not looked up.)

Condition 2: If bit [8:8] of 0x100 is 0, the setting for bits [3:0] of 0x102 must be
among the following:
0x0: GL_CLEAR
0x3: GL_COPY
0x4: GL_SET
0x5: GL_COPY_INVERTED
(If logical operations are enabled, the DST color is not looked up.)

Condition 3: Bits [11:8] of 0x107 must be 0 or 0xf.
(The color write mask is all 0s or all 1s.)

Condition 4: Bits [1:0] of 0x100 must be 0.

(The per-fragment operations mode is
GL_FRAGOP_MODE_GL_DMP.)

0x113, bits [3:0]
(Color buffer write
access)

Conditions 1 and 2 must always both be met.

Condition 1: Bits [11:8] of 0x107 must be 0.
(The color write mask is all 0s.)

Condition 2: Bits [1:0] of 0x100 must be 0.

(The per-fragment operations mode is
GL_FRAGOP_MODE_GL_DMP.)

0x114, bit [1:1]
(Depth buffer read
access)

Either Conditions 1 or 2 must be met, and Condition 3 must be met.
Alternatively, Condition 4 (by itself) must be met.

Condition 1: Bit [0:0] of 0x107 must be 0.
(Depth testing is disabled.)

Condition 2: The settings for bits [6:4] of 0x107 must be among the following:
0x0: GL_NEVER

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 121 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting Register Conditions Under Which It Is Possible to Set These Bits to 0
0x1: GL_ALWAYS
(The depth test function does not need the depth buffer value.)

Condition 3: Bits [1:0] of 0x100 must be 0.

(The per-fragment operations mode is
GL_FRAGOP_MODE_GL_DMP.)

Condition 4: Bits [1:0] of 0x100 must be set to 3.
(The per-fragment operations mode is GL_FRAGOP_MODE_SHADOW_DMP.)

0x114, bit [0:0]
(Stencil buffer read
access)

Conditions 1, 2, or 3 must be met, and Condition 4 must be met.
Alternatively, Condition 5 (by itself) must be met.

Condition 1: Bit [0:0] of 0x105 must be 0.
(Stencil testing is disabled.)

Condition 2: The settings for bits [6:4] of 0x105 must be among the following:
0x0: GL_NEVER
0x1: GL_ALWAYS
(The stencil test function does not need the stencil buffer value.)

Condition 3: Bits [31:24] of 0x105 must be 0.
(During the stencil test, the mask used in a bitwise AND operation with the
stencil value is 0. As a result, the stencil buffer values are not used.)

Condition 4: Bits [1:0] of 0x100 must be 0.

(The per-fragment operations mode is
GL_FRAGOP_MODE_GL_DMP.)

Condition 5: Bits [1:0] of 0x100 must be set to 3.
(The per-fragment operations mode is GL_FRAGOP_MODE_SHADOW_DMP.)

When Condition 4 above is met and the combination of settings for bits [6:4],
[23:16], and [31:24] of 0x105 causes the stencil buffer value to have no effect on
the stencil test results, it is possible to disable read access.
Example: Bits [6:4] of 0x105 are set to 5 and bits [23:16] of 0x105 are 0 (the
func argument of the glStencilFunc function is GL_LEQUAL and the ref
argument is 0).

0x115, bit [1:1]
(Depth buffer write
access)

Conditions 1, 2, or 3 must be met.

Condition 1: Bit [0:0] of 0x107 must be 0.
(Depth testing is disabled.)

Condition 2: Bit [12:12] of 0x107 must be 0.
(Depth mask is GL_FALSE.)

Condition 3: Bits [1:0] of 0x100 must be set to a nonzero value.
(The per-fragment operations mode is not GL_FRAGOP_MODE_GL_DMP.)

0x115, bit [0:0]
(Stencil buffer write
access)

Conditions 1, 2, 3, or 4 must be met.

Condition 1: Bit [0:0] of 0x105 must be 0.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 122  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Register Conditions Under Which It Is Possible to Set These Bits to 0
(Stencil testing is disabled.)

Condition 2: Bits [15:8] of 0x105 must be 0.
(The stencil mask is 0.)

Condition 3: Bits [2:0], [6:4], and [10:8] of 0x106 are all 0: GL_KEEP.
(Stencil buffer value does not change as a result of the stencil test.)

Condition 4: Bits [1:0] of 0x100 must be set to a nonzero value.
(The per-fragment operations mode is not GL_FRAGOP_MODE_GL_DMP.)

When making settings in line with the above conditions, you must use the supported combinations
that are shown in Table 5-50 Combinations of Framebuffer Access Control Setting Registers.

Even if the various fragment operations are set to generate buffer writes, if the buffer’s write access is
disabled, the buffer writes will not occur. Likewise, even if the various fragment operations are set to
generate buffer reads, if the buffer’s read access is disabled, the value that is read will be undefined.

5.8.29 Viewport Setting Registers

The following table shows register settings specific to the viewport.

Table 5-52 Viewport Setting Registers

Setting
Function Setting Register Setting Value

glViewport

0x41, bits [23:0] The result of dividing width by 2 as a floating-point number and then
converting the quotient into a 24-bit floating-point number.

0x42, bits [31:0] The result of dividing 2 by width, converting the quotient into a 31-bit
floating-point number, and finally shifting the value left by 1 bit.

0x43, bits [23:0] The result of dividing height by 2 as a floating-point number and then
converting the quotient into a 24-bit floating-point number.

0x44, bits [31:0] The result of dividing 2 by height, converting the quotient into a 31-bit
floating-point number, and finally shifting the value left by 1 bit.

0x68, bits [9:0] Sets x.

0x68, bits [25:16] Sets y.

For details on the conversion used for setting registers 0x41 and 0x43, see section 5.9.1 Converting
from float32 to float24. For details on the conversion used for setting registers 0x42 and 0x44, see
section 5.9.3 Converting from float32 to float31.

When changing these settings, you may also need to change Scissoring Setting Registers (see
section 5.8.35) in the same way.

5.8.30 Depth Test Setting Registers

The following table shows register settings related to depth tests.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 123 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Table 5-53 Depth Test Setting Registers

Setting Function Setting Register Setting Value

glEnable/glDisable
(GL_DEPTH_TEST); 0x107, bit [0:0]

• 0: Disable depth tests
• 1: Enable depth tests

glDepthFunc

0x107, bits [6:4]

Corresponds to the func argument:
• 0: GL_NEVER
• 1: GL_ALWAYS
• 2: GL_EQUAL
• 3: GL_NOTEQUAL
• 4: GL_LESS
• 5: GL_LEQUAL
• 6: GL_GREATER
• 7: GL_GEQUAL

0x126, bits [25:24]

Corresponds to the func argument:
• 0: GL_NEVER
• 1: GL_ALWAYS
• 2: GL_GREATER or GL_GEQUAL
• 3: Other

glDepthMask 0x107, bit [12:12]
Corresponds to the flag argument:
• 0: GL_FALSE
• 1: GL_TRUE

Bits [25:24] of register 0x126 affect the additive blending distribution D2 when rendering gas density
information. Bits [25:24] of register 0x126 do not affect the behavior of the standard depth test.

When changing these settings, you may also need to change the Framebuffer Access Control Setting
Registers (see section 5.8.28) in the same way.

5.8.31 Logical Operation and Blend Setting Registers

Logical operations and blending share setting registers. The following table shows register settings
specific to logical operations and blending.

Table 5-54 Logical Operation and Blend Setting Registers

Setting Function Setting Register Setting Value

glEnable/glDisable
(GL_COLOR_LOGIC_OP);

glEnable/glDisable
(GL_BLEND);

0x100, bit [8:8]

• 0: Enable logical operations
• 1: Enable blending
You cannot enable both logical operations and
blending. Logical operations are given priority when
both are enabled by the glEnable function. This is set
equal to 1 when both are disabled.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 124  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Function Setting Register Setting Value

glBlendFunc

glBlendFuncSeparate

0x101, bits [19:16]

When blending is disabled, this is set equal to 1. When
blending is enabled, the following values are set by the
sfactor or srcRGB argument.
• 0: GL_ZERO
• 1: GL_ONE
• 2: GL_SRC_COLOR
• 3: GL_ONE_MINUS_SRC_COLOR
• 4: GL_DST_COLOR
• 5: GL_ONE_MINUS_DST_COLOR
• 6: GL_SRC_ALPHA2
• 7: GL_ONE_MINUS_SRC_ALPHA
• 8: GL_DST_ALPHA
• 9: GL_ONE_MINUS_DST_ALPHA
• 10: GL_CONSTANT_COLOR
• 11: GL_ONE_MINUS_CONSTANT_COLOR
• 12: GL_CONSTANT_ALPHA
• 13: GL_ONE_MINUS_CONSTANT_ALPHA
• 14: GL_SRC_ALPHA_SATURATE

0x101, bits [23:20]
When blending is disabled, this is set equal to 0. When
blending is enabled, the dfactor or dstRGB
argument sets a value in the same way as bits [19:16]
of 0x101.

0x101, bits [27:24]
When blending is disabled, this is set equal to 1. When
blending is enabled, the sfactor or srcAlpha
argument sets a value in the same way as bits [19:16]
of 0x101.

0x101, bits [31:28]
When blending is disabled, this is set equal to 0. When
blending is enabled, the dfactor or dstAlpha
argument sets a value in the same way as bits [19:16]
of 0x101.

glBlendEquation

glBlendEquationSeparate

0x101, bits [2:0]

When blending is disabled, this is set equal to 0. When
blending is enabled, the following values are set by the
mode and modeRGB arguments.
• 0: GL_FUNC_ADD
• 1: GL_FUNC_SUBTRACT
• 2: GL_FUNC_REVERSE_SUBTRACT
• 3: GL_MIN
• 4: GL_MAX

0x101, bits [10:8]
When blending is disabled, this is set equal to 0. When
blending is enabled, the mode or modeAlpha
argument sets a value in the same way as bits [2:0] of
0x101.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 125 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting Function Setting Register Setting Value

glBlendColor

0x103, bits [7:0]

The value set for the red argument is clamped
between 0 and 1 and then the floating-point number is
mapped to an integer between 0 and 255. For more
details on this conversion, see section 5.9.16
Converting a 32-Bit Floating-Point Number (0–1) into
an 8-Bit Unsigned Integer.

0x103, bits [15:8] The green argument sets a value in the same way as
bits [7:0] of 0x103.

0x103, bits [23:16] The blue argument sets a value in the same way as
bits [7:0] of 0x103.

0x103, bits [31:24] The alpha argument sets a value in the same way as
bits [7:0] of 0x103.

glLogicOp 0x102, bits [3:0]

Corresponds to the opcode argument.
• 0: GL_CLEAR
• 1: GL_AND
• 2: GL_AND_REVERSE
• 3: GL_COPY
• 4: GL_SET
• 5: GL_COPY_INVERTED
• 6: GL_NOOP
• 7: GL_INVERT
• 8: GL_NAND
• 9: GL_OR
• 10: GL_NOR
• 11: GL_XOR
• 12: GL_EQUIV
• 13: GL_AND_INVERTED
• 14: GL_OR_REVERSE
• 15: GL_OR_INVERTED

When changing these settings, you may also need to change the Framebuffer Access Control Setting
Registers (see section 5.8.28) in the same way. Attempts to set register 0x101 are ignored when
logical operations are enabled.

5.8.32 Early Depth Test Setting Registers

The following table shows register settings specific to early depth tests.

Table 5-55 Early Depth Test Setting Registers

Setting Function Setting Register Setting Value

glEnable/glDisable
(GL_EARLY_DEPTH_TEST_DMP);

0x62, bit [0:0]
• 0: Disable early depth tests
• 1: Enable early depth tests

0x118, bit [0:0]
• 0: Disable early depth tests
• 1: Enable early depth tests

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 126  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Function Setting Register Setting Value

glEarlyDepthFuncDMP 0x61, bits [1:0]

Corresponds to the func argument:
• 0: GL_GEQUAL
• 1: GL_GREATER
• 2: GL_LEQUAL
• 3: GL_LESS

glClearEarlyDepthDMP 0x6a, bits [23:0] Sets the value of the depth argument unchanged.

glClear 0x63, bit [0:0] Set when GL_EARLY_DEPTH_BUFFER_BIT_DMP is
cleared.

When changing these settings, you may also need to change the Depth Test Setting Registers (see
section 5.8.30) and Framebuffer Access Control Setting Registers (see section 5.8.28) in the same
way.

5.8.33 Stencil Test Setting Registers

The following table shows register settings specific to stencil tests.

Table 5-56 Stencil Test Setting Registers

Setting Function Setting Register Setting Value

glEnable/glDisable
(GL_STENCIL_TEST); 0x105, bit [0:0]

• 0: Disable stencil tests
• 1: Enable stencil tests

glStencilMask 0x105, bits [15:8] Sets the least significant 8 bits of the mask argument.

glStencilFunc

0x105, bits [6:4]

Corresponds to the func argument:
• 0: GL_NEVER
• 1: GL_ALWAYS
• 2: GL_EQUAL
• 3: GL_NOTEQUAL
• 4: GL_LESS
• 5: GL_LEQUAL
• 6: GL_GREATER
• 7: GL_GEQUAL

0x105, bits [23:16] Sets the value of the ref argument unchanged.

0x105, bits [31:24] Sets the value of the mask argument unchanged.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 127 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting Function Setting Register Setting Value

glStencilOp

0x106, bits [2:0]

Corresponds to the fail argument:
• 0: GL_KEEP
• 1: GL_ZERO
• 2: GL_REPLACE
• 3: GL_INCR
• 4: GL_DECR
• 5: GL_INVERT
• 6: GL_INCR_WRAP
• 7: GL_DECR_WRAP

0x106, bits [6:4] The zfail argument sets a value in the same way as bits
[2:0] of 0x106.

0x106, bits [10:8] The zpass argument sets a value in the same way as bits
[2:0] of 0x106.

When changing these settings, you may also need to change the Framebuffer Access Control Setting
Registers (see section 5.8.28) in the same way.

5.8.34 Culling Setting Registers

The following table shows register settings specific to culling.

Table 5-57 Culling Setting Registers

Setting Function Setting Register Setting Value

glEnable/glDisable
(GL_CULL_FACE);

glCullFace

glFrontFace

0x40, bits [1:0]

When culling is disabled, a value of 0 is set.
When culling is enabled, a value of 2 is set in either of the
following cases and a value of 1 is set otherwise.
• The glCullFace function is GL_FRONT and the
glFrontFace function is GL_CW

• The glCullFace function is GL_BACK and the
glFrontFace function is GL_CCW

5.8.35 Scissoring Setting Registers

The following table shows register settings specific to scissoring.

Table 5-58 Scissoring Setting Registers

Setting Function Setting Register Setting Value

glEnable/glDisable
(GL_SCISSOR_TEST); 0x65, bits [1:0]

• 0: Disable scissoring
• 3: Enable scissoring

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 128  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Function Setting Register Setting Value

glScissor

0x66, bits [9:0]

When scissoring is disabled, a value of 0 is set.
When scissoring is enabled, the value of the x argument is
set. When x is greater than or equal to the current color buffer
width, however, a value that is one less than the color buffer
width is set. When x is negative, a value of 0 is set.

0x66, bits [25:16]

When scissoring is disabled, a value of 0 is set.
When scissoring is enabled, the value of the y argument is
set. When y is greater than or equal to the current color buffer
height, however, a value that is one less than the color buffer
height is set. When y is negative, a value of 0 is set.

0x67, bits [9:0]

When scissoring is disabled, one less than the current color
buffer width is set.
When scissoring is enabled, (x+width-1) is set. When that
value is greater than or equal to the current color buffer width,
however, a value that is one less than the color buffer width is
set. When (x+width-1) is negative, a value of 0 is set.

0x67, bits [25:16]

When scissoring is disabled, one less than the current color
buffer height is set.
When scissoring is enabled, (y+height-1) is set. When
that value is greater than or equal to the current color buffer
height, however, a value that is one less than the color buffer
height is set. When (y+height-1) is negative, a value of 0
is set.

5.8.36 Color Mask Setting Registers

The following table shows register settings specific to color masks.

Table 5-59 Color Mask Setting Registers

Function Register Values

glColorMask

0x107, bit [8:8]
Corresponds to the red argument:
• 0: GL_FALSE
• 1: GL_TRUE

0x107, bit [9:9]
Corresponds to the green argument:
• 0: GL_FALSE
• 1: GL_TRUE

0x107, bit [10:10]
Corresponds to the blue argument:
• 0: GL_FALSE
• 1: GL_TRUE

0x107, bit [11:11]
Corresponds to the alpha argument:
• 0: GL_FALSE
• 1: GL_TRUE

When changing these settings, you may also need to change the Framebuffer Access Control Setting
Registers (see section 5.8.28) in the same way.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 129 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.8.37 Block Format Setting Registers

The following table shows register settings specific to the block format for rendering.

Table 5-60 Block Format Setting Registers

Setting Function Setting
Register Setting Value

glRenderBlockModeDMP 0x11b, bit [0:0]
• 0: GL_RENDER_BLOCK8_MODE_DMP
• 1: GL_RENDER_BLOCK32_MODE_DMP

5.8.38 Settings Registers Specific to the Rendering API

The rendering functions, glDrawElements and glDrawArrays, validate every state and thus
generate register-setting commands related to each state. In addition to generating commands during
validation, the rendering functions set registers required for rendering itself. The following sections
explain these register settings.

5.8.38.1 With the Vertex Buffer in Use

This section describes the registers set by the rendering API when the vertex buffer is in use. All
commands must be set before the rendering kick command unless you have some reason to set
them in a different order.

Table 5-61 Register Settings Related to the Rendering API (if the Vertex Buffer Is in Use)

Setting Setting Register Setting Value

Rendering mode

0x25e, bits [9:8]

Set to 1 if the mode argument to the glDrawElements
and/or glDrawArrays functions is GL_TRIANGLE_STRIP,
to 2 if it is GL_TRIANGLE_FAN, and to 3 if it is
GL_GEOMETRY_PRIMITIVE_DMP.
Set to 0 if the mode argument to glDrawArrays is
GL_TRIANGLES. Set to 3 if the mode argument to
glDrawElements is GL_TRIANGLES.
This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.

0x229, bit [8:8]

Set to 1 when both the glDrawElements function is in use
and the mode argument is GL_TRIANGLES. Cleared to 0
otherwise. This does not need to be set per every rendering
operation. It need only be reset when the setting has
changed.

0x253, bit [8:8]

Set to 1 when both the glDrawElements function is in use
and the mode argument is GL_TRIANGLES. Cleared to 0
otherwise. This does not need to be set per every rendering
operation. It need only be reset when the setting has
changed.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 130  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Setting Register Setting Value

Rendering function indicator 0x253, bit [0:0]

Cleared to 0 when the glDrawElements function is the
rendering function and set to 1 when the glDrawArrays
function is the rendering function. This bit is cleared to 0
when nngxInitialize is called, so this is only set to 1
before a rendering kick when glDrawArrays is used, and
immediately after the kick it is cleared to 0.
When this bit is set to 1, register settings outside of register
ranges 0x200 through 0x254 and 0x280 through 0x2df
are sometimes not properly executed.

Vertex index address 0x227, bits [27:0]

Specifies the address offset of the vertex index array. This
is the offset from the common vertex array base address
set by bits [28:1] of register 0x200. This register’s value is
configured so that when it is added to the product of 16 and
the value of bits [28:1] of register 0x200, it is equal to the
sum of the vertex buffer address allocated by the
glBufferData function and the indices argument to the
glDrawElements function.
When glDrawArrays is in use, 0x20 is written here if
either of the following conditions are met.
If bits [31:0] of register 0x228 have a value larger than
0x10, the condition that must be met is:

((bits [31:0] of 0x228 - 0x10)×2 + (bits [28:1] of
0x200≪4)) &0xfff ≥ 0xfe0

If bits [31:0] of register 0x228 have a value of 0x10 or
smaller, the condition that must be met is:

(bits [28:1] of 0x200≪4)&0xfff ≥ 0xfe0

A value of 0 is written here in all other cases.
This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.

Vertex index type 0x227, bit [31:31]

Set to 1 when the type argument to the glDrawElements
function is GL_UNSIGNED_SHORT and 0 when the same
argument is GL_UNSIGNED_BYTE.
Set to 1 when the glDrawArrays is in use.
This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.

Vertex count 0x228, bits [31:0]
Sets the number of vertices to render.
This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.

Starting vertex offset 0x22a, bits [31:0]

Sets the value of the first argument for the
glDrawArrays function.
This does not need to be set per every rendering operation.
It need only be reset when the setting has changed.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 131 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting Setting Register Setting Value

Vertex information reset 0x25f, bit [0:0]

Writing a value of 1 to this bit resets the information that
indicates each vertex’s index (0, 1, or 2) in the triangles that
it forms.
No settings are required when the rendering mode is
GL_GEOMETRY_PRIMITIVE_DMP.
No settings are required when the glDrawElements
function is called in GL_TRIANGLES mode. A reset is not
required for consecutive calls–except for the first–to the
glDrawArrays function in GL_TRIANGLES mode if and
only if the glDrawElements function is not called and the
number of rendered vertices is a multiple of 3. However, a
reset is required after rendering in some other mode, after
rendering with the glDrawElements function, and when
the glDrawArrays function is called for the first time after
the nngxInitialize function.
In GL_TRIANGLE_STRIP or GL_TRIANGLE_FAN mode, a
reset is required per each rendering kick command.

Rendering kick command

0x22e Writes a value of 1 to an arbitrary bit when rendering starts
with the glDrawArrays function.

0x22f Writes a value of 1 to an arbitrary bit when rendering starts
with the glDrawElements function.

Post-vertex cache clear 0x231
Writes a value of 1 to an arbitrary bit immediately after a
rendering kick command. Must be set per each rendering
kick command.

Framebuffer cache flush 0x111, bit [0:0]
Writes a value of 1 immediately after a rendering kick
command. See Clearing the Framebuffer Cache for details
on the setting conditions.

Texture enabling 0x80, bits [2:0]

Set to 1 for the texture to enable immediately before a
rendering kick command, then set to 0 immediately after the
rendering kick command. Setting to 0 helps reduce power
consumption, so this process ensures that the value is set
to 0 at all times when not rendering.
Leaving the value always set to 1 for an enabled texture
does not cause any operation problems. See section
5.8.20.2 Setting the Texture Sampler Type for details on
each bit.

Other registers

0x245, bit [0:0]

Set to 1 when the nngxInitialize function is called.
Rendering is not performed properly when this is set to 1.
When this is 0, settings commands to registers 0x2b0–
0x2df are not applied correctly.
Both the glDrawElements and glDrawArrays functions
generate commands to clear this bit to 0 immediately before
the rendering kick command and then return it to 1
immediately afterward.
If no settings commands to registers 0x2b0–0x2df are
used after the rendering kick command, it causes no
problems to leave this bit cleared to 0.

0x25e, bits [31:24]
These bits require two commands to clear them to 0
immediately after rendering kick commands. This is
required per each rendering kick command. These

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 132  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Setting Register Setting Value

commands are dummy commands and the exact value they
set has no meaning.

0x2ba, bits [31:16]

Write these bits to a value of 0x7fff after a rendering kick
command. Running this command just after rendering
completes helps to reduce power consumption. Not setting
these bits does not cause any operation problems.
Set byte enable with 0xc, so as to have no effect on bits
[15:0].
Bit [0:0] of register 0x245 must be set to 1 before this
command.

0x28a, bits [31:16]

Write these bits to a value of 0x7fff after a rendering kick
command. Running this command just after rendering
completes helps to reduce power consumption. Not setting
these bits does not cause any operation problems.
Set byte enable with 0xc, so as to have no effect on bits
[15:0].
When the pipeline is set not to use geometry shaders (bit
[0:0] of register 0x244 is 0 and bits [1:0] of register 0x229
are 0), the setting of bits [31:16] of register 0x2ba includes
this command’s setting, making this command
unnecessary.

Note: Cautions About Command Dependencies:

Bits [31:16] of register 0x2ba must be set only after bit [0:0] of register 0x245 is set. When bit
[0:0] of register 0x253 has been set to 1, register settings outside of register ranges 0x200
through 0x254 and 0x280 through 0x2df are sometimes not properly executed. Set the
registers in these ranges only while bit [0:0] of register 0x253 has been set to 0. However, this
restriction does not apply to the dummy commands for bits [31:24] of register 0x25e.
There are several other commands that must always be set immediately after a rendering kick
command, but these other commands have no ordering dependencies.

5.8.38.2 Without the Vertex Buffer in Use

When the vertex buffer is not used, the vertex data is itself input through registers. The following table
shows how register settings change when the vertex buffer is not used. Vertex attribute data
commands are handled the same way as rendering kick commands. All commands must be set
before the vertex attribute data command unless you have some reason to use a different order.

Table 5-62 Register Settings Related to the Rendering API (when the Vertex Buffer Is Not in
Use)

Setting Setting Register Setting Value

Rendering mode 0x25e, bits [9:8]

Set to 0 if the mode argument to the glDrawElements
or glDrawArrays function is GL_TRIANGLES, to 1 if it
is GL_TRIANGLE_STRIP, to 2 if it is
GL_TRIANGLE_FAN, or to 3 if it is
GL_GEOMETRY_PRIMITIVE_DMP.
This does not need to be set per every rendering

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 133 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting Setting Register Setting Value

operation. It need only be reset when the setting has
changed.

0x229, bit [8:8] Set to 0. This does not need to be set per every
rendering operation.

0x253, bit [8:8] Set to 0. This does not need to be set per every
rendering operation.

Rendering function indicator 0x253, bit [0:0]

Whether the function called was glDrawElements or
glDrawArrays, this bit is set to 1 before a vertex
attribute data command and then cleared to 0 after the
command.
This bit is cleared to 0 when nngxInitialize is
called, so this is set to 1 before a vertex attribute data
command, and immediately after the vertex attribute
data command it is cleared to 0.
When this bit is set to 1, register settings outside of
register ranges 0x200 through 0x254 and 0x280
through 0x2df are sometimes not properly executed.

Vertex index address 0x227, bits [27:0] This setting is ignored.

Vertex index type 0x227, bit [31:31] This setting is ignored.

Vertex count 0x228, bits [31:0]
This setting is ignored. The number of vertices to
process is determined by the number of vertex attribute
data items.

Starting vertex offset 0x22a, bits [31:0] This setting is ignored.

Vertex data reset 0x25f, bit [0:0]

When rendering in GL_TRIANGLES mode without
using a vertex buffer, if either the glDrawElements or
glDrawArrays function is called repeatedly and the
number of rendered vertices is a multiple of 3, reset is
not required after the first call. However, reset is
required when rendering in GL_TRIANGLES mode for
the first time without using a vertex buffer in the
following situations: (1) after rendering in another
mode, (2) after glDrawElements is called using a
vertex buffer, or (3) after nngxInitialize is called.
The behavior of the other rendering modes
(GL_GEOMETRY_PRIMITIVE_DMP,
GL_TRIANGLE_STRIP, and GL_TRIANGLE_FAN) is
the same in this situation as the behavior of
GL_TRIANGLES when using a vertex buffer.

Rendering kick command
0x22e This setting is prohibited.

0x22f This setting is prohibited.

Enable slave input 0x232, bits [3:0] Set to 0xf.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 134  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Setting Register Setting Value

Vertex attribute data 0x233, 0x234, and
0x235,bits [31:0]

Sets vertex attribute data. This command is set after
0xf is written to bits [3:0] of 0x232. Data for each
single vertex is stored in order one attribute at a time.
All vertex attribute data is stored regardless of whether
vertex arrays are used.
A single attribute packs four 24-bit floating-point
numbers into three 32-bit data units, which are stored
in 0x233, 0x234, and 0x235, respectively. A single
attribute is input by writing the data in 0x233, 0x234,
and 0x235 one at a time (in that order). The 24-bit
floating-point numbers are packed as described in
section 5.8.2.3 How to Set the Input Mode for 24-Bit
Floating-Point Numbers.

Post-vertex cache clear 0x231 Same as when the vertex buffer is used.

Framebuffer cache flush 0x111, bit [0:0] Same as when the vertex buffer is used.

Texture enabling 0x80, bits [2:0] Same as when the vertex buffer is used.

Other registers

0x245, bit [0:0] Same as when the vertex buffer is used.

0x2ba, bits [31:16] Same as when the vertex buffer is used.

0x28a, bits [31:16] Same as when the vertex buffer is used.

When not using the vertex buffer, you do not need to set the registers described in section 5.8.14
Registers for Vertex Attribute Array Settings. Command-ordering dependencies are the same as
when using the vertex buffer.

5.8.39 Settings Registers Specific to the Geometry Shader

This section describes settings registers when the geometry shader is in use.

5.8.39.1 Overview

There are multiple vertex shader processors installed on PICA for vertex processing. One of these
vertex shader processors is used as the geometry shader processor when a geometry shader is in
use. This is called a shared processor. When a geometry shader is not in use, the shared processor
runs as a vertex shader processor and floating-point registers, Boolean registers, and other resources
are set as vertex shader values. The vertex shader values must be changed to geometry shader
settings when the geometry shader switches from being unused to used. Similarly, geometry shader
values must be changed to vertex shader settings when the geometry shader switches from being
used to unused.

Registers 0x2b0–0x2df are the settings registers used for vertex shader processors. Setting one of
these registers sets it for all of the vertex shader processors. These settings also apply to the shared
processor except when bit [0:0] of register 0x244 is set equal to 1 (when the same bit is 0 and bits
[1:0] of 0x229 are 0, settings for the vertex shader processors are also applied to the shared
processor). Registers 0x280–0x2af are used to apply the same settings as registers 0x2b0–0x2df
to the shared processor only.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 135 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

When the geometry shader is in use, registers 0x280–0x2af are configured to be geometry shader-
specific. When the geometry shader is not in use, registers 0x280–0x2af must have the same
settings as registers 0x2b0–0x2af. (You can also set bit [0:0] of register 0x244 equal to 0 and bits
[1:0] of 0x229 equal to 0, applying vertex shader processor settings to the shared processor, before
you re-set registers 0x2b0–0x2df.)

To use the geometry shader, you need to set these register settings related to the shared processor
as well as other register settings related to input, output, and so on.

5.8.39.2 Geometry Shader Floating-Point Registers

To configure the geometry shader’s floating-point registers, first set bits [7:0] of register 0x290 equal
to a floating-point register index and then write data to any registers between registers 0x291 and
0x298. Depending on whether a value of 1 or 0 is written to bit [31:31] of 0x290, the input mode is
set to accept either 32-bit or 24-bit floating-point numbers, respectively. This is configured as
described in section 5.8.2 Vertex Shader Floating-Point Registers.

5.8.39.3 Geometry Shader Boolean Registers

Bits [15:0] of register 0x280 correspond to the geometry shader’s Boolean registers. These are set
as described in section 5.8.3 Vertex Shader Boolean Registers.

5.8.39.4 Geometry Shader Integer Registers

Registers 0x281, 0x282, 0x283, and 0x284 correspond to i0, i1, i2, and i3, respectively. These
are set as described in section 5.8.4 Vertex Shader Integer Registers.

5.8.39.5 Geometry Shader Starting Address Setting Registers

Bits [15:0] of register 0x28a set the geometry shader’s starting address. These are set as described
in section 5.8.5 Vertex Shader Starting Address Setting Registers.

5.8.39.6 Registers That Set the Number of Input Vertex Attributes

Bits [3:0] of register 0x289 set a value that is one less than the number of input vertex attributes to
the geometry shader. The number of attributes input to the geometry shader is the same as the
number of attributes output by the vertex shader (including generic attributes). The number of
attributes set in this register is equal to the number of unique output registers specified in #pragma
output_map statements in the vertex shader assembly code, not the number of #pragma
output_map statements that appear in the vertex shader assembly code. If a given output register is
specified in multiple #pragma output_map statements used for each of its separate components, it
is still only counted as one.

5.8.39.7 Registers That Set the Number of Output Registers Used by the Geometry Shader

The registers described in section 5.8.7 Registers That Set the Number of Output Registers Used by
the Vertex Shader are set differently when the geometry shader is in use. Bits [2:0] of register 0x4f
set the number of output registers for the geometry shader. Bits [3:0] of register 0x25e set a value
that is one less than the number of output registers used by the geometry shader. The number of
output registers is the number of unique output registers specified in #pragma output_map
statements appearing in the geometry shader assembly code. If a given output register is specified in

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 136  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

multiple #pragma output_map statements used for each of its separate components, it is still only
counted as one.

5.8.39.8 Register That Sets the Geometry Shader Output Register Mask

A bit mask is used to set the output registers written by the geometry shader. Bits [15:0] of register
0x28d each correspond to one of the 16 output registers. These are set as described in section 5.8.8
Registers That Set the Vertex Shader Output Mask.

5.8.39.9 Registers That Set Geometry Shader Output Attributes

When a geometry shader is in use, the registers described in section 5.8.9 Registers That Set Vertex
Shader Output Attributes—0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, and 0x64—set the
attributes of vertices output by the geometry shader instead of the vertex shader.

The #pragma output_map settings defined in the geometry shader determine the geometry
shader’s output attributes. This information is generated in the map file that is created by the shader
assembly linker (for details on the map file, see the Vertex Shader Reference Manual). Several
reserved geometry shaders define generic attributes as output_map attributes. The #pragma
output_map settings that are only defined in the linked vertex shaders are applied to the attributes
defined as generic attributes (excluding generic attributes defined by the vertex shader).

5.8.39.10 Clock Control Setting Registers for Geometry Shader Output Attributes

When a geometry shader is in use, register 0x6f (described in section 5.8.10 Clock Control Setting
Registers for Vertex Shader Output Attributes) sets the attributes of vertices output by the geometry
shader instead of those output by the vertex shader.

5.8.39.11 Geometry Shader Program Code Setting Registers

The following table shows registers that are used to load swizzle pattern data and program code
executed by the geometry shader.

Table 5-63 Geometry Shader Program Code and Swizzle Pattern Data Settings Registers

Setting Register Description

0x29b, bits [11:0] Sets the load address for program code.

0x29c–0x2a3, bits [31:0] Sets program code data.

0x28f Notification that a program update has completed.

0x2a5, bits [11:0] Sets the load address for the swizzle pattern.

0x2a6–0x2ad, bits [31:0] Sets swizzle pattern data.

Subtracting 0x30 from the addresses of the registers described in section 5.8.11 Vertex Shader
Program Code Setting Registers gives the geometry shader registers, which are set the same way.

5.8.39.12 Registers That Map Vertex Attributes to Geometry Shader Input Registers

These set the input register map for vertex attributes input to the geometry shader as described in
section 5.8.12 Registers That Map Vertex Attributes to Input Registers. Fixed values are set when a

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 137 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

reserved geometry shader is used. Set register 0x28b equal to 0x76543210, and register 0x28c
equal to 0xfedcba98.

5.8.39.13 Miscellaneous Registers

The following registers must also be set when a geometry shader is in use.

Table 5-64 Miscellaneous Settings Registers When the Geometry Shader Is in Use

Setting Register Description

0x229, bits [1:0]

Set to 2 when a geometry shader is in use and 0 when it is not. When you set this
register, dummy commands are required both before and after the setting command. Use
inactive commands whose byte enable bits are 0 as the dummy commands. A command
that sets this register must be immediately preceded by 10 dummy commands that set
register 0x251 and 30 dummy commands that set register 0x200, and immediately
followed by 30 dummy commands that set register 0x200. Dummy commands are not
needed for any command that sets bits other than bits [1:0] of register 0x229.

0x229, bit [31:31]
Set to 1 when reserved geometry shader subdivision (Loop or Catmull-Clark) is used.
Set to 0 when any other geometry shader is used or when a geometry shader is not
used.

0x252, bits [31:0]

Set to 0x00000001 when reserved geometry shader subdivision (Loop or Catmull-Clark)
is used.
Set to 0x01004302 when particle systems are used.
Set to 0x00000000 when any other geometry shader is used or a geometry shader is
not used.

0x289, bits [31:24] Set to 0x08 when a geometry shader is used and 0xa0 when a geometry shader is not
used.

0x289, bits [15:8] Set to 1 when reserved geometry shader subdivision (Loop or Catmull-Clark) is used.
Set to 0 when any other geometry shader or no geometry shader is used.

0x254, bits [4:0]
Set to 3 when a reserved geometry shader is used for Catmull-Clark subdivision and 2
when a reserved geometry shader is used for Loop subdivision. Otherwise, this setting is
ignored.

5.8.40 Settings Registers When Reserved Geometry Shaders Are Used

This section lists settings registers for the registers described in section 5.8.39 Settings Registers
Specific to the Geometry Shader when each reserved geometry shader is used. It also shows which
register is assigned to the uniform of each reserved geometry shader.

5.8.40.1 Point Shader

The following table shows the register values that should be set when the point shader is used.

Table 5-65 Register Setting Values When the Point Shader Is Used

Setting Register Description

0x4f, bits [2:0] Set equal to the number of output registers defined by #pragma output_map for the
linked vertex shader, not including generic attributes.

0x50–0x56 Starting at 0x50, which must be set equal to 0x03020100, these registers are filled with

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 138  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Register Description

the attributes defined by #pragma output_map for the linked vertex shader. The point
size is output as a generic attribute but it does not affect this register. Starting at 0x51,
registers are filled with defined attributes in ascending order of output register indices. For
example, because a point sprite’s vertex coordinates should be followed by texture
coordinates, register 0x51 would be set equal to 0x1f1f0d0c for a definition of #pragma
output_map(texture0, o2.xy). Each byte of unused attributes is filled in using
0x1f.

0x64 Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

0x6f Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

0x229, bit [31:31] Set equal to 0.

0x242, bits [3:0] Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x251, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x252 Set equal to 0.

0x254, bits [4:0] No required settings.

0x25e, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This does not include generic attributes.

0x280, bits [15:0] Set equal to 0.

0x281, bits [23:0] No required settings.

0x282, bits [23:0] No required settings.

0x283, bits [23:0] No required settings.

0x284, bits [23:0] No required settings.

0x289, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x289, bits [15:8] Set equal to 0.

0x289, bits [31:24] Set equal to 8.

0x28d, bits [15:0] Set equal to ((1<<N)-1), where N is the number of output registers defined by #pragma
output_map for the linked vertex shader. This does not include generic attributes.

0x290–0x293
Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.
• {0x0000004c, 0x00000000, 0x00003f00, 0x00000000}

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 139 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

The registers assigned to each uniform are shown in the table below.

Table 5-66: Point Shader Uniforms and Their Corresponding Registers

Uniform Bound Register

dmp_Point.viewport c67.xy

dmp_Point.distanceAttenuation b0

5.8.40.2 Line Shader

The following table shows the register values that should be set when the line shader is used.

Table 5-67 Register Setting Values When Line Shading Is Used

Setting Register Description

0x4f, bits [2:0] Set equal to the number of output registers defined by #pragma output_map for the
linked vertex shader.

0x50–0x56

Starting at 0x50, which must be set equal to 0x03020100, these registers are filled with
the attributes defined by #pragma output_map for the linked vertex shader. Starting at
0x51, registers are filled with defined attributes in ascending order of output register
indices. Each byte of unused attributes is filled in using 0x1f.

0x64 Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

0x6f Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

0x229, bit [31:31] Set equal to 0.

0x242, bits [3:0] Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x251, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x252 Set equal to 0.

0x254, bits [4:0] No required settings.

0x25e, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x280, bits [15:0] Set equal to 0x0000. Bit [15:15] must be set for each draw operation.

0x281, bits [23:0] No required settings.

0x282, bits [23:0] No required settings..

0x283, bits [23:0] No required settings.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 140  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Register Description

0x284, bits [23:0] No required settings.

0x289, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x289, bits [15:8] Set equal to 0.

0x289, bits [31:24] Set equal to 8.

0x28d, bits [15:0] Set equal to ((1<<N)-1), where N is the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x290–0x293
Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.
• {0x0000004c, 0x40800040, 0x00003f00, 0x00000000}

The registers assigned to each uniform are shown in the table below.

Table 5-68 Line Shader Uniforms and Their Corresponding Registers

Uniform Bound Register

dmp_Line.width c67.xyzw

5.8.40.3 Silhouette Shader

The following table shows the register values that should be set when the silhouette shader is used.

Table 5-69 Register Setting Values When the Silhouette Shader Is Used

Setting Register Description

0x4f, bits [2:0] Set equal to 2.

0x50–0x56
• Set register 0x50 equal to 0x03020100
• Set register 0x51 equal to 0x0b0a0908
• Set registers 0x52–0x56 equal to 0x1f1f1f1f

0x64 Set equal to 0.

0x6f Set equal to 3.

0x229, bit [31:31] Set equal to 0.

0x242, bits [3:0] Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0] Set equal to 2.

0x251, bits [3:0] Set equal to 2.

0x252 Set equal to 0.

0x254, bits [4:0] No required settings.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 141 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting Register Description

0x25e, bits [3:0] Set equal to 1.

0x280, bits [15:0] Set equal to 0x0000. Bit [15:15] must be set for each draw operation.

0x281, bits [23:0] No required settings.

0x282, bits [23:0] No required settings.

0x283, bits [23:0] No required settings.

0x284, bits [23:0] No required settings.

0x289, bits [3:0] Set equal to 2 because there are three output attributes for the vertex shader: vertex
coordinates, color, and normals.

0x289, bits [15:8] Set equal to 0.

0x289, bits [31:24] Set equal to 8.

0x28d, bits [15:0] Set equal to 3.

0x290–0x293

Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.
• {0x0000004c, 0x40800040, 0x00003f00, 0x00000000}
• {0x0000004d, 0x00000000, ,0x00004140, 0x00410000}

The registers assigned to each uniform are shown in the table below.

Table 5-70 Silhouette Shader Uniforms and Their Corresponding Registers

Uniform Bound Register

dmp_Silhouette.width c71.xy

dmp_Silhouette.openEdgeDepthBias c71.z

dmp_Silhouette.color c72.xyzw

dmp_Silhouette.openEdgeColor c73.xyzw

dmp_Silhouette.openEdgeWidth c74.xyzw

dmp_Silhouette.acceptEmptyTriangles b0

dmp_Silhouette.scaleByW b1

dmp_Silhouette.frontFaceCCW b2

dmp_Silhouette.openEdgeWidthScaleByW b3

dmp_Silhouette.openEdgeDepthBiasScaleByW b4

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 142  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

5.8.40.4 Catmull-Clark Subdivision

The following table shows the register values that should be set when Catmull-Clark subdivision is
used.

Table 5-71 Register Setting Values When Catmull-Clark Subdivision Is Used

Setting Register Description

0x4f, bits [2:0] Set equal to the number of output registers defined by #pragma output_map for the
linked vertex shader.

0x50–0x56

Starting at 0x50, which must be set equal to 0x03020100, these registers are filled with
the attributes defined by #pragma output_map for the linked vertex shader. Starting at
0x51, registers are filled with defined attributes in ascending order of output register
indices. Each byte of unused attributes is filled in using 0x1f.

0x64 Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

0x6f Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

0x229, bit [31:31] Set equal to 1.

0x242, bits [3:0] Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x251, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x252 Set equal to 1.

0x254, bits [4:0] Set equal to 3.

0x25e, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x280, bits [15:0] Set equal to 0x0000. Bit [15:15] must be set for each draw operation.

0x281, bits [23:0] No required settings.

0x282, bits [23:0]

• 0x0212ff for DMP_subdivision1.obj
• 0x0216ff for DMP_subdivision2.obj
• 0x021aff for DMP_subdivision3.obj
• 0x021eff for DMP_subdivision4.obj
• 0x0222ff for DMP_subdivision5.obj
• 0x0226ff for DMP_subdivision6.obj

0x283, bits [23:0] No required settings.

0x284, bits [23:0] No required settings.

0x289, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 143 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting Register Description

0x289, bits [15:8] Set equal to 1.

0x289, bits [31:24] Set equal to 8.

0x28d, bits [15:0] Set equal to ((1<<N)-1), where N is the number of output registers defined by #pragma
output_map for the linked vertex shader.

0x290–0x293

Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.
• {0x0000004c, 0x3c80003b, 0x00003c80, 0x003e2000}
• {0x0000004d, 0x0000003e, 0x00003c00, 0x003d8000}
• {0x0000004e, 0x4300003d, 0x00003e80, 0x00420000}
• {0x0000004f, 0x3c60003c, 0xc8003780, 0x00390000}
• {0x00000050, 0x3d0c0039, 0x80003700, 0x003b8000}
• {0x00000051, 0x3cc0003c, 0x70003a60, 0x003c2800}
• {0x00000052, 0x3d16003b, 0x0c003500, 0x003d8000}
• {0x00000053, 0x3daaaa39, 0xc71c3c55, 0x55be2aaa}
• {0x00000054, 0x3d871c3a, 0x425e3c55, 0x55be3c71}
• {0x00000055, 0x3e200039, 0x00003b80, 0x00bdc000}
• {0x00000056, 0x3d940039, 0x8fff3c04, 0x00be3600}
• {0x00000057, 0x0000003f, 0x00004180, 0x00c0c000}
• {0x00000058, 0x00000040, 0x00004230, 0x00c17000}
• {0x00000059, 0x000000c0, 0xc000c350, 0x00428800}
Furthermore,
• Set {0x0000004b, 0x42000041, 0x80004100, 0x00400000} only for
DMP_subdivision1.obj

• Set {0x0000004b, 0x42800042, 0x20004180, 0x00408000} only for
DMP_subdivision2.obj

• Set {0x0000004b, 0x43000042, 0x80004200, 0x00410000} only for
DMP_subdivision3.obj

• Set {0x0000004b, 0x43400042, 0xe0004240, 0x00414000} only for
DMP_subdivision4.obj

• Set {0x0000004b, 0x43800043, 0x20004280, 0x00418000} only for
DMP_subdivision5.obj

• Set {0x0000004b, 0x43c00043, 0x500042c0, 0x0041c000} only for
DMP_subdivision6.obj

Table 5-72 Catmull-Clark Subdivision Shader Uniforms and Their Corresponding Registers

Uniform Bound Register

dmp_Subdivision.level c74.x

dmp_Subdivision.fragmentLightingEnabled b2

5.8.40.5 Loop Subdivision

The following table shows the register values that should be set when Loop subdivision is used.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 144  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Table 5-73 Register Setting Values When Loop Subdivision Is Used

Setting Register Description

0x4f, bits [2:0] Set equal to the number of output registers defined by #pragma output_map for the
linked vertex shader, not including generic attributes.

0x50–0x56

Starting at 0x50, which must be set equal to 0x03020100, these registers are filled with
the attributes defined by #pragma output_map for the linked vertex shader. Starting at
0x51, registers are filled with defined attributes in ascending order of output register
indices. All generic attributes are ignored, and each byte of unused attributes is filled in
using 0x1f.

0x64 Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

0x6f Set in accordance with the attributes defined by #pragma output_map for the linked
vertex shader.

0x229, bit [31:31] Set equal to 1.

0x242, bits [3:0] Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x251, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x252 Set equal to 1.

0x254, bits [4:0] Set equal to 2.

0x25e, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This does not include generic attributes.

0x280, bits [15:0] Set equal to 0x0000. Bit [15:15] must be set for each draw operation.

0x281, bits [23:0] No required settings.

0x282, bits [23:0] No required settings.

0x283, bits [23:0] No required settings.

0x284, bits [23:0] No required settings.

0x289, bits [3:0] Set equal to one less than the number of output registers defined by #pragma
output_map for the linked vertex shader. This also includes generic attributes.

0x289, bits [15:8] Set equal to 1.

0x289, bits [31:24] Set equal to 8.

0x28d, bits [15:0] Set equal to ((1<<N)-1), where N is the number of output registers defined by #pragma
output_map for the linked vertex shader. This does not include generic attributes.

0x290–0x293 Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 145 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Setting Register Description

• {0x00000057, 0x40800040, 0x00003f00, 0x00000000}
• {0x00000058, 0x3d00003e, 0x000056ff, 0xff3c0000}
• {0x00000059, 0x3800003d, 0x00003e80, 0x003d3000}
• {0x0000005a, 0x3ce0003b, 0x00003d80, 0x00390000}
• {0x0000005b, 0x3c60003a, 0x80003b80, 0x00000000}
• {0x0000005c, 0x3c98003d, 0x9c003c80, 0x003dc000}
• {0x0000005d, 0x3de0003e, 0x10003d80, 0x003e4000}

Table 5-74 Loop Subdivision Shader Uniforms and Their Corresponding Registers

Uniform Bound Register

dmp_Subdivision.level c86.x

dmp_Subdivision.fragmentLightingEnabled b0

5.8.40.6 Particle System

The following table shows the register values that should be set when the particle system shader is
used.

Table 5-75 Register Setting Values When the Particle System Shader Is Used

Setting Register Description

0x4f, bits [2:0] Set equal to 3.

0x50–0x56

• Set register 0x50 equal to 0x03020100
• Set register 0x51 equal to 0x0b0a0908
• Set register 0x52 equal to 0x17160d0c when texture coordinate 2 is used or
0x1f1f0d0c otherwise

• Set registers 0x53–0x56 equal to 0x1f1f1f1f

0x64 Set equal to 1.

0x6f Set equal to 0x00000503 when texture coordinate 2 is used or 0x00000103 otherwise.

0x229, bit [31:31] Set equal to 0.

0x242, bits [3:0] Set equal to one less than the number of input vertex attributes to the linked vertex
shader.

0x24a, bits [3:0] Set equal to 4.

0x251, bits [3:0] Set equal to 4.

0x252 Set equal to 0x01004302.

0x254, bits [4:0] No required settings.

0x25e, bits [3:0] Set equal to 2.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 146  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Register Description

0x280, bits [15:0] Set equal to 0.

0x281, bits [23:0] No required settings.

0x282, bits [23:0] No required settings.

0x283, bits [23:0] No required settings.

0x284, bits [23:0] Set equal to 0x0100fe.

0x289, bits [3:0] Set equal to 4 because there are a total of five output attributes for the vertex shader: the
vertex coordinates and the four bounding-box sizes for the control points.

0x289, bits [15:8] Set equal to 1.

0x289, bits [31:24] Set equal to 8.

0x28d, bits [15:0] Set equal to 0x0007.

0x290–0x293

Write the values in each of the following combinations to registers 0x290, 0x291, 0x292,
and 0x293, respectively; these are used to set floating-point constants.
• {0x0000004c, 0x3f0000bf, 0x00003f00, 0x00000000}
• {0x0000004d, 0x40921f3c, 0x45f34192, 0x1f3e0000}
• {0x0000005d, 0x3f00003f, 0x0000bc55, 0x55be0000}
• {0x0000005e, 0x3811113a, 0x5555b2a0, 0x1ab56c16}
• {0x0000005f, 0x2c71de2f, 0xa01aa5ae, 0x64a927e4}

Table 5-76 Particle System Shader Uniforms and Their Corresponding Registers

Uniform Bound Register

dmp_PartSys.color c26.xyzw - c29.xyzw

dmp_PartSys.viewport c30.xy

dmp_PartSys.pointSize c31.xy

dmp_PartSys.time c31.z

dmp_PartSys.speed c31.w

dmp_PartSys.distanceAttenuation c32.xyz

dmp_PartSys.countMax c32.w

dmp_PartSys.randSeed c33.xyzw

dmp_PartSys.aspect c34.xyzw - c37.xyzw

dmp_PartSys.randomCore c38.xyzw

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 147 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.8.41 Clearing the Framebuffer Cache

Cached data is flushed for both the color buffer and depth buffer if a value of 1 is written to bit [0:0] of
register 0x111. The cache tag is cleared for both the color buffer and depth buffer if a value of 1 is
written to bit [0:0] of register 0x110. A 0x110 command must always be accompanied by a 0x111
command, with the 0x111 command first.

These commands are inserted immediately before commands that generate interrupts. Commands
that generate interrupts occur when the glFlush, glFinish, or glClear function is called, when
NN_GX_STATE_FRAMEBUFFER is validated after the color buffer or depth buffer address has changed,
when NN_GX_STATE_FBACCESS is validated, and when the 3D command buffer is split by
nngxSplitDrawCmdlist or a similar function. In addition to the situations just listed, standalone
0x111 commands are generated by the glDrawArrays and glDrawElements functions
immediately after a rendering kick command.

In general, a clear operation performed by a 0x111 and 0x110 command pair is required when the
color buffer or depth buffer are cleared, when the color buffer or depth buffer settings (size, address
or format) are changed, and when the read-write access pattern is changed after all rendering has
completed (before referencing the rendering results).

Depending on the series of commands between one render command and the next render command,
a 0x111 command is sometimes necessary between render commands. It is necessary when either
of the following two conditions are met.

Condition 1: When you set any of the registers 0x100 – 0x130 between render command A and the
next render command B, a single 0x111 command is required after render command A and before
the register 0x100 – 0x130 setting commands.

Condition 2: When you set any of the registers 0x80 – 0x0b7 between render command A and the
next render command B, a single 0x111 command is required after render command A and before
the register 0x80 – 0x0b7 setting commands.

For condition 1, as long as you set just one 0x111 command after render command A, you can set
the 0x100 – 0x130 registers any number of times between the 0x111 command and the next render
command B.

Likewise for condition 2, as long as you set just one 0x111 command after render command A, you
can set the 0x80 – 0x0b7 registers any number of times between the 0x111 command and the next
render command B. But for condition 2, it is also possible to set three 0x80 dummy commands
instead of the 0x111 command. In other words, as long as you set three 0x80 dummy commands
after render command A, you can set the 0x80 – 0x0b7 registers any number of times between the
three dummy commands and the next render command B. These 0x80 dummy commands are
commands that write data of 0 with a byte enable of 0 to register 0x80.

If you simply use a command to set register 0x111 immediately after every render command, you
can arrange your commands freely without needing to consider the above two conditions,

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 148  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

5.8.42 Commands That Generate Interrupts (Split Commands)

Writing a value of 0x12345678 to register 0x10 causes a P3D (PICA 3D Module) interrupt to occur.
Set this command when splitting the 3D command buffer.

5.8.43 Command Buffer Execution Registers

This section describes the command buffer execution registers.

5.8.43.1 Overview

The driver carries out normal command buffer execution (kicking) internally based on the information
of the command requests for the render commands accumulated in the command list. It is possible to
use the command buffer execution registers to execute the next command buffer from the register
write command included in the command buffer. There are three kinds of command buffer execution
registers, specifically the command buffer address setting register, the command buffer size setting
register, and the command buffer kick register. Configure valid values for the address and size and hit
the kick register to start execution of the command buffer.

There are two channels for the command buffer execution interface, and each has their own setting
register. These registers are described below.

Table 5-77 Register Settings for Command Buffer Execution Commands

Setting Register Description

0x238, bits [20:0] Sets the size of the command buffer for channel 1.

0x239, bits [20:0] Sets the size of the command buffer for channel 2.

0x23a, bits [28:0] Sets the address of the command buffer for channel 1.

0x23b, bits [28:0] Sets the address of the command buffer for channel 2.

0x23c, bit [31:0] Kicks channel 1.

0x23d, bit [31:0] Kicks channel 2.

Set the size of the command buffer to the value of the total number of bytes in the command buffer to
execute, divided by 8. (The size is set in units of 8 bytes.) The set value must be an even number.

Set the command buffer address to the value of the address of the command buffer to execute,
divided by 8. (The address is set in units of 8 bytes.) The set value must be an even number. Set a
physical address for the address.

When configuring the command buffer address and size from a command buffer register write
command (i.e., when configured during command buffer execution), the new values will have no
effect on the currently executing status unless a new kick command is executed. (This means the
remaining execution size and addresses of the commands currently executing will not change.)

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 149 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Once values are written to the kick register, the command buffer executes based on the address and
size values configured for each channel. (If the byte-enable value is not 0, a kick occurs regardless of
the write data value.)

When executing a kick command from a command buffer register write command, store the kick
command at the end of the command buffer.

5.8.43.2 Use Example 1

An interrupt generation command is usually stored at the end, but you can alternately store a kick
command for the next command buffer instead to cause a jump to that command buffer's execution
address. (Also include commands in this command buffer to configure the address and size of the
next command buffer.) This allows you to execute multiple command buffers without interrupts,
thereby reducing the load on the CPU from interrupts.

Figure 5-11 Use Example 1 Diagram 1

Command Buffer 1 Command Buffer 2

Interrupt Generation
Command

Interrupt Generation
Command

Channel 1 kicked
from the driver

Interrupt
Generation

Channel 1 kicked
from the driver

Interrupt
Generation

Normal Execution

Command Buffer 1 Command Buffer 2

Channel 1 Kick Command
(0x23c)

Interrupt Generation
Command

Channel 1 kicked
from the driver Channel 1

kicked from a
command

Interrupt
Generation

Execution Using a Command Buffer
Execution Command

Command to Set the Size of
Command Buffer 2 in Channel 1

(0x238)
Command to Set the Address of
Command Buffer 2 in Channel 1

(0x23a)

You can execute as many command buffers consecutively as you want by repeatedly using the last
command of a command buffer to execute the next command buffer. However, the last command in
the last executed command buffer must be an interrupt generation command.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 150  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Figure 5-12 Use Example 1 Diagram 2

Command Buffer N

Interrupt Generation Command

Channel 1 kicked
from the driver Channel 1

kicked from a
command

Interrupt
Generation

Consecutive Execution of Command
Buffer Execution Commands

Command Buffer 3

Channel 1 Kick Command (0x23c)

Command to Set the Size of
Command Buffer 4 in Channel 1

(0x238)
Command to Set the Address of
Command Buffer 4 in Channel 1

(0x23a)

・・・

・・・

Channel 1
kicked from a

command
Command Buffer 1

Channel 1 Kick Command (0x23c)

Command to Set the Size of
Command Buffer 2 in Channel 1

(0x238)
Command to Set the Address of
Command Buffer 2 in Channel 1

(0x23a)

Command Buffer 2

Channel 1 Kick Command (0x23c)

Command to Set the Size of
Command Buffer 3 in Channel 1

(0x238)
Command to Set the Address of
Command Buffer 3 in Channel 1

(0x23a)

After preparing multiple command buffers like those above in your application, call the
nngxAdd3DCommand function, passing the address to command buffer 1 in bufferaddr, the size of
command buffer 1 in buffersize (the address and size of the first command buffer to kick), and
GL_FALSE in copycmd to execute all of these command buffers.

5.8.43.3 Use Example 2

Combine the settings for channels 1 and 2 to jump to a command buffer's execution address and
jump back when done. Configure the address and size of the command buffer to jump to in channel 1,
then the address and size (the size of the commands remaining after jumping back) of the command
buffer to jump back to in channel 2. Set the last command in the command buffer to jump to as a
command to kick channel 2 in order to jump back.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 151 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Figure 5-13 Use Example 2 Diagram 1

Channel 1 Command Address

Command Buffer 1

Channel 1 kicked
from the driver

Channel 1 Command Size

Channel 1 Kick

Channel 2 Command Address

Channel 2 Command Size

・・・
・・・

Channel 2 Kick

Point to Address
to Jump to

Point to
Address to
Jump Back

to

Executing in
Channel 1

Jump

Executing in
Channel 1

Jump Back
Executing in
Channel 2

Command Buffer 2

・・・

When executing this way, the address to jump back to is already set in the command buffer being
jumped from, so there is no need to include this address information in the command buffer being
jumped to. Leave a channel 2 kick command at the end of a certain command buffer and reference
that command buffer during execution to run the maximum number of commands for the shader
program or lookup table data as many times as you want, without any copying or interrupt generation
by the CPU.

Figure 5-14 Use Example 2 Diagram 2

Command Buffer 1

Channel 1 kicked
from the driver

Command Buffer 2

Channel 2 Kick
Command (0x23d)

Command Set for
Jumping

Command Set for
Jumping

Command Set for
Jumping

Interrupt
Generation
Command

Interrupt

The command set for
jumping includes the address

and size for channel 1, the
same for channel 2, and a
channel 1 kick command.

The figure above shows an example of referencing and running command buffer 2 multiple times. You
can execute command buffer 2 by storing command sets for jumping to command buffer 2 in
command buffer 1.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 152  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

After preparing a command buffer in your application like the one shown above, call the
nngxAdd3DCommand function, passing the address to command buffer 1 in bufferaddr, the size
up to the first kick command for command buffer 1 in buffersize (the address and size of the first
command buffer to kick), and GL_FALSE in copycmd to execute. Specify the size from the jump
return address until the next command kick as the value of the channel 2 command size included in
each command set for jumping. (Make sure not to enter the total size of command buffer 1.)

The examples in this chapter use channel 1 for jumping and channel 2 for jumping back, but you can
also do the reverse. However, using channel 1 for jumping and channel 2 for jumping back means
that the commands included in the command sets for jumping (registers 0x238-0x23c) are all
sequential, allowing you to create the command set for jumping with just one burst command and
thereby reducing the command size.

5.8.43.4 Notes

Take care to note the following points.

• When kicking the next command buffer from a command buffer register write command, you must
position the kick command at the end of the command buffer. (Specify a command buffer size so
the kick command comes at the end.)

• You cannot kick a command buffer in the middle of executing a burst command. However, you can
execute if the kick is the last command in the burst command and also the last command in the
command buffer.

• The address and size register setting values are kept even after the command buffer is kicked, but
the setting values for channel 1 are overwritten when the driver executes a render command
request.

• Execution might not work properly if the command buffer memory region has not had the cache
flushed.

• You cannot execute channel 1 and channel 2 simultaneously.

5.8.44 Settings Information for Otherwise Undocumented Bits

Some of the registers described so far have undocumented bits. You must use a byte enable setting
of 0 to avoid accessing some of these undocumented bits, and others are set to fixed values. This
information is shown in the following table. Although bits that are completely undocumented
(mentioned neither in the preceding sections nor this section) can, in theory, be set to any value
without affecting the hardware, we recommend that you set them to 0.. (Do not set any registers not
mentioned in this document.)

For the undocumented bits that are set to fixed values, the nngxInitialize function issues
commands that initialize these bits to the correct fixed values. Applications therefore do not need to
issue commands to initialize these bits. If fixed-value bits are included in the same byte of a register
as bits whose values can be changed, you must write the fixed-value bits alongside the other bits
when you set the register.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 153 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Table 5-78 Otherwise Undocumented Bit Setting Information

Setting Register Description

0x47, bits [31:8] Set a byte enable of 0 to ensure no access.

0x61, bits [31:8] Set a byte enable of 0 to ensure no access.

0x62, bits [31:8] Set a byte enable of 0 to ensure no access.

0x6a, bits [31:24] Set a byte enable of 0 to ensure no access.

0x6e, bit [24:24] Set equal to 1.

0x80, bit [3:3] and bits [31:24] Set equal to 0.

0x80, bits [23:17] Set equal to 0 when writing to bit [16:16] of the same register to clear the
texture cache. Otherwise, set a byte enable of 0 to ensure no access.

0x80, bit [12:12] Set equal to 1.

0x83, bits [17:16] Set equal to 0.

0x93, bits [17:16] Set equal to 0.

0x9b, bits [17:16] Set equal to 0.

0x0ac, bits [10:3] Set equal to 0x60.

0x0ad, bits [31:8] Set equal to 0xe0c080.

0x0e0, bits [25:24] Set equal to 0.

0x100, bits [25:16] Set equal to 0x0e4.

0x110, bits [31:1] Set equal to 0.

0x111, bits [31:1] Set equal to 0.

0x11e, bit [24:24] Set equal to 1.

0x1c3, bit [31:31] Set equal to 1.

0x1c3, bits [11:8] Set equal to 4.

0x1c4, bit [18:18] Set equal to 1.

0x229, bit [9:9] Set equal to 0.

0x229, bits [23:16] Set a byte enable of 0 to ensure no access.

0x244, bits [31:8] Set a byte enable of 0 to ensure no access.

0x245, bits [7:1] Set equal to 0.

0x245, bits [31:8] Set a byte enable of 0 to ensure no access.

0x253, bits [31:16] Set a byte enable of 0 to ensure no access.

0x25e, bit [16:16] Set a byte enable of 0 to ensure no access.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 154  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Setting Register Description

0x25f, bits [31:1] Set equal to 0.

0x280, bits [31:16] Set equal to 0x7fff.

0x289, bits [23:16] Set a byte enable of 0 to ensure no access.

0x28a, bits [31:16] Set equal to 0x7fff.

0x28d, bits [31:16] Set equal to 0.

0x2b0, bits [31:16] Set equal to 0x7fff.

0x2b9, bits [15:8] Set equal to 0.

0x2b9, bits [23:16] Set a byte enable of 0 to ensure no access.

0x2b9, bits [31:24] Set equal to 0xa0.

0x2ba, bits [31:16] Set equal to 0x7fff.

0x2bd, bits [31:16] Set equal to 0.

5.9 Code to Convert Formats for PICA Register Settings
When an application sets a value using the DMPGL 2.0 API, the DMPGL 2.0 driver may convert it into
a different format before writing it to a PICA register. This section shows code used by the DMPGL
2.0 driver to convert formats.

5.9.1 Converting from float32 to float24

The following code converts a 32-bit floating-point number into a 24-bit floating-point number (with a
1-bit sign, 7-bit exponent, and 16-bit mantissa). If you pass a 32-bit floating-point number to _inarg,
a 24-bit floating-point number is stored as an unsigned int variable in _outarg.

Code 5-11 Conversion into a 24-Bit Floating-Point Number
#define UTL_F2F_16M7E(_inarg, _outarg) \

 { \

 unsigned uval_, m_; \

 int e_; \

 float f_; \

 static const int bias_ = 128 - (1 << (7 - 1)); \

 f_ = (_inarg); \

 uval_ = *(unsigned*)&f_; \

 e_ = (uval_ & 0x7fffffff) ? (((uval_ >> 23) & 0xff) - bias_) : 0; \

 m_ = (uval_ & 0x7fffff) >> (23 - 16); \

 if (e_ >= 0) \

 outarg = m_ | (e_ << 16) | ((uval_ >> 31) << (16 + 7)); \

 else \

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 155 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

 outarg = ((uval_ >> 31) << (16 + 7)); \

 }

5.9.2 Converting from float32 to float16

The following code converts a 32-bit floating-point number into a 16-bit floating-point number (with a
1-bit sign, 5-bit exponent, and 10-bit mantissa). If you pass a 32-bit floating-point number to _inarg,
a 16-bit floating-point number is stored as an unsigned int variable in _outarg.

Code 5-12 Conversion into a 16-Bit Floating-Point Number
#define UTL_F2F_10M5E(_inarg, _outarg) \

 { \

 unsigned uval_, m_; \

 int e_; \

 float f_; \

 static const int bias_ = 128 - (1 << (5 - 1)); \

 f_ = (_inarg); \

 uval_ = *(unsigned*)&f_; \

 e_ = (uval_ & 0x7fffffff) ? (((uval_ >> 23) & 0xff) - bias_) : 0; \

 m_ = (uval_ & 0x7fffff) >> (23 - 10); \

 if (e_ >= 0) \

 outarg = m_ | (e_ << 10) | ((uval_ >> 31) << (10 + 5)); \

 else \

 outarg = ((uval_ >> 31) << (10 + 5)); \

 }

5.9.3 Converting from float32 to float31

The following code converts a 32-bit floating-point number into a 31-bit floating-point number (with a
1-bit sign, 7-bit exponent, and 23-bit mantissa). When you pass a 32-bit floating-point number into
_inarg, a 31-bit floating-point number is stored as an unsigned int variable in _outarg.

Code 5-13 Conversion into a 31-Bit Floating-Point Number
#define UTL_F2F_23M7E(_inarg, _outarg) \

 { \

 unsigned uval_, m_; \

 int e_; \

 float f_; \

 static const int bias_ = 128 - (1 << (7 - 1)); \

 f_ = (_inarg); \

 uval_ = *(unsigned*)&f_; \

 e_ = (uval_ & 0x7fffffff) ? (((uval_ >> 23) & 0xff) - bias_) : 0; \

 m_ = (uval_ & 0x7fffff) >> (23 - 23); \

 if (e_ >= 0) \

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 156  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

 outarg = m_ | (e_ << 23) | ((uval_ >> 31) << (23 + 7)); \

 else \

 outarg = ((uval_ >> 31) << (23 + 7)); \

 }

5.9.4 Converting from float32 to float20

The following code converts a 32-bit floating-point number into a 20-bit floating-point number (with a
1-bit sign, 7-bit exponent, and 12-bit mantissa). When you pass a 32-bit floating-point number into
_inarg, a 20-bit floating-point number is stored as an unsigned int variable in _outarg.

Code 5-14 Conversion into a 20-Bit Floating-Point Number
#define UTL_F2F_12M_7E(_inarg, _outarg) \

 { \

 unsigned uval_, m_; \

 int e_; \

 float f_; \

 static const int bias_ = 128 - (1 << (7 - 1)); \

 f_ = (_inarg); \

 uval_ = *(unsigned*)&f_; \

 e_ = (uval_ & 0x7fffffff) ? (((uval_ >> 23) & 0xff) - bias_) : 0; \

 m_ = (uval_ & 0x7fffff) >> (23 - 12); \

 if (e_ >= 0) \

 outarg = m | (e_ << 12) | ((uval_ >> 31) << (12 + 7)); \

 else \

 outarg = ((uval >> 31) << (12 + 7)); \

 }

5.9.5 Converting a 32-Bit Floating-Point Number into an 8-Bit Signed Fixed-Point
Number with 7 Fractional Bits

The following code converts a 32-bit floating-point number into an 8-bit signed fixed-point number
with 7 decimal bits. The most significant bit indicates the sign and is followed by seven fractional bits.
Negative values are represented in two’s complement. If you pass a 32-bit floating-point number to
_inarg, an 8-bit fixed-point number is stored in _outarg.

Code 5-15 Conversion into an 8-Bit Signed Fixed-Point Number with 7 Fractional Bits
#define UTL_F2FX_8W_1I_T(_inarg, _outarg) \

 { \

 float f_; \

 unsigned v_; \

 f_ = (_inarg); \

 v_ = *(unsigned*)&f_; \

 if (f_ == 0.f || (v_ & 0x7f800000) == 0x7f800000) \

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 157 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

 outarg = 0; \

 else \

 { \

 f_ += 0.5f * (1 << 1); \

 f_ *= 1 << (8 - 1); \

 if (f_ < 0) \

 f_ = 0; \

 else if (f_ >= (1 << 8)) \

 f_ = (1 << 8) - 1; \

 if (f_ >= (1 << (8 - 1))) \

 outarg = (unsigned)(f_ - (1 << (8 - 1))); \

 else \

 outarg = (unsigned)(f_ + (1 << (8 - 1))); \

 } \

 }

5.9.6 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point
Number with 11 Fractional Bits

The following code converts a 32-bit floating-point number into a 12-bit signed fixed-point number
with 11 fractional bits. The most significant bit indicates the sign and is followed by 11 fractional bits
that set an absolute value (negative values are not represented in two’s complement). If you pass a
32-bit floating-point number to _inarg, a 12-bit fixed-point number is stored in _outarg.

Code 5-16 Conversion into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits
#define UTL_F2FX_12W_1I_F(_inarg, _outarg) \

 { \

 float f_; \

 unsigned v_; \

 f_ = (_inarg); \

 v_ = *(unsigned*)&f_; \

 if (f_ == 0.f || (v_ & 0x7f800000) == 0x7f800000) \

 outarg = 0; \

 else \

 { \

 f_ *= (1 << (12 - 1)); \

 if (f_ < 0) \

 { \

 outarg = 1 << (12 - 1); \

 f_ = -f_; \

 } \

 else \

 outarg = 0; \

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 158  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

 if (f_ >= (1 << (12 - 1))) f_ = (1 << (12 - 1)) - 1; \

 outarg |= (unsigned)(f_); \

 } \

 }

5.9.7 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point
Number with 11 Fractional Bits (Alternate Method)

The following code converts a 32-bit floating-point number into a 12-bit signed fixed-point number
with 11 fractional bits. The most significant bit indicates the sign and is followed by 11 fractional bits.
Negative values are represented in two’s complement. If you pass a 32-bit floating-point number to
_inarg, a 12-bit fixed-point number is stored in _outarg.

Code 5-17 Alternate Conversion into a 12-Bit Signed Fixed-Point Number with 11 Fractional
Bits

#define UTL_F2FX_12W_1I_T(_inarg, _outarg) \

 { \

 float f_; \

 unsigned v_; \

 f_ = (_inarg); \

 v_ = *(unsigned*)&f_; \

 if (f_ == 0.f || (v_ & 0x7f800000) == 0x7f800000) \

 outarg = 0; \

 else \

 { \

 f_ += 0.5f * (1 << 1); \

 f_ *= 1 << (12 - 1); \

 if (f_ < 0) \

 f_ = 0; \

 else if (f_ >= (1 << 12)) \

 f_ = (1 << 12) - 1; \

 if (f_ >= (1 << (12 - 1))) \

 outarg = (unsigned)(f_ - (1 << (12 - 1))); \

 else \

 outarg = (unsigned)(f_ + (1 << (12 - 1))); \

 } \

 }

5.9.8 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point
Number with 8 Fractional Bits

The following code converts a 32-bit floating-point number into a 13-bit signed fixed-point number
with 8 fractional bits. The most significant bit indicates the sign and is followed by four integer bits and

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 159 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

eight fractional bits, respectively. Negative values are represented in two’s complement. If you pass a
32-bit floating-point number to _inarg, a 13-bit fixed-point number is stored in _outarg.

Code 5-18 Conversion into a 13-Bit Signed Fixed-Point Number with 8 Fractional Bits
#define UTL_F2FX_13W_5I_T(_inarg, _outarg) \

{ \

 float f_; \

 unsigned v_; \

 f_ = (_inarg); \

 v_ = *(unsigned*)&f_; \

 if (f_ == 0.f || (v_ & 0x7f800000) == 0x7f800000) \

 outarg = 0; \

 else \

 { \

 f_ += 0.5f * (1 << 5); \

 f_ *= 1 << (13 - 5); \

 if (f_ < 0) \

 f_ = 0; \

 else if (f_ >= (1 << 13)) \

 f_ = (1 << 13) - 1; \

 if (f_ >= (1 << (13 - 1))) \

 outarg = (unsigned)(f_ - (1 << (13 - 1))); \

 else \

 outarg = (unsigned)(f_ + (1 << (13 - 1))); \

 } \

}

5.9.9 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point
Number with 11 Fractional Bits

The following code converts a 32-bit floating-point number into a 13-bit signed fixed-point number
with 11 fractional bits. The most significant bit indicates the sign and is followed by 1 integer bit and
11 fractional bits, respectively. Negative values are represented in two’s complement. If you pass a
32-bit floating-point number to _inarg, a 13-bit fixed-point number is stored in _outarg.

Code 5-19 Conversion into a 13-Bit Signed Fixed-Point Number with 11 Fractional Bits
#define UTL_F2FX_13W_2I_T(_inarg, _outarg) \

 { \

 float f_; \

 unsigned v_; \

 f_ = (_inarg); \

 v_ = *(unsigned*)&f_; \

 if (f_ == 0.f || (v_ & 0x7f800000) == 0x7f800000) \

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 160  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

 outarg = 0; \

 else \

 { \

 f_ += 0.5f * (1 << 2); \

 f_ *= 1 << (13 - 2); \

 if (f_ < 0) \

 f_ = 0; \

 else if (f_ >= (1 << 13)) \

 f_ = (1 << 13) - 1; \

 if (f_ >= (1 << (13 - 1))) \

 outarg = (unsigned)(f_ - (1 << (13 - 1))); \

 else \

 outarg = (unsigned)(f_ + (1 << (13 - 1))); \

 } \

 }

5.9.10 Converting a 32-Bit Floating-Point Number into a 16-Bit Signed Fixed-Point
Number with 12 Fractional Bits

The following code converts a 32-bit floating-point number into a 16-bit signed fixed-point number
with 12 fractional bits. The most significant bit indicates the sign and is followed by three integer bits
and 12 fractional bits, respectively. Negative values are represented in two’s complement. If you pass
a 32-bit floating-point number to _inarg, a 16-bit fixed-point number is stored in _outarg.

Code 5-20 Conversion into a 16-Bit Fixed-Point Number
#define UTL_F2FX_16W_4I_T(_inarg, _outarg) \

 { \

 float f_; \

 unsigned v_; \

 f_ = (_inarg); \

 v_ = *(unsigned*)&f_; \

 if (f_ == 0.f || (v_ & 0x7f800000) == 0x7f800000) \

 outarg = 0; \

 else \

 { \

 f_ += 0.5f * (1 << 4); \

 f_ *= 1 << (16 - 4); \

 if (f_ < 0) \

 f_ = 0; \

 else if (f_ >= (1 << 16)) \

 f_ = (1 << 16) - 1; \

 if (f_ >= (1 << (16 - 1))) \

 outarg = (unsigned)(f_ - (1 << (16 - 1))); \

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 161 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

 else \

 outarg = (unsigned)(f_ + (1 << (16 - 1))); \

 } \

 }

5.9.11 Converting a 32-Bit Floating-Point Number into an 8-Bit Unsigned Fixed-Point
Number with No Fractional Bits

The following code converts a 32-bit floating-point number into an 8-bit unsigned fixed-point number
with no fractional bits. If you pass a 32-bit floating-point number to _inarg, an 8-bit fixed-point
number is stored in _outarg.

Code 5-21 Conversion into an 8-Bit Unsigned Fixed-Point Number with No Fractional Bits
#define UTL_F2UFX_8W_8I(_inarg, _outarg) \

 { \

 float f_ = (_inarg); \

 unsigned val_; \

 unsigned v_ = *(unsigned*)&f_; \

 if (f_ <= 0 || (v_ & 0x7f800000) == 0x7f800000) \

 val_ = 0; \

 else \

 { \

 f_ *= 1 << (8 - 8); \

 if (f_ >= (1 << 8)) \

 val_ = (1 << 8) - 1; \

 else \

 val_ = (unsigned)(f_); \

 } \

 (_outarg) = val_; \

 }

5.9.12 Converting a 32-Bit Floating-Point Number into an 11-Bit Unsigned Fixed-
Point Number with 11 Fractional Bits

The following code converts a 32-bit floating-point number into an 11-bit unsigned fixed-point number
with 11 fractional bits. If you pass a 32-bit floating-point number to _inarg, an 11-bit fixed-point
number is stored in _outarg.

Code 5-22 Conversion into an 11-Bit Unsigned Fixed-Point Number with 11 Fractional Bits
#define UTL_F2UFX_11W_0I(_inarg, _outarg) \

 { \

 float f_ = (_inarg); \

 unsigned val_; \

 unsigned v_ = *(unsigned*)&f_; \

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 162  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

 if (f_ <= 0 || (v_ & 0x7f800000) == 0x7f800000) \

 val_ = 0; \

 else \

 { \

 f_ *= 1 << (11 - 0); \

 if (f_ >= (1 << 11)) \

 val_ = (1 << 11) - 1; \

 else \

 val_ = (unsigned)(f_); \

 } \

 (_outarg) = val_; \

 }

5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point
Number with 12 Fractional Bits

The following code converts a 32-bit floating-point number into a 12-bit unsigned fixed-point number
with 12 fractional bits. If you pass a 32-bit floating-point number to _inarg, a 12-bit fixed-point
number is stored in _outarg.

Code 5-23 Conversion into a 12-Bit Unsigned Fixed-Point Number with 12 Fractional Bits
#define UTL_F2UFX_12W_0I(_inarg, _outarg) \

 { \

 float f_ = (_inarg); \

 unsigned val_; \

 unsigned v_ = *(unsigned*)&f_; \

 if (f_ <= 0 || (v_ & 0x7f800000) == 0x7f800000) \

 val_ = 0; \

 else \

 { \

 f_ *= 1 << (12 - 0); \

 if (f_ >= (1 << 12)) \

 val_ = (1 << 12) - 1; \

 else \

 val_ = (unsigned)(f_); \

 } \

 (_outarg) = val_; \

 }

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 163 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

5.9.14 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point
Number with 24 Fractional Bits

The following code converts a 32-bit floating-point number into a 24-bit unsigned fixed-point number
with 24 fractional bits. If you pass a 32-bit floating-point number to _inarg, a 24-bit fixed-point
number is stored in _outarg.

Code 5-24 Conversion into a 24-Bit Fixed-Point Number with 24 Fractional Bits
#define UTL_F2UFX_24W_0I(_inarg, _outarg) \

 { \

 float f_ = (_inarg); \

 unsigned val_; \

 unsigned v_ = *(unsigned*)&f_; \

 if (f_ <= 0 || (v_ & 0x7f800000) == 0x7f800000) \

 val_ = 0; \

 else \

 { \

 f_ *= 1 << (24 - 0); \

 if (f_ >= (1 << 24)) \

 val_ = (1 << 24) - 1; \

 else \

 val_ = (unsigned)(f_); \

 } \

 (_outarg) = val_; \

 }

5.9.15 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point
Number with 8 Fractional Bits

The following code converts a 32-bit floating-point number into a 24-bit unsigned fixed-point number
with 8 fractional bits. If you pass a 32-bit floating-point number to _inarg, a 24-bit fixed-point number
is stored in _outarg.

Code 5-25 Conversion into a 24-Bit Fixed-Point Number with 8 Fractional Bits
#define UTL_F2UFX_24W_16I(_inarg, _outarg) \

 { \

 float f_ = (_inarg); \

 unsigned val_; \

 unsigned v_ = *(unsigned*)&f_; \

 if (f_ <= 0 || (v_ & 0x7f800000) == 0x7f800000) \

 val_ = 0; \

 else \

 { \

 f_ *= 1 << (24 - 16); \

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 164  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

 if (f_ >= (1 << 24)) \

 val_ = (1 << 24) - 1; \

 else \

 val_ = (unsigned)(f_); \

 } \

 (_outarg) = val_; \

 }

5.9.16 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit
Unsigned Integer

The following code converts a 32-bit floating-point number between 0 and 1 into an 8-bit unsigned
integer. If you pass a 32-bit floating-point number into f, an 8-bit unsigned integer is returned.

Code 5-26 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned
Integer

 ((unsigned)(0.5f + (f) * (float)((1 << 8) - 1)))

5.9.17 Alternate Conversion from a 32-Bit Floating-Point Number Between 0 and 1
into an 8-Bit Unsigned Integer

The following code converts a 32-bit floating-point number between 0 and 1 into an 8-bit unsigned
integer. If you pass a 32-bit floating-point number into f, an 8-bit unsigned integer is returned.

Code 5-27 Alternate Conversion of a 32-Bit Floating-Point Number Between 0 and 1 into an 8-
Bit Unsigned Integer

((unsigned)((f) * (float)((1 << 8) - 1)))

5.9.18 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit
Signed Integer

The following code converts a 32-bit floating-point number between -1 and 1 into an 8-bit signed
integer. If you pass a 32-bit floating-point number into f, an 8-bit signed integer is returned.

Code 5-28 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit Signed
Integer

(((unsigned int)(fabs(127.f * (f))) & 0x7f)|(f < 0 ? 0x80 : 0))

5.9.19 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value

The following code converts a 16-bit floating-point number (with one sign bit, a 5-bit exponent, and a
10-bit mantissa) into a 32-bit floating-point number. If you pass a 16-bit floating-point number stored
as an unsigned int to _inarg, a 32-bit floating-point number is stored in the float type variable
specified by _outarg.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 165 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Code 5-29 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value
#define UTL_U2F_10M5E(_inarg, _outarg) \

{ \

 int e_; \

 unsigned m_; \

 unsigned u_ = (_inarg); \

 const int width_ = 10 + 5 + 1; \

 const int bias_ = 128 - (1 << (5 - 1)); \

 e_ = (u_ >> 10) & ((1 << 5) - 1); \

 m_ = u_ & ((1 << 10) - 1); \

 if (u_ & ((1 << (width_ - 1)) - 1)) \

 u_ = ((u_ >> (5 + 10)) << 31) | (m_ << (23 - 10)) | ((e_ + bias_) << 23); \

 else \

 u_ = ((u_ >> (5 + 10)) << 31); \

 (_outarg) = *(float*)&u_; \

}

5.10 Command Cache Restrictions and Precautions
The following restrictions and precautions apply when you use the command cache.

• Even after the nngxValidateState function has validated the state of the reserved fragment
shader uniforms, lighting-related commands are generated again when rendering functions are
called when fragment lighting is enabled (dmp_FragmentLighting.enabled is GL_TRUE) and
all light sources are disabled (dmp_FragmentLightSource[i].enabled is GL_FALSE for every
light source).

• Even after the nngxValidateState function has validated the state of the reserved fragment
shader uniforms, commands related to the dmp_Gas.accMax reserved uniform are generated
again when rendering functions are called.

• If the dmp_Gas.autoAcc reserved fragment uniform is GL_TRUE and you start or stop saving a
command list at the same time as the value of dmp_FragOperation.mode changes to or from
GL_FRAGOP_MODE_GAS_ACC_DMP, commands related to dmp_Gas.autoAcc in that command list
may not be applied correctly.

• The size of the 3D command buffer to execute must be a multiple of 16. Use the
nngxAdd3DCommand function to add 0x0000000000000000 as dummy data and thereby adjust
the size.

• When the glUseProgram function specifies 0 and has then been called, no commands will be
generated even if the states related to the program or shader are validated.

5.11 PICA Register List
The following table lists the functions, state flags, uniforms, and other items related to each of the
PICA registers. Related functions do not necessarily generate commands when called. Some of the

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 166  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

functions mentioned here have parameters that affect settings. If a setting depends on the shader
assembly implementation, it is noted as the glUseProgram function.

Table 5-79 PICA Register List

Register
Setting Bits Related Functions and Uniforms State Flags

0x10 [31:0]
• nngxSplitDrawCmdlist
• nngxTransferRenderImage -

0x40 [1:0]

• glCullFace
• glDisable(GL_CULL_FACE)
• glEnable(GL_CULL_FACE)
• glFrontFace

• NN_GX_STATE_OTHERS

0x41 [23:0]
• width in glViewport

• NN_GX_STATE_OTHERS
0x42 [31:0]

0x43 [23:0]
• height in glViewport

0x44 [31:0]

0x47 [0:0] • dmp_FragOperation.enableClippingPlane • NN_GX_STATE_FSUNIFORM

0x48 [23:0]

• dmp_FragOperation.clippingPlane • NN_GX_STATE_FSUNIFORM
0x49 [23:0]

0x4a [23:0]

0x4b [23:0]

0x4d [23:0]
• dmp_FragOperation.wScale
• glDepthRangef

• NN_GX_STATE_FSUNIFORM
• NN_GX_STATE_TRIOFFSET

0x4e [23:0]

• dmp_FragOperation.wScale
• glDepthRangef
• glDisable(GL_POLYGON_OFFSET_FILL)
• glEnable(GL_POLYGON_OFFSET_FILL)
• units in glPolygonOffset

0x4f [2:0]

• glUseProgram • NN_GX_STATE_SHADERPROGRAM

0x50 [31:0]

0x51 [31:0]

0x52 [31:0]

0x53 [31:0]

0x54 [31:0]

0x55 [31:0]

0x56 [31:0]

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 167 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x61 [1:0] • glEarlyDepthFuncDMP • NN_GX_STATE_OTHERS

0x62 [0:0]
• glDisable(GL_EARLY_DEPTH_TEST_DMP)
• glEnable(GL_EARLY_DEPTH_TEST_DMP)

• NN_GX_STATE_OTHERS

0x63 [0:0] • glClear(GL_EARLY_DEPTH_BUFFER_BIT_DMP) -

0x64 [0:0] • glUseProgram • NN_GX_STATE_SHADERPROGRAM

0x65 [1:0]

• glDisable(GL_SCISSOR_TEST)
• glEnable(GL_SCISSOR_TEST)
• glScissor

• NN_GX_STATE_SCISSOR
0x66

[9:0]

[25:16]

0x67
[9:0]

[25:16]

0x68
[9:0]

• x and y in glViewport • NN_GX_STATE_OTHERS
[25:16]

0x6a [23:0] • glClearEarlyDepthDMP • NN_GX_STATE_OTHERS

0x6d [0:0] • dmp_FragOperation.wScale • NN_GX_STATE_FSUNIFORM

0x6e [10:0]
Target rendering object:
• width in glRenderbufferStorage
• width in glTexture2Dimage2D

• NN_GX_STATE_FRAMEBUFFER

0x6e [21:12]
Target rendering object:
• height in glRenderbufferStorage
• height in glTexture2Dimage2D

• NN_GX_STATE_FRAMEBUFFER

0x6f

[1:0]

• glUseProgram • NN_GX_STATE_SHADERPROGRAM
[10:8]

[16:16]

[24:24]

0x80 [2:0]
• dmp_Texture[i].samplerType(i=0,1,2)
• glDrawArrays
• glDrawElements

-

0x80 [9:8] • dmp_Texture[3].texcoord • NN_GX_STATE_FSUNIFORM

0x80 [10:10] • dmp_Texture[3].samplerType • NN_GX_STATE_FSUNIFORM

0x80 [13:13] • dmp_Texture[2].texcoord • NN_GX_STATE_FSUNIFORM

0x80 [16:16]
• dmp_Texture[i].samplerType(i=0,1,2)
• General texture settings made by

glTexParameter
• NN_GX_STATE_TEXTURE

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 168  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x81 [31:0]

• glTexParameter(
pname=GL_TEXTURE_BORDER_COLOR)

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x82 [10:0]

• height in glTexImage2D
• height in glCompressedTexImage2D
• height in glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x82 [26:16]

• width in glTexImage2D
• width in glCompressedTexImage2D
• width in glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x83 [1:1]

• glTexParameter(
pname=GL_TEXTURE_MAG_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x83 [2:2]

• glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x83 [5:4]

• internalformat in glTexImage2D
• internalformat in

glCompressedTexImage2D

• internalformat in glCopyTexImage2D
• This depends on settings for the texture object

bound to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x83 [10:8]

• glTexParameter(
pname=GL_TEXTURE_WRAP_T)

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x83 [14:12]

• glTexParameter(
pname=GL_TEXTURE_WRAP_S)

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x83 [20:20]
• internalformat in glTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x83 [24:24]

• glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x83 [30:28] • dmp_Texture[0].samplerType • NN_GX_STATE_TEXTURE

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 169 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x84 [12:0]

• glTexParameter(
pname=GL_TEXTURE_LOD_BIAS)

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x84 [19:16]

• level in glTexImage2D
• level in glCompressedTexImage2D
• level in glCopyTexImage2D
• glTexParameter(

pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x84 [27:24]

• glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

• glTexParameter(
pname=GL_TEXTURE_MIN_LOD)

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x85 [27:0]

• Texture address allocated by glTexImage2D,
glCompressedTexImage2D, or
glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x86 [21:0]

0x87 [21:0]

0x88 [21:0]

0x89 [21:0]

0x8a [21:0]

0x8b [0:0] • dmpTexture[0].perspectiveShadow • NN_GX_STATE_FSUNIFORM

0x8b [23:1] • dmpTexture[0].shadowZBias • NN_GX_STATE_FSUNIFORM

0x8b [31:24] • dmpTexture[0].shadowZScale • NN_GX_STATE_FSUNIFORM

0x8e [3:0]

• internalformat in glTexImage2D
• internalformat in
glCompressedTexImage2D

• internalformat in glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE0 when rendering.

• NN_GX_STATE_TEXTURE

0x8f [0:0] • dmp_FragmentLighting.enabled • NN_GX_STATE_FSUNIFORM

0x91 [31:0]

• glTexParameter(
pname=GL_TEXTURE_BORDER_COLOR)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x92 [10:0]
• height in glTexImage2D
• height in glCompressedTexImage2D
• height in glCopyTexImage2D

• NN_GX_STATE_TEXTURE

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 170  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

0x92 [26:16]

• width in glTexImage2D
• width in glCompressedTexImage2D
• width in glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x93 [1:1]

• glTexParameter(
pname=GL_TEXTURE_MAG_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x93 [2:2]

• glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x93 [5:4]

• internalformat in glTexImage2D
• internalformat in

glCompressedTexImage2D

• internalformat in glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x93 [10:8]

• glTexParameter(
pname=GL_TEXTURE_WRAP_T)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x93 [14:12]

• glTexParameter(
pname=GL_TEXTURE_WRAP_S)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x93 [24:24]

• glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x94 [12:0]

• glTexParameter(
pname=GL_TEXTURE_LOD_BIAS)

• This depends on settings for the texture object
bound to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x94 [19:16]

• level in glTexImage2D
• level in glCompressedTexImage2D
• level in glCopyTexImage2D
• glTexParameter(

pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 171 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x94 [27:24]

• glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

• glTexParameter(
pname=GL_TEXTURE_MIN_LOD)

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x95 [27:0]

• Texture address allocated by glTexImage2D,
glCompressedTexImage2D, or
glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x96 [3:0]

• internalformat in glTexImage2D
• internalformat in
glCompressedTexImage2D

• internalformat in glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE1 when rendering.

• NN_GX_STATE_TEXTURE

0x99 [31:0]

• glTexParameter(
pname=GL_TEXTURE_BORDER_COLOR)

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9a [10:0]

• height in glTexImage2D
• height in glCompressedTexImage2D
• height in glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9a [26:16]

• width in glTexImage2D
• width in glCompressedTexImage2D
• width in glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9b [1:1]

• glTexParameter(
pname=GL_TEXTURE_MAG_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9b [2:2]

• glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9b [5:4]

• internalformat in glTexImage2D
• internalformat in
glCompressedTexImage2D

• internalformat in glCopyTexImage2D
This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 172  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x9b [10:8]

• glTexParameter(
pname=GL_TEXTURE_WRAP_T)

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9b [14:12]

• glTexParameter(
pname=GL_TEXTURE_WRAP_S)

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9b [24:24]

• glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9c [12:0]

• glTexParameter(
pname=GL_TEXTURE_LOD_BIAS)

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9c [19:16]

• level in glTexImage2D
• level in glCompressedTexImage2D
• level in glCopyTexImage2D
• glTexParameter(

pname=GL_TEXTURE_MIN_FILTER)

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9c [27:24]

• glTexParameter(
pname=GL_TEXTURE_MIN_FILTER)

• glTexParameter(
pname=GL_TEXTURE_MIN_LOD)

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9d [27:0]

• Texture address allocated by glTexImage2D,
glCompressedTexImage2D, or
glCopyTexImage2D

This depends on settings for the texture object bound
to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x9e [3:0]

• internalformat in glTexImage2D
• internalformat in

glCompressedTexImage2D

• internalformat in glCopyTexImage2D
• This depends on settings for the texture object

bound to GL_TEXTURE2 when rendering.

• NN_GX_STATE_TEXTURE

0x0a8 [2:0] • dmp_Texture[3].ptClampU • NN_GX_STATE_FSUNIFORM

0x0a8 [5:3] • dmp_Texture[3].ptClampV • NN_GX_STATE_FSUNIFORM

0x0a8 [9:6] • dmp_Texture[3].ptRgbMap • NN_GX_STATE_FSUNIFORM

0x0a8 [13:10] • dmp_Texture[3].ptAlphaMap • NN_GX_STATE_FSUNIFORM

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 173 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x0a8 [14:14] • dmp_Texture[3].ptAlphaSeparate • NN_GX_STATE_FSUNIFORM

0x0a8 [15:15] • dmp_Texture[3].ptNoiseEnable • NN_GX_STATE_FSUNIFORM

0x0a8 [17:16] • dmp_Texture[3].ptShiftU • NN_GX_STATE_FSUNIFORM

0x0a8 [19:18] • dmp_Texture[3].ptShiftV • NN_GX_STATE_FSUNIFORM

0x0a8 [27:20] • dmp_Texture[3].ptTexBias • NN_GX_STATE_FSUNIFORM

0x0a9 [15:0] • dmp_Texture[3].ptNoiseU (3rd component) • NN_GX_STATE_FSUNIFORM

0x0a9 [31:16] • dmp_Texture[3].ptNoiseU (2nd component) • NN_GX_STATE_FSUNIFORM

0x0aa [15:0] • dmp_Texture[3].ptNoiseV (3rd component) • NN_GX_STATE_FSUNIFORM

0x0aa [31:16] • dmp_Texture[3].ptNoiseV (2nd component) • NN_GX_STATE_FSUNIFORM

0x0ab [15:0] • dmp_Texture[3].ptNoiseU (1st component) • NN_GX_STATE_FSUNIFORM

0x0ab [31:16] • dmp_Texture[3].ptNoiseV (1st component) • NN_GX_STATE_FSUNIFORM

0x0ac [2:0] • dmp_Texture[3].ptMinFilter • NN_GX_STATE_FSUNIFORM

0x0ac [18:11] • dmp_Texture[3].ptTexWidth • NN_GX_STATE_FSUNIFORM

0x0ad [26:19] • dmp_Texture[3].ptTexBias • NN_GX_STATE_FSUNIFORM

0x0ad [7:0] • dmp_Texture[3].ptTexOffset • NN_GX_STATE_FSUNIFORM

0x0af [11:8] • dmp_Texture[3].ptSampler
{RgbMap,AlphaMap,NoiseMap,R,G,B,A}

• LUT object data created by glTexImage1D
• NN_GX_STATE_LUT

0x0b0–
0x0b7 [31:0]

0x0c0 [3:0] • dmp_TexEnv[0].srcRgb (1st component) • NN_GX_STATE_FSUNIFORM

0x0c0 [7:4] • dmp_TexEnv[0].srcRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0c0 [11:8] • dmp_TexEnv[0].srcRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0c0 [19:16] • dmp_TexEnv[0].srcAlpha (1st component) • NN_GX_STATE_FSUNIFORM

0x0c0 [23:20] • dmp_TexEnv[0].srcAlpha (2nd component) • NN_GX_STATE_FSUNIFORM

0x0c0 [27:24] • dmp_TexEnv[0].srcAlpha (3rd component) • NN_GX_STATE_FSUNIFORM

0xc1 [3:0] • dmp_TexEnv[0].operandRgb (1st component) • NN_GX_STATE_FSUNIFORM

0xc1 [7:4] • dmp_TexEnv[0].operandRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0xc1 [11:8] • dmp_TexEnv[0].operandRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0xc1 [14:12]
• dmp_TexEnv[0].operandAlpha

(1st component) • NN_GX_STATE_FSUNIFORM

0xc1 [18:16]
• dmp_TexEnv[0].operandAlpha

(2nd component) • NN_GX_STATE_FSUNIFORM

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 174  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0xc1 [22:20]
• dmp_TexEnv[0].operandAlpha

(3rd component) • NN_GX_STATE_FSUNIFORM

0x0c2 [3:0] • dmp_TexEnv[0].combineRgb • NN_GX_STATE_FSUNIFORM

0x0c2 [19:16] • dmp_TexEnv[0].combineAlpha • NN_GX_STATE_FSUNIFORM

0x0c3 [7:0] • dmp_TexEnv[0].constRgba (1st component) • NN_GX_STATE_FSUNIFORM

0x0c3 [15:8] • dmp_TexEnv[0].constRgba (2nd component) • NN_GX_STATE_FSUNIFORM

0x0c3 [23:16] • dmp_TexEnv[0].constRgba (3rd component) • NN_GX_STATE_FSUNIFORM

0x0c3 [31:24] • dmp_TexEnv[0].constRgba (4th component) • NN_GX_STATE_FSUNIFORM

0x0c4 [1:0] • dmp_TexEnv[0].scaleRgb • NN_GX_STATE_FSUNIFORM

0x0c4 [17:16] • dmp_TexEnv[0].scaleAlpha • NN_GX_STATE_FSUNIFORM

0x0c8 [3:0] • dmp_TexEnv[1].srcRgb (1st component) • NN_GX_STATE_FSUNIFORM

0x0c8 [7:4] • dmp_TexEnv[1].srcRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0c8 [11:8] • dmp_TexEnv[1].srcRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0c8 [19:16] • dmp_TexEnv[1].srcAlpha (1st component) • NN_GX_STATE_FSUNIFORM

0x0c8 [23:20] • dmp_TexEnv[1].srcAlpha (2nd component) • NN_GX_STATE_FSUNIFORM

0x0c8 [27:24] • dmp_TexEnv[1].srcAlpha (3rd component) • NN_GX_STATE_FSUNIFORM

0x0c9 [3:0] • dmp_TexEnv[1].operandRgb (1st component) • NN_GX_STATE_FSUNIFORM

0x0c9 [7:4] • dmp_TexEnv[1].operandRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0c9 [11:8] • dmp_TexEnv[1].operandRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0c9 [14:12]
• dmp_TexEnv[1].operandAlpha

(1st component) • NN_GX_STATE_FSUNIFORM

0x0c9 [18:16]
• dmp_TexEnv[1].operandAlpha

(2nd component) • NN_GX_STATE_FSUNIFORM

0x0c9 [22:20]
• dmp_TexEnv[1].operandAlpha

(3rd component) • NN_GX_STATE_FSUNIFORM

0x0ca [3:0] • dmp_TexEnv[1].combineRgb • NN_GX_STATE_FSUNIFORM

0x0ca [19:16] • dmp_TexEnv[1].combineAlpha • NN_GX_STATE_FSUNIFORM

0x0cb [7:0] • dmp_TexEnv[1].constRgba (1st component) • NN_GX_STATE_FSUNIFORM

0x0cb [15:8] • dmp_TexEnv[1].constRgba (2nd component) • NN_GX_STATE_FSUNIFORM

0x0cb [23:16] • dmp_TexEnv[1].constRgba (3rd component) • NN_GX_STATE_FSUNIFORM

0x0cb [31:24] • dmp_TexEnv[1].constRgba (4th component) • NN_GX_STATE_FSUNIFORM

0x0cc [1:0] • dmp_TexEnv[1].scaleRgb • NN_GX_STATE_FSUNIFORM

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 175 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x0cc [17:16] • dmp_TexEnv[1].scaleAlpha • NN_GX_STATE_FSUNIFORM

0x0d0 [3:0] • dmp_TexEnv[2].srcRgb (1st component) • NN_GX_STATE_FSUNIFORM

0x0d0 [7:4] • dmp_TexEnv[2].srcRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0d0 [11:8] • dmp_TexEnv[2].srcRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0d0 [19:16] • dmp_TexEnv[2].srcAlpha (1st component) • NN_GX_STATE_FSUNIFORM

0x0d0 [23:20] • dmp_TexEnv[2].srcAlpha (2nd component) • NN_GX_STATE_FSUNIFORM

0x0d0 [27:24] • dmp_TexEnv[2].srcAlpha (3rd component) • NN_GX_STATE_FSUNIFORM

0x0d1 [3:0] • dmp_TexEnv[2].operandRgb (1st component) • NN_GX_STATE_FSUNIFORM

0x0d1 [7:4] • dmp_TexEnv[2].operandRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0d1 [11:8] • dmp_TexEnv[2].operandRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0d1 [14:12]
• dmp_TexEnv[2].operandAlpha

(1st component) • NN_GX_STATE_FSUNIFORM

0x0d1 [18:16]
• dmp_TexEnv[2].operandAlpha

(2nd component) • NN_GX_STATE_FSUNIFORM

0x0d1 [22:20]
• dmp_TexEnv[2].operandAlpha

(3rd component) • NN_GX_STATE_FSUNIFORM

0x0d2 [3:0] • dmp_TexEnv[2].combineRgb • NN_GX_STATE_FSUNIFORM

0x0d2 [19:16] • dmp_TexEnv[2].combineAlpha • NN_GX_STATE_FSUNIFORM

0x0d3 [7:0] • dmp_TexEnv[2].constRgba (1st component) • NN_GX_STATE_FSUNIFORM

0x0d3 [15:8] • dmp_TexEnv[2].constRgba (2nd component) • NN_GX_STATE_FSUNIFORM

0x0d3 [23:16] • dmp_TexEnv[2].constRgba (3rd component) • NN_GX_STATE_FSUNIFORM

0x0d3 [31:24] • dmp_TexEnv[2].constRgba (4th component) • NN_GX_STATE_FSUNIFORM

0x0d4 [1:0] • dmp_TexEnv[2].scaleRgb • NN_GX_STATE_FSUNIFORM

0x0d4 [17:16] • dmp_TexEnv[2].scaleAlpha • NN_GX_STATE_FSUNIFORM

0x0d8 [3:0] • dmp_TexEnv[3].srcRgb (1st component) • NN_GX_STATE_FSUNIFORM

0x0d8 [7:4] • dmp_TexEnv[3].srcRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0d8 [11:8] • dmp_TexEnv[3].srcRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0d8 [19:16] • dmp_TexEnv[3].srcAlpha (1st component) • NN_GX_STATE_FSUNIFORM

0x0d8 [23:20] • dmp_TexEnv[3].srcAlpha (2nd component) • NN_GX_STATE_FSUNIFORM

0x0d8 [27:24] • dmp_TexEnv[3].srcAlpha (3rd component) • NN_GX_STATE_FSUNIFORM

0x0d9 [3:0] • dmp_TexEnv[3].operandRgb (1st component) • NN_GX_STATE_FSUNIFORM

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 176  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x0d9 [7:4] • dmp_TexEnv[3].operandRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0d9 [11:8] • dmp_TexEnv[3].operandRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0d9 [14:12]
• dmp_TexEnv[3].operandAlpha

(1st component) • NN_GX_STATE_FSUNIFORM

0x0d9 [18:16]
• dmp_TexEnv[3].operandAlpha

(2nd component) • NN_GX_STATE_FSUNIFORM

0x0d9 [22:20]
• dmp_TexEnv[3].operandAlpha

(3rd component) • NN_GX_STATE_FSUNIFORM

0x0da [3:0] • dmp_TexEnv[3].combineRgb • NN_GX_STATE_FSUNIFORM

0x0da [19:16] • dmp_TexEnv[3].combineAlpha • NN_GX_STATE_FSUNIFORM

0x0db [7:0] • dmp_TexEnv[3].constRgba (1st component) • NN_GX_STATE_FSUNIFORM

0x0db [15:8] • dmp_TexEnv[3].constRgba (2nd component) • NN_GX_STATE_FSUNIFORM

0x0db [23:16] • dmp_TexEnv[3].constRgba (3rd component) • NN_GX_STATE_FSUNIFORM

0x0db [31:24] • dmp_TexEnv[3].constRgba (4th component) • NN_GX_STATE_FSUNIFORM

0x0dc [1:0] • dmp_TexEnv[3].scaleRgb • NN_GX_STATE_FSUNIFORM

0x0dc [17:16] • dmp_TexEnv[3].scaleAlpha • NN_GX_STATE_FSUNIFORM

0x0e0 [2:0] • dmp_Fog.mode • NN_GX_STATE_FSUNIFORM

0x0e0 [3:3] • dmp_Gas.shadingDensitySrc • NN_GX_STATE_FSUNIFORM

0x0e0 [8:8]
• dmp_TexEnv[1].bufferInput

(1st component)
• NN_GX_STATE_FSUNIFORM

0x0e0 [9:9]
• dmp_TexEnv[2].bufferInput

(1st component)
• NN_GX_STATE_FSUNIFORM

0x0e0 [10:10]
• dmp_TexEnv[3].bufferInput

(1st component)
• NN_GX_STATE_FSUNIFORM

0x0e0 [11:11]
• dmp_TexEnv[4].bufferInput

(1st component)
• NN_GX_STATE_FSUNIFORM

0x0e0 [12:12]
• dmp_TexEnv[1].bufferInput

(2nd component)
• NN_GX_STATE_FSUNIFORM

0x0e0 [13:13]
• dmp_TexEnv[2].bufferInput

(2nd component)
• NN_GX_STATE_FSUNIFORM

0x0e0 [14:14]
• dmp_TexEnv[3].bufferInput

(2nd component)
• NN_GX_STATE_FSUNIFORM

0x0e0 [15:15]
• dmp_TexEnv[4].bufferInput

(2nd component)
• NN_GX_STATE_FSUNIFORM

0x0e0 [16:16] • dmp_Fog.zFlip • NN_GX_STATE_FSUNIFORM

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 177 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x0e1 [7:0] • dmp_Fog.color (1st component) • NN_GX_STATE_FSUNIFORM

0x0e1 [15:8] • dmp_Fog.color (2nd component) • NN_GX_STATE_FSUNIFORM

0x0e1 [23:16] • dmp_Fog.color (3rd component) • NN_GX_STATE_FSUNIFORM

0x0e4 [15:0] • dmp_Gas.attenuation • NN_GX_STATE_FSUNIFORM

0xe05 [15:0] • dmp_Gas.accMax • NN_GX_STATE_FSUNIFORM

0x0e6 [15:0]
• dmp_Fog.sampler
• LUT object data created by glTexImage1D

• NN_GX_STATE_LUT
0x0e8–
0x0ef [23:0]

0x0f0 [3:0] • dmp_TexEnv[4].srcRgb (1st component) • NN_GX_STATE_FSUNIFORM

0x0f0 [7:4] • dmp_TexEnv[4].srcRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0f0 [11:8] • dmp_TexEnv[4].srcRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0f0 [19:16] • dmp_TexEnv[4].srcAlpha (1st component) • NN_GX_STATE_FSUNIFORM

0x0f0 [23:20] • dmp_TexEnv[4].srcAlpha (2nd component) • NN_GX_STATE_FSUNIFORM

0x0f0 [27:24] • dmp_TexEnv[4].srcAlpha (3rd component) • NN_GX_STATE_FSUNIFORM

0x0f1 [3:0] • dmp_TexEnv[4].operandRgb (1st component) • NN_GX_STATE_FSUNIFORM

0x0f1 [7:4] • dmp_TexEnv[4].operandRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0f1 [11:8] • dmp_TexEnv[4].operandRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0f1 [14:12]
• dmp_TexEnv[4].operandAlpha

(1st component) • NN_GX_STATE_FSUNIFORM

0x0f1 [18:16]
• dmp_TexEnv[4].operandAlpha

(2nd component) • NN_GX_STATE_FSUNIFORM

0x0f1 [22:20]
• dmp_TexEnv[4].operandAlpha

(3rd component) • NN_GX_STATE_FSUNIFORM

0x0f2 [3:0] • dmp_TexEnv[4].combineRgb • NN_GX_STATE_FSUNIFORM

0x0f2 [19:16] • dmp_TexEnv[4].combineAlpha • NN_GX_STATE_FSUNIFORM

0x0f3 [7:0] • dmp_TexEnv[4].constRgba (1st component) • NN_GX_STATE_FSUNIFORM

0x0f3 [15:8] • dmp_TexEnv[4].constRgba (2nd component) • NN_GX_STATE_FSUNIFORM

0x0f3 [23:16] • dmp_TexEnv[4].constRgba (3rd component) • NN_GX_STATE_FSUNIFORM

0x0f3 [31:24] • dmp_TexEnv[4].constRgba (4th component) • NN_GX_STATE_FSUNIFORM

0x0f4 [1:0] • dmp_TexEnv[4].scaleRgb • NN_GX_STATE_FSUNIFORM

0x0f4 [17:16] • dmp_TexEnv[4].scaleAlpha • NN_GX_STATE_FSUNIFORM

0x0f8 [3:0] • dmp_TexEnv[5].srcRgb (1st component) • NN_GX_STATE_FSUNIFORM

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 178  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x0f8 [7:4] • dmp_TexEnv[5].srcRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0f8 [11:8] • dmp_TexEnv[5].srcRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0f8 [19:16] • dmp_TexEnv[5].srcAlpha (1st component) • NN_GX_STATE_FSUNIFORM

0x0f8 [23:20] • dmp_TexEnv[5].srcAlpha (2nd component) • NN_GX_STATE_FSUNIFORM

0x0f8 [27:24] • dmp_TexEnv[5].srcAlpha (3rd component) • NN_GX_STATE_FSUNIFORM

0x0f9 [3:0] • dmp_TexEnv[5].operandRgb (1st component) • NN_GX_STATE_FSUNIFORM

0x0f9 [7:4] • dmp_TexEnv[5].operandRgb (2nd component) • NN_GX_STATE_FSUNIFORM

0x0f9 [11:8] • dmp_TexEnv[5].operandRgb (3rd component) • NN_GX_STATE_FSUNIFORM

0x0f9 [14:12]
• dmp_TexEnv[5].operandAlpha

(1st component) • NN_GX_STATE_FSUNIFORM

0x0f9 [18:16]
• dmp_TexEnv[5].operandAlpha

(2nd component) • NN_GX_STATE_FSUNIFORM

0x0f9 [22:20]
• dmp_TexEnv[5].operandAlpha

(3rd component) • NN_GX_STATE_FSUNIFORM

0x0fa [3:0] • dmp_TexEnv[5].combineRgb • NN_GX_STATE_FSUNIFORM

0x0fa [19:16] • dmp_TexEnv[5].combineAlpha • NN_GX_STATE_FSUNIFORM

0x0fb [7:0] • dmp_TexEnv[5].constRgba (1st component) • NN_GX_STATE_FSUNIFORM

0x0fb [15:8] • dmp_TexEnv[5].constRgba (2nd component) • NN_GX_STATE_FSUNIFORM

0x0fb [23:16] • dmp_TexEnv[5].constRgba (3rd component) • NN_GX_STATE_FSUNIFORM

0x0fb [31:24] • dmp_TexEnv[5].constRgba (4th component) • NN_GX_STATE_FSUNIFORM

0x0fc [1:0] • dmp_TexEnv[5].scaleRgb • NN_GX_STATE_FSUNIFORM

0x0fc [17:16] • dmp_TexEnv[5].scaleAlpha • NN_GX_STATE_FSUNIFORM

0x0fd [7:0]
• dmp_TexEnv[0].bufferColor

(1st component) • NN_GX_STATE_FSUNIFORM

0x0fd [15:8]
• dmp_TexEnv[0].bufferColor

(2nd component) • NN_GX_STATE_FSUNIFORM

0x0fd [23:16]
• dmp_TexEnv[0].bufferColor

(3rd component)
• NN_GX_STATE_FSUNIFORM

0x0fd [31:24]
• dmp_TexEnv[0].bufferColor

(4th component)
• NN_GX_STATE_FSUNIFORM

0x100 [1:0] • dmp_FragOperation.mode • NN_GX_STATE_FSUNIFORM

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 179 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x100 [8:8]

• glDisable(GL_BLEND)
• glDisable(GL_COLOR_LOGIC_OP)
• glEnable(GL_BLEND)
• glEnable(GL_COLOR_LOGIC_OP)

• NN_GX_STATE_OTHERS

0x101 [2:0]
• mode in glBlendEquation
• modeRGB in glBlendEquationSeparate

• NN_GX_STATE_OTHERS

0x101 [10:8]
• mode in glBlendEquation
• modeAlpha in glBlendEquationSeparate

• NN_GX_STATE_OTHERS

0x101 [19:16]
• sfactor in glBlendFunc
• srcRGB in glBlendFuncSeparate

• NN_GX_STATE_OTHERS

0x101 [23:20]
• dfactor in glBlendFunc
• dstRGB in glBlendFuncSeparate

• NN_GX_STATE_OTHERS

0x101 [27:24]
• sfactor in glBlendFunc
• srcAlpha in glBlendFuncSeparate

• NN_GX_STATE_OTHERS

0x101 [31:28]
• dfactor in glBlendFunc
• dstAlpha in glBlendFuncSeparate

• NN_GX_STATE_OTHERS

0x102 [3:0] • glLogicOp • NN_GX_STATE_OTHERS

0x103 [7:0] • red in glBlendColor • NN_GX_STATE_OTHERS

0x103 [15:8] • green in glBlendColor • NN_GX_STATE_OTHERS

0x103 [23:16] • blue in glBlendColor • NN_GX_STATE_OTHERS

0x103 [31:24] • alpha in glBlendColor • NN_GX_STATE_OTHERS

0x104 [0:0] • dmp_FragOperation.enableAlphaTest • NN_GX_STATE_OTHERS

0x104 [6:4] • dmp_FragOperation.alphaTestFunc • NN_GX_STATE_OTHERS

0x104 [15:8] • dmp_FragOperation.alphaRefValue • NN_GX_STATE_OTHERS

0x105 [0:0]
• glDisable(GL_STENCIL_TEST)
• glEnable(GL_STENCIL_TEST)

• NN_GX_STATE_OTHERS

0x105 [6:4] • func in glStencilFunc • NN_GX_STATE_OTHERS

0x105 [15:8] • glStencilMask • NN_GX_STATE_OTHERS

0x105 [23:16] • ref in glStencilFunc • NN_GX_STATE_OTHERS

0x105 [31:24] • mask in glStencilFunc • NN_GX_STATE_OTHERS

0x106 [2:0] • fail in glStencilOp • NN_GX_STATE_OTHERS

0x106 [6:4] • zfail in glStencilOp • NN_GX_STATE_OTHERS

0x106 [10:8] • zpass in glStencilOp • NN_GX_STATE_OTHERS

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 180  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x107 [0:0]
• glDisable(GL_DEPTH_TEST)
• glEnable(GL_DEPTH_TEST)

• NN_GX_STATE_OTHERS

0x107 [6:4] • glDepthFunc • NN_GX_STATE_OTHERS

0x107 [8:8] • red in glColorMask • NN_GX_STATE_OTHERS

0x107 [9:9] • green in glColorMask • NN_GX_STATE_OTHERS

0x107 [10:10] • blue in glColorMask • NN_GX_STATE_OTHERS

0x107 [11:11] • alpha in glColorMask • NN_GX_STATE_OTHERS

0x107 [12:12] • glDepthMask • NN_GX_STATE_OTHERS

0x110 [0:0]

• glFinish
• glFlush
• nngxSplitDrawCmdlist
• nngxTransferRenderImage

• NN_GX_STATE_FRAMEBUFFER
• NN_GX_STATE_FBACCESS

0x111 [0:0]

• glFinish
• glFlush
• glDrawArrays
• glDrawElements
• nngxSplitDrawCmdlist
• nngxTransferRenderImage

• NN_GX_STATE_FRAMEBUFFER
• NN_GX_STATE_FBACCESS

0x112 [3:0]

• dmp_FragOperation.mode
• glDisable(GL_BLEND)
• glDisable(GL_COLOR_LOGIC_OP)
• glEnable(GL_BLEND)
• glEnable(GL_COLOR_LOGIC_OP)
• glColorMask

• NN_GX_STATE_FBACCESS

0x113 [3:0]
• dmp_FragOperation.mode
• glColorMask

• NN_GX_STATE_FBACCESS

0x114 [1:0]

• dmp_FragOperation.mode
• glDisable(GL_DEPTH_TEST)
• glDisable(GL_STENCIL_TEST)
• glEnable(GL_DEPTH_TEST)
• glEnable(GL_STENCIL_TEST)

• NN_GX_STATE_FBACCESS

0x115 [1:0]

• dmp_FragOperation.mode
• glDisable(GL_DEPTH_TEST)
• glDisable(GL_STENCIL_TEST)
• glEnable(GL_DEPTH_TEST)
• glEnable(GL_STENCIL_TEST)
• glDepthMask
• glStencilMask

• NN_GX_STATE_FBACCESS

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 181 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x116 [1:0]
• internalformat in glRenderbufferStorage

for the depth buffer that is the rendering target • NN_GX_STATE_FRAMEBUFFER

0x117

[1:0] • internalformat in glRenderbufferStorage
for the color buffer that is the rendering target

• internalformat in glTexture2DImage2D for
the color buffer that is the rendering target

• NN_GX_STATE_FRAMEBUFFER
[18:16]

0x118 [0:0]
• glDisable(GL_EARLY_DEPTH_TEST_DMP)
• glEnable(GL_EARLY_DEPTH_TEST_DMP)

• NN_GX_STATE_OTHERS

0x11b [0:0] • glRenderBlockModeDMP • NN_GX_STATE_OTHERS

0x11c [27:0]
• Render buffer address allocated by

glRenderbufferStorage for the depth buffer
that is the rendering target

• NN_GX_STATE_FRAMEBUFFER

0x11d [27:0]

• Render buffer address allocated by
glRenderbufferStorage for the color buffer
that is the rendering target

• Texture address allocated by glTexImage2D

• NN_GX_STATE_FRAMEBUFFER

0x11e [10:0]

• width in glRenderbufferStorage for the color
buffer that is the rendering target

• width in glTexture2DImage2D for the color
buffer that is the rendering target

• NN_GX_STATE_FRAMEBUFFER

0x11e [21:12]

• height in glRenderbufferStorage for the
color buffer that is the rendering target

• height in glTexture2DImage2D for the color
buffer that is the rendering target

• NN_GX_STATE_FRAMEBUFFER

0x120 [7:0] • dmp_Gas.lightXY (1st component) • NN_GX_STATE_FSUNIFORM

0x120 [15:8] • dmp_Gas.lightXY (2nd component) • NN_GX_STATE_FSUNIFORM

0x120 [23:16] • dmp_Gas.lightXY (3rd component) • NN_GX_STATE_FSUNIFORM

0x121 [7:0] • dmp_Gas.lightZ (1st component) • NN_GX_STATE_FSUNIFORM

0x121 [15:8] • dmp_Gas.lightZ (2nd component) • NN_GX_STATE_FSUNIFORM

0x121 [23:16] • dmp_Gas.lightZ (3rd component) • NN_GX_STATE_FSUNIFORM

0x122 [7:0] • dmp_Gas.lightZ (4th component) • NN_GX_STATE_FSUNIFORM

0x123 [15:0] • dmp_Gas.sampler{TR,TG,TB}
• LUT object data created by glTexImage1D

• NN_GX_STATE_LUT
0x124 [31:0]

0x125 [31:0] • dmp_Gas.autoAcc -

0x126 [23:0] • dmp_Gas.deltaZ • NN_GX_STATE_FSUNIFORM

0x126 [25:24] • glDepthFunc • NN_GX_STATE_OTHERS

0x130 [15:0] • dmp_FragOperation.penumbraScale • NN_GX_STATE_FSUNIFORM

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 182  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

• dmp_FragOperation.penumbraBias

0x130 [31:16] • dmp_FragOperation.penumbraScale • NN_GX_STATE_FSUNIFORM

0x140 [29:0]
• dmp_FragmentMaterial.specular0
• dmp_FragmentLightSource[0].specular0

• NN_GX_STATE_FSUNIFORM

0x141 [29:0]
• dmp_LightEnv.lutEnabledRefl
• dmp_FragmentMaterial.specular1
• dmp_FragmentLightSource[0].specular1

• NN_GX_STATE_FSUNIFORM

0x142 [29:0]
• dmp_FragmentMaterial.diffuse
• dmp_FragmentLightSource[0].diffuse

• NN_GX_STATE_FSUNIFORM

0x143 [29:0]
• dmp_FragmentMaterial.ambient
• dmp_FragmentLightSource[0].ambient

• NN_GX_STATE_FSUNIFORM

0x144 [31:0]
• dmp_FragmentLightSource[0].position • NN_GX_STATE_FSUNIFORM

0x145 [15:0]

0x146
[12:0]

• dmp_FragmentLightSource[0].
spotDirection

• NN_GX_STATE_FSUNIFORM [28:16]

0x147 [12:0]

0x149 [0:0] • dmp_FragmentLightSource[0].position • NN_GX_STATE_FSUNIFORM

0x149 [1:1]
• dmp_FragmentLightSource[0].
twoSideDiffuse • NN_GX_STATE_FSUNIFORM

0x149 [2:2]
• dmp_FragmentLightSource[0].
geomFactor0

• NN_GX_STATE_FSUNIFORM

0x149 [3:3]
• dmp_FragmentLightSource[0].
geomFactor1

• NN_GX_STATE_FSUNIFORM

0x14a [19:0]
• dmp_FragmentLightSource[0].
distanceAttenuationBias • NN_GX_STATE_FSUNIFORM

0x14b [19:0]
• dmp_FragmentLightSource[0].
distanceAttenuationScale • NN_GX_STATE_FSUNIFORM

0x150 [29:0]
• dmp_FragmentMaterial.specular0
• dmp_FragmentLightSource[1].specular0

• NN_GX_STATE_FSUNIFORM

0x151 [29:0]
• dmp_LightEnv.lutEnabledRefl
• dmp_FragmentMaterial.specular1
• dmp_FragmentLightSource[1].specular1

• NN_GX_STATE_FSUNIFORM

0x152 [29:0]
• dmp_FragmentMaterial.diffuse
• dmp_FragmentLightSource[1].diffuse

• NN_GX_STATE_FSUNIFORM

0x153 [29:0]
• dmp_FragmentMaterial.ambient
• dmp_FragmentLightSource[1].ambient

• NN_GX_STATE_FSUNIFORM

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 183 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x154 [31:0]
• dmp_FragmentLightSource[1].position • NN_GX_STATE_FSUNIFORM

0x155 [15:0]

0x156
[12:0]

• dmp_FragmentLightSource[1].
spotDirection • NN_GX_STATE_FSUNIFORM [28:16]

0x157 [12:0]

0x159 [0:0] • dmp_FragmentLightSource[1].position • NN_GX_STATE_FSUNIFORM

0x159 [1:1]
• dmp_FragmentLightSource[1].
twoSideDiffuse

• NN_GX_STATE_FSUNIFORM

0x159 [2:2]
• dmp_FragmentLightSource[1].
geomFactor0 • NN_GX_STATE_FSUNIFORM

0x159 [3:3]
• dmp_FragmentLightSource[1].
geomFactor1 • NN_GX_STATE_FSUNIFORM

0x15a [19:0]
• dmp_FragmentLightSource[1].
distanceAttenuationBias • NN_GX_STATE_FSUNIFORM

0x15b [19:0]
• dmp_FragmentLightSource[1].
distanceAttenuationScale

• NN_GX_STATE_FSUNIFORM

0x160 [29:0]
• dmp_FragmentMaterial.specular0
• dmp_FragmentLightSource[2].specular0

• NN_GX_STATE_FSUNIFORM

0x161 [29:0]
• dmp_LightEnv.lutEnabledRefl
• dmp_FragmentMaterial.specular1
• dmp_FragmentLightSource[2].specular1

• NN_GX_STATE_FSUNIFORM

0x162 [29:0]
• dmp_FragmentMaterial.diffuse
• dmp_FragmentLightSource[2].diffuse

• NN_GX_STATE_FSUNIFORM

0x163 [29:0]
• dmp_FragmentMaterial.ambient
• dmp_FragmentLightSource[2].ambient

• NN_GX_STATE_FSUNIFORM

0x164 [31:0]
• dmp_FragmentLightSource[2].position • NN_GX_STATE_FSUNIFORM

0x165 [15:0]

0x166
[12:0]

• dmp_FragmentLightSource[2].
spotDirection

• NN_GX_STATE_FSUNIFORM [28:16]

0x167 [12:0]

0x169 [0:0] • dmp_FragmentLightSource[2].position • NN_GX_STATE_FSUNIFORM

0x169 [1:1]
• dmp_FragmentLightSource[2].
twoSideDiffuse • NN_GX_STATE_FSUNIFORM

0x169 [2:2]
• dmp_FragmentLightSource[2].
geomFactor0

• NN_GX_STATE_FSUNIFORM

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 184  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x169 [3:3]
• dmp_FragmentLightSource[2].
geomFactor1 • NN_GX_STATE_FSUNIFORM

0x16a [19:0]
• dmp_FragmentLightSource[2].
distanceAttenuationBias

• NN_GX_STATE_FSUNIFORM

0x16b [19:0]
• dmp_FragmentLightSource[2].
distanceAttenuationScale

• NN_GX_STATE_FSUNIFORM

0x170 [29:0]
• dmp_FragmentMaterial.specular0
• dmp_FragmentLightSource[3].specular0

• NN_GX_STATE_FSUNIFORM

0x171 [29:0]
• dmp_LightEnv.lutEnabledRefl
• dmp_FragmentMaterial.specular1
• dmp_FragmentLightSource[3].specular1

• NN_GX_STATE_FSUNIFORM

0x172 [29:0]
• dmp_FragmentMaterial.diffuse
• dmp_FragmentLightSource[3].diffuse

• NN_GX_STATE_FSUNIFORM

0x173 [29:0]
• dmp_FragmentMaterial.ambient
• dmp_FragmentLightSource[3].ambient

• NN_GX_STATE_FSUNIFORM

0x174 [31:0]
• dmp_FragmentLightSource[3].position • NN_GX_STATE_FSUNIFORM

0x175 [15:0]

0x176
[12:0]

• dmp_FragmentLightSource[3].
spotDirection

• NN_GX_STATE_FSUNIFORM [28:16]

0x177 [12:0]

0x179 [0:0] • dmp_FragmentLightSource[3].position • NN_GX_STATE_FSUNIFORM

0x179 [1:1]
• dmp_FragmentLightSource[3].
twoSideDiffuse • NN_GX_STATE_FSUNIFORM

0x179 [2:2]
• dmp_FragmentLightSource[3].
geomFactor0

• NN_GX_STATE_FSUNIFORM

0x179 [3:3]
• dmp_FragmentLightSource[3].
geomFactor1

• NN_GX_STATE_FSUNIFORM

0x17a [19:0]
• dmp_FragmentLightSource[3].
distanceAttenuationBias • NN_GX_STATE_FSUNIFORM

0x17b [19:0]
• dmp_FragmentLightSource[3].
distanceAttenuationScale • NN_GX_STATE_FSUNIFORM

0x180 [29:0]
• dmp_FragmentMaterial.specular0
• dmp_FragmentLightSource[4].specular0

• NN_GX_STATE_FSUNIFORM

0x181 [29:0]
• dmp_LightEnv.lutEnabledRefl
• dmp_FragmentMaterial.specular1
• dmp_FragmentLightSource[4].specular1

• NN_GX_STATE_FSUNIFORM

0x182 [29:0] • dmp_FragmentMaterial.diffuse • NN_GX_STATE_FSUNIFORM

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 185 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

• dmp_FragmentLightSource[4].diffuse

0x183 [29:0]
• dmp_FragmentMaterial.ambient
• dmp_FragmentLightSource[4].ambient

• NN_GX_STATE_FSUNIFORM

0x184 [31:0]
• dmp_FragmentLightSource[4].position • NN_GX_STATE_FSUNIFORM

0x185 [15:0]

0x186
[12:0]

• dmp_FragmentLightSource[4].
spotDirection • NN_GX_STATE_FSUNIFORM [28:16]

0x187 [12:0]

0x189 [0:0] • dmp_FragmentLightSource[4].position • NN_GX_STATE_FSUNIFORM

0x189 [1:1]
• dmp_FragmentLightSource[4].
twoSideDiffuse

• NN_GX_STATE_FSUNIFORM

0x189 [2:2]
• dmp_FragmentLightSource[4].
geomFactor0 • NN_GX_STATE_FSUNIFORM

0x189 [3:3]
• dmp_FragmentLightSource[4].
geomFactor1 • NN_GX_STATE_FSUNIFORM

0x18a [19:0]
• dmp_FragmentLightSource[4].
distanceAttenuationBias

• NN_GX_STATE_FSUNIFORM

0x18b [19:0]
• dmp_FragmentLightSource[4].
distanceAttenuationScale

• NN_GX_STATE_FSUNIFORM

0x190 [29:0]
• dmp_FragmentMaterial.specular0
• dmp_FragmentLightSource[5].specular0

• NN_GX_STATE_FSUNIFORM

0x191 [29:0]
• dmp_LightEnv.lutEnabledRefl
• dmp_FragmentMaterial.specular1
• dmp_FragmentLightSource[5].specular1

• NN_GX_STATE_FSUNIFORM

0x192 [29:0]
• dmp_FragmentMaterial.diffuse
• dmp_FragmentLightSource[5].diffuse

• NN_GX_STATE_FSUNIFORM

0x193 [29:0]
• dmp_FragmentMaterial.ambient
• dmp_FragmentLightSource[5].ambient

• NN_GX_STATE_FSUNIFORM

0x194 [31:0]
• dmp_FragmentLightSource[5].position • NN_GX_STATE_FSUNIFORM

0x195 [15:0]

0x196
[12:0]

• dmp_FragmentLightSource[5].
spotDirection

• NN_GX_STATE_FSUNIFORM [28:16]

0x197 [12:0]

0x199 [0:0] • dmp_FragmentLightSource[5].position • NN_GX_STATE_FSUNIFORM

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 186  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x199 [1:1]
• dmp_FragmentLightSource[5].
twoSideDiffuse • NN_GX_STATE_FSUNIFORM

0x199 [2:2]
• dmp_FragmentLightSource[5].
geomFactor0

• NN_GX_STATE_FSUNIFORM

0x199 [3:3]
• dmp_FragmentLightSource[5].
geomFactor1

• NN_GX_STATE_FSUNIFORM

0x19a [19:0]
• dmp_FragmentLightSource[5].
distanceAttenuationBias • NN_GX_STATE_FSUNIFORM

0x19b [19:0]
• dmp_FragmentLightSource[5].
distanceAttenuationScale • NN_GX_STATE_FSUNIFORM

0x1a0 [29:0]
• dmp_FragmentMaterial.specular0
• dmp_FragmentLightSource[6].specular0

• NN_GX_STATE_FSUNIFORM

0x1a1 [29:0]
• dmp_LightEnv.lutEnabledRefl
• dmp_FragmentMaterial.specular1
• dmp_FragmentLightSource[6].specular1

• NN_GX_STATE_FSUNIFORM

0x1a2 [29:0]
• dmp_FragmentMaterial.diffuse
• dmp_FragmentLightSource[6].diffuse

• NN_GX_STATE_FSUNIFORM

0x1a3 [29:0]
• dmp_FragmentMaterial.ambient
• dmp_FragmentLightSource[6].ambient

• NN_GX_STATE_FSUNIFORM

0x1a4 [31:0]
• dmp_FragmentLightSource[6].position • NN_GX_STATE_FSUNIFORM

0x1a5 [15:0]

0x1a6
[12:0]

• dmp_FragmentLightSource[6].
spotDirection • NN_GX_STATE_FSUNIFORM [28:16]

0x1a7 [12:0]

0x1a9 [0:0] • dmp_FragmentLightSource[6].position • NN_GX_STATE_FSUNIFORM

0x1a9 [1:1]
• dmp_FragmentLightSource[6].
twoSideDiffuse

• NN_GX_STATE_FSUNIFORM

0x1a9 [2:2]
• dmp_FragmentLightSource[6].
geomFactor0 • NN_GX_STATE_FSUNIFORM

0x1a9 [3:3]
• dmp_FragmentLightSource[6].
geomFactor1 • NN_GX_STATE_FSUNIFORM

0x1aa [19:0]
• dmp_FragmentLightSource[6].
distanceAttenuationBias

• NN_GX_STATE_FSUNIFORM

0x1ab [19:0]
• dmp_FragmentLightSource[6].
distanceAttenuationScale

• NN_GX_STATE_FSUNIFORM

0x1b0 [29:0]
• dmp_FragmentMaterial.specular0
• dmp_FragmentLightSource[7].specular0

• NN_GX_STATE_FSUNIFORM

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 187 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x1b1 [29:0]
• dmp_LightEnv.lutEnabledRefl
• dmp_FragmentMaterial.specular1
• dmp_FragmentLightSource[7].specular1

• NN_GX_STATE_FSUNIFORM

0x1b2 [29:0]
• dmp_FragmentMaterial.diffuse
• dmp_FragmentLightSource[7].diffuse

• NN_GX_STATE_FSUNIFORM

0x1b3 [29:0]
• dmp_FragmentMaterial.ambient
• dmp_FragmentLightSource[7].ambient

• NN_GX_STATE_FSUNIFORM

0x1b4 [31:0]
• dmp_FragmentLightSource[7].position • NN_GX_STATE_FSUNIFORM

0x1b5 [15:0]

0x1b6
[12:0]

• dmp_FragmentLightSource[7].
spotDirection • NN_GX_STATE_FSUNIFORM [28:16]

0x1b7 [12:0]

0x1b9 [0:0] • dmp_FragmentLightSource[7].position • NN_GX_STATE_FSUNIFORM

0x1b9 [1:1]
• dmp_FragmentLightSource[7].
twoSideDiffuse

• NN_GX_STATE_FSUNIFORM

0x1b9 [2:2]
• dmp_FragmentLightSource[7].
geomFactor0 • NN_GX_STATE_FSUNIFORM

0x1b9 [3:3]
• dmp_FragmentLightSource[7].
geomFactor1 • NN_GX_STATE_FSUNIFORM

0x1ba [19:0]
• dmp_FragmentLightSource[7].
distanceAttenuationBias

• NN_GX_STATE_FSUNIFORM

0x1bb [19:0]
• dmp_FragmentLightSource[7].
distanceAttenuationScale

• NN_GX_STATE_FSUNIFORM

0x1c0 [29:0]
• dmp_FragmentLighting.ambient
• dmp_FragmentMaterial.ambient
• dmp_FragmentMaterial.emission

• NN_GX_STATE_FSUNIFORM

0x1c2 [2:0] • dmp_FragmentLightSource[i].enabled • NN_GX_STATE_FSUNIFORM

0x1c3 [0:0]

• dmp_LightEnv.shadowPrimary
• dmp_LightEnv.shadowSecondary
• dmp_LightEnv.shadowAlpha

• NN_GX_STATE_FSUNIFORM

0x1c3 [3:2] • dmp_LightEnv.fresnelSelector • NN_GX_STATE_FSUNIFORM

0x1c3 [7:4] • dmp_LightEnv.config • NN_GX_STATE_FSUNIFORM

0x1c3 [16:16] • dmp_LightEnv.shadowPrimary • NN_GX_STATE_FSUNIFORM

0x1c3 [17:17] • dmp_LightEnv.shadowSecondary • NN_GX_STATE_FSUNIFORM

0x1c3 [18:18] • dmp_LightEnv.invertShadow • NN_GX_STATE_FSUNIFORM

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 188  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x1c3 [19:19] • dmp_LightEnv.shadowAlpha • NN_GX_STATE_FSUNIFORM

0x1c3 [23:22] • dmp_LightEnv.bumpSelector • NN_GX_STATE_FSUNIFORM

0x1c3 [25:24] • dmp_LightEnv.shadowSelector • NN_GX_STATE_FSUNIFORM

0x1c3 [27:27] • dmp_LightEnv.clampHighlights • NN_GX_STATE_FSUNIFORM

0x1c3 [29:28] • dmp_LightEnv.bumpMode • NN_GX_STATE_FSUNIFORM

0x1c3 [30:30]
• dmp_LightEnv.bumpMode
• dmp_LightEnv.bumpRenorm

• NN_GX_STATE_FSUNIFORM

0x1c4 [0:0] • dmp_FragmentLightSource[0].shadowed • NN_GX_STATE_FSUNIFORM

0x1c4 [1:1] • dmp_FragmentLightSource[1].shadowed • NN_GX_STATE_FSUNIFORM

0x1c4 [2:2] • dmp_FragmentLightSource[2].shadowed • NN_GX_STATE_FSUNIFORM

0x1c4 [3:3] • dmp_FragmentLightSource[3].shadowed • NN_GX_STATE_FSUNIFORM

0x1c4 [4:4] • dmp_FragmentLightSource[4].shadowed • NN_GX_STATE_FSUNIFORM

0x1c4 [5:5] • dmp_FragmentLightSource[5].shadowed • NN_GX_STATE_FSUNIFORM

0x1c4 [6:6] • dmp_FragmentLightSource[6].shadowed • NN_GX_STATE_FSUNIFORM

0x1c4 [7:7] • dmp_FragmentLightSource[7].shadowed • NN_GX_STATE_FSUNIFORM

0x1c4 [8:8]
• dmp_FragmentLightSource[0].
spotEnabled

• NN_GX_STATE_FSUNIFORM

0x1c4 [9:9]
• dmp_FragmentLightSource[1].
spotEnabled • NN_GX_STATE_FSUNIFORM

0x1c4 [10:10]
• dmp_FragmentLightSource[2].

spotEnabled • NN_GX_STATE_FSUNIFORM

0x1c4 [11:11]
• dmp_FragmentLightSource[3].
spotEnabled • NN_GX_STATE_FSUNIFORM

0x1c4 [12:12]
• dmp_FragmentLightSource[4].

spotEnabled
• NN_GX_STATE_FSUNIFORM

0x1c4 [13:13]
• dmp_FragmentLightSource[5].

spotEnabled
• NN_GX_STATE_FSUNIFORM

0x1c4 [14:14]
• dmp_FragmentLightSource[6].

spotEnabled • NN_GX_STATE_FSUNIFORM

0x1c4 [15:15]
• dmp_FragmentLightSource[7].

spotEnabled • NN_GX_STATE_FSUNIFORM

0x1c4 [16:16] • dmp_LightEnv.lutEnabledD0 • NN_GX_STATE_FSUNIFORM

0x1c4 [17:17] • dmp_LightEnv.lutEnabledD1 • NN_GX_STATE_FSUNIFORM

0x1c4 [19:19] • dmp_LightEnv.fresnelSelector • NN_GX_STATE_FSUNIFORM

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 189 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x1c4 [22:20] • dmp_LightEnv.lutEnabledRefl • NN_GX_STATE_FSUNIFORM

0x1c4 [24:24]
• dmp_FragmentLightSource[0].

distanceAttenuationEnabled
• NN_GX_STATE_FSUNIFORM

0x1c4 [25:25]
• dmp_FragmentLightSource[1].

distanceAttenuationEnabled
• NN_GX_STATE_FSUNIFORM

0x1c4 [26:26]
• dmp_FragmentLightSource[2].

distanceAttenuationEnabled • NN_GX_STATE_FSUNIFORM

0x1c4 [27:27]
• dmp_FragmentLightSource[3].

distanceAttenuationEnabled • NN_GX_STATE_FSUNIFORM

0x1c4 [28:28]
• dmp_FragmentLightSource[4].

distanceAttenuationEnabled • NN_GX_STATE_FSUNIFORM

0x1c4 [29:29]
• dmp_FragmentLightSource[5].

distanceAttenuationEnabled
• NN_GX_STATE_FSUNIFORM

0x1c4 [30:30]
• dmp_FragmentLightSource[6].

distanceAttenuationEnabled
• NN_GX_STATE_FSUNIFORM

0x1c4 [31:31]
• dmp_FragmentLightSource[7].

distanceAttenuationEnabled • NN_GX_STATE_FSUNIFORM

0x1c5

[7:0] • dmp_FragmentMaterial.sampler
{D0,D1,FR,RB,RG,RR}

• dmp_FragmentLightSource[i].sampler
{SP,DA}

• LUT object data created by glTexImage1D

• NN_GX_STATE_LUT
[12:8]

0x1c6 [0:0] • dmp_FragmentLighting.enabled • FS_STATE_FSUNIFORM

0x1c8–
0x1cf [23:0]

• dmp_FragmentMaterial.sampler
{D0,D1,FR,RB,RG,RR}

• dmp_FragmentLightSource[i].sampler
{SP,DA}

• LUT object data created by glTexImage1D

• NN_GX_STATE_LUT

0x1d0 [1:1] • dmp_LightEnv.absLutInputD0 • NN_GX_STATE_FSUNIFORM

0x1d0 [5:5] • dmp_LightEnv.absLutInputD1 • NN_GX_STATE_FSUNIFORM

0x1d0 [9:9] • dmp_LightEnv.absLutInputSP • NN_GX_STATE_FSUNIFORM

0x1d0 [13:13] • dmp_LightEnv.absLutInputFR • NN_GX_STATE_FSUNIFORM

0x1d0 [17:17] • dmp_LightEnv.absLutInputRB • NN_GX_STATE_FSUNIFORM

0x1d0 [21:21] • dmp_LightEnv.absLutInputRG • NN_GX_STATE_FSUNIFORM

0x1d0 [25:25] • dmp_LightEnv.absLutInputRR • NN_GX_STATE_FSUNIFORM

0x1d1 [2:0] • dmp_LightEnv.lutInputD0 • NN_GX_STATE_FSUNIFORM

0x1d1 [6:4] • dmp_LightEnv.lutInputD1 • NN_GX_STATE_FSUNIFORM

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 190  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x1d1 [10:8] • dmp_LightEnv.lutInputSP • NN_GX_STATE_FSUNIFORM

0x1d1 [14:12] • dmp_LightEnv.lutInputFR • NN_GX_STATE_FSUNIFORM

0x1d1 [18:16] • dmp_LightEnv.lutInputRB • NN_GX_STATE_FSUNIFORM

0x1d1 [22:20] • dmp_LightEnv.lutInputRG • NN_GX_STATE_FSUNIFORM

0x1d1 [26:24] • dmp_LightEnv.lutInputRR • NN_GX_STATE_FSUNIFORM

0x1d2 [2:0] • dmp_LightEnv.lutScaleD0 • NN_GX_STATE_FSUNIFORM

0x1d2 [6:4] • dmp_LightEnv.lutScaleD1 • NN_GX_STATE_FSUNIFORM

0x1d2 [10:8] • dmp_LightEnv.lutScaleSP • NN_GX_STATE_FSUNIFORM

0x1d2 [14:12] • dmp_LightEnv.lutScaleFR • NN_GX_STATE_FSUNIFORM

0x1d2 [18:16] • dmp_LightEnv.lutScaleRB • NN_GX_STATE_FSUNIFORM

0x1d2 [22:20] • dmp_LightEnv.lutScaleRG • NN_GX_STATE_FSUNIFORM

0x1d2 [26:24] • dmp_LightEnv.lutScaleRR • NN_GX_STATE_FSUNIFORM

0x1d9

[2:0]

• dmp_FragmentLightSource[i].enabled • NN_GX_STATE_FSUNIFORM

[6:4]

[10:8]

[14:12]

[18:16]

[22:20]

[26:24]

[30:28]

0x200 [28:1] • Vertex buffer address allocated by glBufferData • NN_GX_STATE_VERTEX

0x201 [31:0]
• size and type in glVertexAttribPointer • NN_GX_STATE_VERTEX

0x202 [15:0]

0x202 [27:16]
• glEnableVertexAttribArray
• glDIsableVertexAttribArray
• glUseProgram

• NN_GX_STATE_VERTEX

0x202 [31:28] • glUseProgram • NN_GX_STATE_VERTEX

0x203 [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x204 [31:0]

0x205 [15:0] • Vertex buffer address allocated by glBufferData • NN_GX_STATE_VERTEX

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 191 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

[23:16] • ptr, stride, size, and type in
glVertexAttribPointer

[31:28]

0x206 [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x207 [31:0]

0x208

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x209 [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x20a [31:0]

0x20b

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x20c [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x20d [31:0]

0x20e

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x20f [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x210 [31:0]

0x211

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x212 [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x213 [31:0]

0x214

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x215 [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x216 [31:0]

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 192  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x217

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x218 [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x219 [31:0]

0x21a

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x21b [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x21c [31:0]

0x21d

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x21e [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x21f [31:0]

0x220

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x221 [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX

0x222 [31:0]

0x223

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x224 [27:0] • Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in
glVertexAttribPointer

• NN_GX_STATE_VERTEX
0x225 [31:0]

0x226

[15:0]
• Vertex buffer address allocated by glBufferData
• ptr, stride, size, and type in

glVertexAttribPointer
• NN_GX_STATE_VERTEX [23:16]

[31:28]

0x227 [27:0] • Vertex buffer address allocated by glBufferData -

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 193 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

• indices in glDrawElements

0x227 [31:31] • type in glDrawElements -

0x228 [31:0]
• count in glDrawElements
• count in glDrawArrays -

0x229 [1:0] • glUseProgram • NN_GX_STATE_SHADERMODE

0x229 [8:8] • mode in glDrawElements -

0x229 [31:31] • glUseProgram • NN_GX_STATE_SHADERPROGRAM

0x22a [31:0] • first in glDrawArrays -

0x22e • glDrawArrays -

0x22f • glDrawElements -

0x231
• glDrawElements
• glDrawArrays -

0x232 [3:0]
• ptr in glVertexAttribPointer
• Vertex attribute data content created by

glVertexAttrib{1234}fv or
glVertexAttrib{1234}f

• NN_GX_STATE_VERTEX for fixed
vertex attribute values when the
vertex buffer is used

0x233 [31:0]

0x234 [31:0]

0x235 [31:0]

0x238 [20:0] • Channel 1 command buffer size -

0x239 [20:0] • Channel 2 command buffer size -

0x23a [28:0] • Channel 1 command buffer address -

0x23b [28:0] • Channel 2 command buffer address -

0x23c [31:0] • Kick the channel 1 command buffer -

0x23d [31:0] • Kick the channel 2 command buffer -

0x242 [3:0] • glUseProgram • NN_GX_STATE_SHADERPROGRAM

0x244 [0:0] • glUseProgram • NN_GX_STATE_SHADERMODE

0x245 [0:0]
• glDrawElements
• glDrawArrays -

0x24a [3:0] • glUseProgram • NN_GX_STATE_SHADERPROGRAM

0x251 [3:0] • glUseProgram • NN_GX_STATE_SHADERPROGRAM

0x252 [31:0] • glUseProgram • NN_GX_STATE_SHADERPROGRAM

0x253
[0:0] • glDrawElements

• glDrawArrays -
[8:8]

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 194  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Register
Setting Bits Related Functions and Uniforms State Flags

0x254 [4:0] • glUseProgram • NN_GX_STATE_SHADERPROGRAM

0x25e [3:0] • glUseProgram • NN_GX_STATE_SHADERPROGRAM

0x25e [9:8]
• glDrawElements
• glDrawArrays -

0x25f [0:0]
• glDrawElements
• glDrawArrays -

0x280 [15:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x281 [23:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x282 [23:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x283 [23:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x284 [23:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x289

[3:0]

• glUseProgram
• NN_GX_STATE_SHADERPROGRAM
• NN_GX_STATE_SHADERMODE

[15:8]

[31:24]

0x28a [15:0] • glUseProgram
• NN_GX_STATE_SHADERPROGRAM
• NN_GX_STATE_SHADERMODE

0x28b [31:0] • glUseProgram • NN_GX_STATE_VERTEX

0x28c [31:0] • glUseProgram • NN_GX_STATE_VERTEX

0x28d [15:0] • glUseProgram
• NN_GX_STATE_SHADERPROGRAM
• NN_GX_STATE_SHADERMODE

0x28f • glUseProgram • NN_GX_STATE_SHADERBINARY

0x290
[7:0] • glUseProgram

• glUniformf
• NN_GX_STATE_SHADERFLOAT
• NN_GX_STATE_VSUNIFORM [31:31]

0x291–
0x298 [31:0]

• glUseProgram
• glUniformf

• NN_GX_STATE_SHADERFLOAT
• NN_GX_STATE_VSUNIFORM

0x29b [11:0] • glUseProgram • NN_GX_STATE_SHADERBINARY

0x29c–
0x2a3 [31:0] • glUseProgram • NN_GX_STATE_SHADERBINARY

0x2a5 [11:0] • glUseProgram • NN_GX_STATE_SHADERBINARY

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 195 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Register
Setting Bits Related Functions and Uniforms State Flags

0x2a6–
0x2ad [31:0] • glUseProgram • NN_GX_STATE_SHADERBINARY

0x2b0 [15:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x2b1 [23:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x2b2 [23:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x2b3 [23:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x2b4 [23:0]
• glUseProgram
• glUniformi

• NN_GX_STATE_VSUNIFORM
• NN_GX_STATE_SHADERMODE

0x2b9

[3:0]

• glUseProgram
• NN_GX_STATE_SHADERPROGRAM
• NN_GX_STATE_SHADERMODE

[15:8]

[31:24]

0x2ba [15:0]
• glUseProgram • NN_GX_STATE_SHADERPROGRAM

• NN_GX_STATE_SHADERMODE

0x2bb [31:0] • glUseProgram • NN_GX_STATE_VERTEX

0x2bc [31:0] • glUseProgram • NN_GX_STATE_VERTEX

0x2bd [15:0]
• glUseProgram • NN_GX_STATE_SHADERPROGRAM

• NN_GX_STATE_SHADERMODE

0x2bf • glUseProgram • NN_GX_STATE_SHADERBINARY

0x2c0
[7:0] • glUseProgram

• glUniformf
• NN_GX_STATE_SHADERFLOAT
• NN_GX_STATE_VSUNIFORM [31:31]

0x2c1–
0x2c8 [31:0]

• glUseProgram
• glUniformf

• NN_GX_STATE_SHADERFLOAT
• NN_GX_STATE_VSUNIFORM

0x2cb [11:0] • glUseProgram • NN_GX_STATE_SHADERBINARY

0x2cc–
0x2d3 [31:0] • glUseProgram • NN_GX_STATE_SHADERBINARY

0x2d5 [11:0] • glUseProgram • NN_GX_STATE_SHADERBINARY

0x2d6–
0x2dd [31:0] • glUseProgram • NN_GX_STATE_SHADERBINARY

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 196  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

6 Error Codes
This chapter lists error codes that may be generated when system functions are called. Use the
glGetError function to get error codes.

Table 6-1 Error Code List

Error Code Error-Generating Function Error Cause

GL_ERROR_8000_DMP nngxGenCmdlists Negative value specified for n.

GL_ERROR_8001_DMP nngxGenCmdlists Failed to allocate memory in the
management region.

GL_ERROR_8002_DMP nngxDeleteCmdlists Negative value specified for n.

GL_ERROR_8003_DMP nngxDeleteCmdlists Command list object deleted during
execution.

GL_ERROR_8004_DMP nngxBindCmdlist Failed to allocate memory in the
management region.

GL_ERROR_8005_DMP nngxBindCmdlist This API function was called while saving
the command list.

GL_ERROR_8006_DMP nngxCmdlistStorage Failed to allocate memory for command
buffer or command request.

GL_ERROR_8007_DMP nngxCmdlistStorage This function was called against the
executing command list.

GL_ERROR_8008_DMP nngxCmdlistStorage Negative value specified for bufsize or
requestcount.

GL_ERROR_8009_DMP nngxRunCmdlist Command buffer and command request
memory not allocated for bound command
list.

GL_ERROR_800A_DMP nngxReserveStopCmdlist This function was called against the
executing command list.

GL_ERROR_800B_DMP nngxReserveStopCmdlist 0, a negative value, or a value greater than
the maximum number of command
requests specified for id.

GL_ERROR_800C_DMP nngxSplitDrawCmdlist 0 bound to current command list.

GL_ERROR_800D_DMP nngxSplitDrawCmdlist Maximum number of accumulated
command requests has been reached.

GL_ERROR_800E_DMP nngxSplitDrawCmdlist A command to stop reading 3D commands
was added to a 3D command buffer that
has finished accumulating, exceeding the
maximum command buffer size.

GL_ERROR_800F_DMP nngxClearCmdlist This function was called against the
executing command list.

GL_ERROR_8010_DMP nngxSetCmdlistCallback This function was called against the

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 197 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Error Code Error-Generating Function Error Cause

executing command list.

GL_ERROR_8012_DMP nngxEnableCmdlistCallback 0, a negative value other than -1, or a
value greater than the maximum number
of command requests specified for id.

GL_ERROR_8014_DMP nngxDisableCmdlistCallback 0, a negative value other than -1, or a
value greater than the maximum number
of command requests specified for id.

GL_ERROR_8015_DMP nngxSetCmdlistParameteri This function was called against the
executing command list.

GL_ERROR_8016_DMP nngxSetCmdlistParameteri Invalid values specified for pname and
param.

GL_ERROR_8017_DMP nngxGetCmdlistParameteri Invalid value specified for pname.

GL_ERROR_8018_DMP nngxGetCmdlistParameteri The bound command list is 0, and a value
other than NX_GX_CMDLIST_BINDING is
specified for pname.

GL_ERROR_8019_DMP nngxCheckVSync Invalid value specified for display.

GL_ERROR_801A_DMP nngxWaitVSync Invalid value specified for display.

GL_ERROR_801B_DMP nngxSetVSyncCallback Invalid value specified for display.

GL_ERROR_801C_DMP nngxGenDisplaybuffers Negative value specified for n.

GL_ERROR_801D_DMP nngxGenDisplaybuffers Failed to allocate memory in the
management region.

GL_ERROR_801E_DMP nngxDeleteDisplaybuffers Negative value specified for n.

GL_ERROR_801F_DMP nngxActiveDisplay Invalid value specified for display.

GL_ERROR_8020_DMP nngxBindDisplaybuffer Failed to allocate memory in the
management region.

GL_ERROR_8021_DMP nngxDisplaybufferStorage 0 is bound to the display target.

GL_ERROR_8022_DMP nngxDisplaybufferStorage Invalid value specified for width and
height.

GL_ERROR_8023_DMP nngxDisplaybufferStorage Invalid value specified for format.

GL_ERROR_8024_DMP nngxDisplaybufferStorage Invalid value specified for area.

GL_ERROR_8025_DMP nngxDisplaybufferStorage Failed to allocate memory for display
buffer.

GL_ERROR_8026_DMP nngxDisplayEnv Negative value specified for displayx or
displayy.

GL_ERROR_8027_DMP nngxTransferRenderImage 0 bound to current command list.

GL_ERROR_8028_DMP nngxTransferRenderImage The current command list has already

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 198  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Error Code Error-Generating Function Error Cause

accumulated the maximum number of
command requests.

GL_ERROR_8029_DMP nngxTransferRenderImage Invalid value specified for buffer. Invalid
object name, or display buffer memory not
allocated.

GL_ERROR_802A_DMP nngxTransferRenderImage Current color buffer invalid. Render buffer
not attached, or render buffer memory not
allocated.

GL_ERROR_802B_DMP nngxTransferRenderImage Invalid value specified for mode.

GL_ERROR_802C_DMP nngxTransferRenderImage Color buffer resolution lower than the
resolution of the transfer destination
display buffer.

GL_ERROR_802D_DMP nngxTransferRenderImage Invalid value specified for colorx or
colory.

GL_ERROR_802E_DMP nngxTransferRenderImage Pixel size of the transfer destination
display buffer is larger than the pixel size
of the transfer origin color buffer.

GL_ERROR_802F_DMP nngxTransferRenderImage No space available in the command buffer,
so could not add split command.

GL_ERROR_8030_DMP nngxSwapBuffers Invalid value specified for display.

GL_ERROR_8031_DMP nngxSwapBuffers 0 bound to current display buffer, or
display buffer memory not allocated.

GL_ERROR_8032_DMP nngxSwapBuffers The display region specified by the
nngxDisplayEnv function lies outside of
the display buffer.

GL_ERROR_8033_DMP nngxGetDisplaybufferParameteri Invalid value specified for pname.

GL_ERROR_8034_DMP nngxStartCmdlistSave This function was called again before the
previous call to this function finished
saving the command.

GL_ERROR_8035_DMP nngxStartCmdlistSave 0 bound to current command list.

GL_ERROR_8036_DMP nngxStopCmdlistSave Command list save not started.

GL_ERROR_8037_DMP nngxUseSavedCmdlist 0 bound to current command list.

GL_ERROR_8038_DMP nngxUseSavedCmdlist Invalid object name specified for cmdlist.

GL_ERROR_8039_DMP nngxUseSavedCmdlist Current command list specified for
cmdlist.

GL_ERROR_803A_DMP nngxUseSavedCmdlist Command was added, exceeding the
maximum size of the 3D command buffer
or of the command request list.

GL_ERROR_803B_DMP nngxExportCmdlist Invalid value specified for cmdlist.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 199 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Error Code Error-Generating Function Error Cause

GL_ERROR_803C_DMP nngxExportCmdlist Value specified for datasize is smaller
than the size of the exported data.

GL_ERROR_803D_DMP nngxExportCmdlist bufferoffset, buffersize,
requestid, and requestsize specify
regions for which commands have not
been accumulated.

GL_ERROR_803E_DMP nngxExportCmdlist Values specified for bufferoffset and
buffersize are not 8-byte aligned.

GL_ERROR_803F_DMP nngxExportCmdlist Attempted to export 3D execution
command that was added with the method
that does not copy the 3D command
buffer, using the nngxUseSavedCmdlist
function.

GL_ERROR_8040_DMP nngxExportCmdlist Values specified for bufferoffset and
buffersize do not properly specify the
3D command buffer to be executed by the
exported 3D execution command.

GL_ERROR_8041_DMP nngxImportCmdlist Invalid value specified for cmdlist.

GL_ERROR_8042_DMP nngxImportCmdlist Pointer to invalid data specified for data.

GL_ERROR_8043_DMP nngxImportCmdlist Value specified for datasize does not
match size of exported data.

GL_ERROR_8044_DMP nngxImportCmdlist Command was imported, exceeding the
maximum size of the 3D command buffer
or of the command request list.

GL_ERROR_8045_DMP nngxImportCmdlist 3D execution command was not the first
command request imported into a
command list's 3D command buffer that
has not been split.

GL_ERROR_8046_DMP nngxGetExportedCmdlistInfo Pointer to invalid data specified for data.

GL_ERROR_8047_DMP nngxCopyCmdlist Current command list specified for
dcmdlist.

GL_ERROR_8048_DMP nngxCopyCmdlist Invalid value specified for scmdlist.

GL_ERROR_8049_DMP nngxCopyCmdlist Invalid value specified for dcmdlist.

GL_ERROR_804A_DMP nngxCopyCmdlist Same value specified for both scmdlist
and dcmdlist.

GL_ERROR_804B_DMP nngxCopyCmdlist Command list specified for dcmdlist is
currently being executed.

GL_ERROR_804C_DMP nngxCopyCmdlist Size of the commands accumulated in
scmdlist exceeds the maximum size of
the 3D command buffer or of the
command request list specified by
dcmdlist.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 200  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Error Code Error-Generating Function Error Cause

GL_ERROR_804D_DMP nngxSetCommandGenerationMode Invalid value specified for mode.

GL_ERROR_804E_DMP nngxAdd3DCommand 0 bound to current command list.

GL_ERROR_804F_DMP nngxAdd3DCommand An invalid value is specified for
buffersize.

GL_ERROR_8050_DMP nngxAdd3DCommand copycmd specifies GL_TRUE, and the size
of the 3D command buffer exceeds the
maximum.

GL_ERROR_8051_DMP nngxAdd3DCommand copycmd specifies GL_FALSE, and the
size of the 3D command request exceeds
the maximum.

GL_ERROR_8052_DMP nngxAdd3DCommand Value specified for bufferaddr not a
multiple of 16.

GL_ERROR_8053_DMP nngxSwapBuffers The display buffer address is not 16-byte
aligned.

GL_ERROR_8054_DMP nngxAddCmdlist An invalid value is specified for cmdlist.

GL_ERROR_8055_DMP nngxAddCmdlist No command list is currently bound.

GL_ERROR_8056_DMP nngxAddCmdlist cmdlist specifies the current command
list.

GL_ERROR_8057_DMP nngxAddCmdlist The current command list is in the middle
of execution.

GL_ERROR_8058_DMP nngxAddCmdlist There is not enough memory for command
buffers or command requests.

GL_ERROR_8059_DMP nngxTransferRenderImage The 32-block format is set and the
transfer’s source color buffer or destination
display buffer has a width or height that is
not a multiple of 32.

GL_ERROR_805A_DMP nngxTransferRenderImage A color buffer was transferred to a display
buffer that uses 24-bit pixels and the 8-
block format when either the color buffer or
display buffer had a width or height that
was not a multiple of 16.

GL_ERROR_805B_DMP nngxTransferLinearImage The current command list is bound to 0.

GL_ERROR_805C_DMP nngxTransferLinearImage The current command list is has already
accumulated the maximum number of
command requests.

GL_ERROR_805D_DMP nngxTransferLinearImage The current 3D command buffer is of
insufficient size.

GL_ERROR_805E_DMP nngxTransferLinearImage Either the object specified to the dstid
argument does not exist, or the address of
the data has not yet been allocated.

GL_ERROR_805F_DMP nngxTransferLinearImage Either the width or the height of the

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 201 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Error Code Error-Generating Function Error Cause

destination render buffer is invalid.

GL_ERROR_8060_DMP nngxTransferLinearImage The target argument is invalid.

GL_ERROR_8061_DMP nngxMoveCommandbufferPointer No command buffer is currently bound, or
the specified offset value will move to
outside of the buffer memory region.

GL_ERROR_8062_DMP nngxAddVramDmaCommand Either a valid command list object is not
currently bound, or the current command
request queue is too small.

GL_ERROR_8064_DMP nngxAddVramDmaCommand A negative value was specified for size.

GL_ERROR_8065_DMP nngxClearFillCmdlist This function was called on a command list
that was still being executed.

GL_ERROR_8066_DMP nngxValidateState There was an overflow in the 3D command
buffer.

GL_ERROR_8067_DMP nngxTransferLinearImage Either the destination render buffer or the
texture's pixels are of invalid size.

GL_ERROR_8068_DMP nngxFilterBlockImage Either a valid command list object is not
currently bound, or the current command
request queue is too small.

GL_ERROR_8069_DMP nngxFilterBlockImage Either srcaddr or dstaddr is not 8-byte
aligned.

GL_ERROR_806A_DMP nngxFilterBlockImage An invalid value was specified for width
or height.

GL_ERROR_806B_DMP nngxFilterBlockImage An invalid value was specified for format.

GL_ERROR_806C_DMP nngxValidateState An error was generated during validation.

GL_ERROR_806D_DMP nngxSetGasAutoAccumulationUpdate 0 is bound to the current command list.

GL_ERROR_806E_DMP nngxSetGasAutoAccumulationUpdate An invalid value was specified for id.

GL_ERROR_806F_DMP nngxAddL2BTransferCommand A valid command list object is not currently
bound or the current command request
queue is too small.

GL_ERROR_8070_DMP nngxAddL2BTransferCommand Either srcaddr or dstaddr uses an
invalid alignment.

GL_ERROR_8071_DMP nngxAddL2BTransferCommand blocksize is invalid.

GL_ERROR_8072_DMP nngxAddL2BTransferCommand Either width or height is invalid.

GL_ERROR_8073_DMP nngxAddL2BTransferCommand format is invalid.

GL_ERROR_8074_DMP nngxAddBlockImageCopyCommand A valid command list object is not currently
bound or the current command request
queue is too small.

GL_ERROR_8075_DMP nngxAddBlockImageCopyCommand Either srcaddr or dstaddr uses an

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 202  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Error Code Error-Generating Function Error Cause

invalid alignment.

GL_ERROR_8076_DMP nngxAddBlockImageCopyCommand totalsize is invalid.

GL_ERROR_8077_DMP nngxAddBlockImageCopyCommand Either srcunit, srcinterval,
dstunit, or dstinterval is invalid.

GL_ERROR_8078_DMP nngxAddMemoryFillCommand A valid command list object is not currently
bound or the current command request
queue is too small.

GL_ERROR_8079_DMP nngxAddMemoryFillCommand Either startaddr0 or startaddr1 uses
an invalid alignment.

GL_ERROR_807A_DMP nngxAddMemoryFillCommand Either size0 or size1 is invalid.

GL_ERROR_807B_DMP nngxAddMemoryFillCommand Either width0 or width1 is invalid.

GL_ERROR_807C_DMP nngxAddB2LTransferCommand A valid command list object is not currently
bound or the current command request
queue is too small.

GL_ERROR_807D_DMP nngxAddB2LTransferCommand Either srcaddr or dstaddr uses an
invalid alignment.

GL_ERROR_807E_DMP nngxAddB2LTransferCommand blocksize is invalid.

GL_ERROR_807F_DMP nngxAddB2LTransferCommand aamode is invalid.

GL_ERROR_8080_DMP nngxAddB2LTransferCommand Either srcformat or dstformat is
invalid.

GL_ERROR_8081_DMP nngxAddB2LTransferCommand The target image has a larger pixel size
than the original image.

GL_ERROR_8082_DMP nngxAddB2LTransferCommand Either srcwidth, srcheight,
dstwidth, or dstheight is invalid.

GL_ERROR_8083_DMP nngxAddB2LTransferCommand The target image is wider or taller than the
original image in pixels.

GL_ERROR_8084_DMP nngxFlush3DCommand 0 is bound to the current command list.

GL_ERROR_8085_DMP nngxFlush3DCommand The accumulated command requests have
reached the maximum number.

GL_ERROR_8086_DMP nngxFlush3DCommand If a 3D command loading complete
command is added to the accumulated 3D
command buffer, the buffer will exceed its
maximum size.

GL_ERROR_8087_DMP nngxSwapBuffersByAddress An invalid value was specified for
display.

GL_ERROR_8088_DMP nngxSwapBuffersByAddress An invalid value was specified for addr.

GL_ERROR_8089_DMP nngxSwapBuffersByAddress An invalid value was specified for addrB.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 203 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Error Code Error-Generating Function Error Cause

GL_ERROR_808A_DMP nngxSwapBuffersByAddress An invalid value was specified for width.

GL_ERROR_808B_DMP nngxSwapBuffersByAddress An invalid value was specified for format.

GL_ERROR_808C_DMP nngxAdd3DCommandNoCacheFlush 0 is bound to the current command list.

GL_ERROR_808D_DMP nngxAdd3DCommandNoCacheFlush An invalid value was specified for
buffersize.

GL_ERROR_808E_DMP nngxAdd3DCommandNoCacheFlush bufferaddr is not a multiple of 16.

GL_ERROR_808F_DMP nngxAdd3DCommandNoCacheFlush The command request size is larger than
the maximum size.

GL_ERROR_8090_DMP nngxAddVramDmaCommandNoCacheFlush A valid command list object is not currently
bound, or the current command request
size is insufficient.

GL_ERROR_8091_DMP nngxAddVramDmaCommandNoCacheFlush A negative value was specified for size.

GL_ERROR_9000_DMP nngxSwapBuffers The display mode is
NN_GX_DISPLAYMODE_STEREO and
either 0 is bound to
NN_GX_DISPLAY0_EXT or the display
buffer region has not been allocated.

GL_ERROR_9001_DMP nngxSwapBuffers The display mode is
NN_GX_DISPLAYMODE_STEREO and the
display region specified by the
nngxDisplayEnv function is outside of
the display buffer.

GL_ERROR_9002_DMP nngxSwapBuffers The display mode is
NN_GX_DISPLAYMODE_STEREO and the
resolution, format, or memory region
differs between the display buffers bound
to NN_GX_DISPLAY0 and
NN_GX_DISPLAY0_EXT.

GL_ERROR_9003_DMP nngxSetDisplayMode An invalid value is specified for mode.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 204  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Revision History

Version Revision
Date Item Description

2.3 2011/04/18

• Added section 5.4.17 Moving the Command Buffer Pointer.
• Added section 5.8.14.7 Performance and Setting the Load Array.
• Section 5.8.14.6 Padding Components and Automatic Padding for the Load

Array
Added explanation about load array padding elements.

• Section 5.9.18 Converting a 32-Bit Floating-Point Number Between -1 and 1
into an 8-Bit Signed Integer
Changed value range from "0 to 1" to "-1 to 1."

• Added nngxMoveCommandBufferPointer.
• Table 5-4 Function List

Changed bit width of command buffer header SIZE field.
• Added section 5.8.43 Command Buffer Execution Registers.

2.2 2011/03/17

• Added nngxAddVramDmaCommandNoCacheFlush.
• Added supplementary information about nngxAddVramDmaCommand.
• Added nngxAdd3DCommandNoCacheFlush.
• Added supplementary information about nngxAdd3DCommand.
• Revised register configuration of Catmull-Clark subdivision shader.
• Fixed typos.

2.1 2011/02/07

• Added information about NN_GX_CMDLIST_HW_STATE.
• Changed bits [11:8] of register 0x1c5 to [12:8].
• Added a note about bits [25:24] of register 0x126.
• Added a note to 5.8.39 Settings Registers Specific to the Geometry Shader.
• Deleted unnecessary settings from register settings for the reserved

geometry shaders. Corrected a mistaken value.
• Revised the description of clearing the framebuffer cache.
• Added a note about setting undocumented bits.
• Added a note about bits [11:8] of register 0x0af.
• Added a note about register 0x1c0.
• Added a note about use of dummy commands when setting bits [1:0] of

register 0x229.
• Revised the description of address alignment of the color buffer.
• Added NN_GX_CMDLIST_GAS_UPDATE to nngxSetCmdlistParameteri.
• Added the new nngxSwapBuffersByAddress function.
• Deleted the RGBA8 format from the display buffers

2.0 2010/11/05

• 3.3.3
• 3.3.26
• 5.8.38.1
• 5.8.41

• Revised an explanation regarding the nngxBindCmdlist error.
• Added an explanation regarding transferring a block image.
• Revised the explanation for 0x25f.
• Added an explanation regarding clearing the framebuffer cache.

1.9 2010/10/08

• 5.8.28
• 5.8.20.13,

5.8.20.14
• 5.8.20.15

• Added explanation of register settings to control frame buffer access.
• Noted that shadow textures and gas textures do not support

mipmaps.
• Added explanation of clearing the texture cache.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 205 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Version Revision
Date Item Description

• 3.3.8
• 3.3.5,

3.3.6

• 3.3.27

• Corrected setting method for register 0x227.
• Added nngxFlush3DCommand function.
• In sections 3.3.5 and 3.3.6 corrected descriptions of nngxRunCmdlist,
nngxStopCmdlist, and nngxSplitDrawCmdlist functions.

• Corrected description of nngxAddMemoryFillCommand function.
• Corrected typos.

1.8 2010/09/16

• Standardized the function argument type void* to GLvoid*.
• Changed the type of the srcaddr argument to the
nngxAddVramDmaCommand function into const GLvoid*.

• Removed the restriction that srcaddr and dstaddr must be 8-byte aligned
in the nngxAddVramDmaCommand function.

• Changed the type of the srcaddr argument to the
nngxFilterBlockImage function into const GLvoid*.

• Added nngxSetGasAutoAccumulationUpdate.
• Added nngxAddB2LTransferCommand.
• Added nngxAddL2BTransferCommand.
• Added nngxBlockImageCopyCommand.
• Added nngxAddMemoryFillCommand.
• Added nngxGetAllocator.
• Added a description related to automatic padding for load arrays.
• Revised information on gas register settings.
• Added a description related to framebuffer access control setting registers.
• Revised descriptions of the blend setting register 0x101 and logical

operations.
• Revised information for bit [0:0] of register 0x25f, which has settings

related to the rendering API.
• Added information on the wrapping mode settings for shadow textures.

1.7 2010/08/20

• Revised descriptions of register settings for
dmp_FragOperation.wScale.

• Added information on register settings for gas lookup tables and procedural
textures.

• Added information on shadow and gas settings to the texture format register
settings.

• Revised the conversion code in section 5.9.7 Converting a 32-Bit Floating-
Point Number into a 12-Bit Signed Fixed-Point Number with 11 Fractional
Bits (Alternate Method).

• Changed register 0x289 to 0x28a in the setting registers related to the
rendering API.

• Revised information on automatic padding for load arrays.

1.6 2010/07/30

• Deprecated restriction that 2D textures cannot straddle 32 MB boundaries.
• Added the nngxSetTimeout function.
• Changed buffersize restrictions for the nngxAdd3DCommand function.
• Added description of the global ambient register settings.
• Added information about bit [7:4] of register 0x1c3.
• Revised information about register 0x227 setting values.
• Added setting values for bit [18:18] of register 0x1c4.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 206  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

Version Revision
Date Item Description

• Revised information about bit [16:16] of register 0x25e.
• Clarified the number of items stored in lookup tables.
• Added details about the commands for the rendering API.
• Added information about framebuffer cache clears.
• Replaced some images to fix an issue where images were corrupted when

creating a PDF version of this document.

1.5 2010/07/13
• Fixed incorrect values.
• Added a note about address constraints for cube-map textures.

1.4 2010/07/07

• Revised the notation used for register addresses.
• Added a table of correspondences between uniforms in reserved geometry

shaders and registers.
• Changed the setting for register 0x280 in the line shader.
• Added a precaution about command generation if glUseProgram specifies

0.
• Added parameters that can be obtained using

nngxGetCmdlistParameteri.
• Added two new functions, nngxInvalidateState and
nngxTransferLinearImage.

• Added register information for global ambients.

1.3 2010/06/04

• Revised the description of nngxExportCmdlist.
• Revised allocator information related to cube-map textures.
• Added three new functions: nngxClearFillCmdlist,

nngxAddVramDmaCommand, and nngxFilterBlockImage.
• Described factors that cause errors to be generated by validation with
nngxValidateState.

• Revised argument specifications for nngxAdd3DCommand.
• Added supplementary information on a byte-enable setting of 0 for the

command buffer.
• Added supplementary information on various registers.
• Added information on the binary layout of signed fixed-point numbers.
• Added register information for dmp_Gas.autoAcc.
• Added register information related to clearing the early depth buffer.
• Added register information related to the rendering API.
• Added register settings that are applicable when a reserved geometry

shader is used.
• Added register information related to clearing the framebuffer caches.
• Added register information related to interrupt commands.
• Added a list of PICA registers.

1.2 2010/05/11

• Revised conditions for updating the NN_GX_STATE_SCISSOR state as well
as dependency relationships.

• Added conditions for command generation with
NN_GX_STATE_SHADERPROGRAM.

• Added information on setting registers for fixed vertex attributes.
• Added section 5.8.15 Other Setting Registers Related to the Vertex Shader.
• Added information on setting registers for the gas shading lookup tables.
• Fixed typos.

DMPGL 2.0 System API Specifications

 2009-2011 Nintendo 207 CTR-06-0006-001-D
CONFIDENTIAL Released: May 13, 2011

Version Revision
Date Item Description

1.1 2010/04/23

• Fixed typos.
• Added information on display modes and stereoscopic display.
• Added a note about the block format to the specifications of
nngxDisplaybufferStorage.

• Added an error to nngxTransferRenderImage related to block-32 mode.
• Added a new function, nngxGetCommandGenerationMode.
• Added details for register settings for vertex shader attributes.
• Renamed section 5.8.16 Render Buffer Address Setting Registers to Render

Buffer Setting Registers and added register settings related to the render
buffer.

• Added content in section 5.8.19 Texture Setting Registers. Deleted section
5.12.2.6 Clock Controls for Texture Coordinates and consolidated it with
section 5.8.10 Clock Control Setting Registers for Vertex Shader Output
Attributes.

• Added register information to section 5.8.29 Depth Test Setting Registers.
• Added section 5.8.37 Register Settings Related to the Rendering API.
• Added section 5.8.38 Register Settings Related to the Geometry Shader.
• Added section 5.8.39 Settings for Undocumented Bits.
• Added information to section 5.10 Command Cache Restrictions.
• Noted that rendering functions generate commands to set registers for the

texture sampler type (this was added along with revisions to the
implementation).

• Added errors for nngxTransferRenderImage.
• Added information on registers that set gas shading lookup tables.
• Revised the description of nngxStopCmdlist.

1.0 2010/04/02 • Initial version.

 DMPGL 2.0 System API Specifications

CTR-06-0006-001-D 208  2009-2011 Nintendo
Released: May 13, 2011 CONFIDENTIAL

DMP and PICA are registered trademarks of Digital Media Professionals Inc.

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

© 2009-2011 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

© 2009-2011 Digital Media Professionals Inc. All
rights reserved.

This documentation is the confidential and
proprietary property of Digital Media
Professionals Inc. The possession or use of this
documentation and its content requires a written
license from Digital Media Professionals Inc.

	1
Overview
	2 Initialization API
	2.1 API
	2.1.1 DMPGL Initialization
	2.1.2 DMPGL Finalization
	2.1.3 Getting an Allocator

	2.2 Allocator Information

	3 Execution Control API
	3.1 Command List Objects
	3.1.1 3D Command Buffer
	3.1.2 Command Requests
	3.1.2.1 DMA Transfer Commands
	3.1.2.2 3D Execution Commands
	3.1.2.3 Memory Fill Commands
	3.1.2.4 Post-Transfer Commands
	3.1.2.5 Render Texture Transfer Commands

	3.2 Executing Commands
	3.2.1 Serial Execution Mode
	3.2.2 Parallel Execution Mode
	3.2.3 Synchronous Execution Mode

	3.3 API
	3.3.1 Generating Command List Objects
	3.3.2 Deleting Command List Objects
	3.3.3 Binding Command List Objects
	3.3.4 Allocating Data Regions for Command List Objects
	3.3.5 Executing Command List Objects
	3.3.6 Stopping Command List Objects
	3.3.7 Scheduling Stops for Command List Objects
	3.3.8 Splitting the 3D Command Buffer
	3.3.9 Flushing the Accumulated 3D Command Buffer
	3.3.10 Clearing Command List Objects
	3.3.11 Clearing Command List Objects and Filling Command Buffers
	3.3.12 Registering Interrupt Handlers for Command Completion
	3.3.13 Setting Parameters for Command List Objects
	3.3.14 Getting the Parameters of Command List Objects
	3.3.15 Checking for V-Sync Updates
	3.3.16 V-Sync Synchronization
	3.3.17 Registering the V-Sync Callback Function
	3.3.18 Waiting for a Command List Object to Complete Execution
	3.3.19 Transferring Data via DMA
	3.3.20 Transferring Data via DMA (Without Cache Flush)
	3.3.21 Transferring Block Images with an Anti-Aliasing Filter
	3.3.22 Image Transfer Requests
	3.3.23 Setting the Timeout for Waiting to Complete Command List Object Execution
	3.3.24 Updating Additive Blend Results Rendered with Gas Density Information
	3.3.25 Transferring a Block Image That Is Converted into a Linear Image
	3.3.26 Transferring a Linear Image That Is Converted into a Block Image
	3.3.27 Transferring a Block Image
	3.3.28 Filling Memory

	3.4 NN_GX_CMDLIST_HW_STATE

	4 Display Control API
	4.1 Processing Flow from Rendering Through Display
	4.1.1 Rendering
	4.1.2 Transferring Rendered Results
	4.1.3 Displaying

	4.2 Specifying the Display Area
	4.3 API
	4.3.1 Generating Display Buffer Objects
	4.3.2 Deleting Display Buffer Objects
	4.3.3 Activating Display Targets
	4.3.4 Binding Display Buffers
	4.3.5 Allocating Display Buffers
	4.3.6 Specifying the Display Area
	4.3.7 Requesting Transfers of Rendered Results
	4.3.8 Displaying Rendered Screens (Swapping)
	4.3.9 Getting Parameters for Display Buffer Objects
	4.3.10 Display Mode Settings
	4.3.11 Screen Display by Specifying the Display Address (Swapping by Specifying Addresses)

	5 Command List Extended API
	5.1 Saving and Reusing Command List Objects
	5.1.1 Saving Commands
	5.1.2 Using Saved Commands
	5.1.2.1 The Method That Copies the 3D Command Buffer
	5.1.2.2 The Method That Does Not Copy the 3D Command Buffer
	5.1.2.3 Copied Command Request Information

	5.2 Editing Commands
	5.3 Other Features
	5.3.1 Importing and Exporting Command Lists
	5.3.2 Copying Command List Objects
	5.3.3 3D Command Buffer Generation
	5.3.4 Adding 3D Commands

	5.4 API
	5.4.1 Start Saving Command Lists
	5.4.2 Stop Saving Command Lists
	5.4.3 Using Saved Command Lists
	5.4.4 Exporting Command Lists
	5.4.5 Importing Command Lists
	5.4.6 Getting Command List Information for Exported Data
	5.4.7 Copying Command Lists
	5.4.8 Checking the DMPGL State and Generating Commands
	5.4.9 Updating the DMPGL State
	5.4.10 Setting the Command Output Mode
	5.4.11 Getting the Command Output Mode
	5.4.12 Adding 3D Commands
	5.4.13 Adding 3D Commands (Without Cache Flush)
	5.4.14 Adding a Copied Command List
	5.4.15 Getting the Updated DMPGL State
	5.4.16 Invalidating DMPGL State Updates
	5.4.17 Moving the Command Buffer Pointer

	5.5 State Flags
	5.5.1 State Flag Types
	5.5.2 State Flag Dependencies
	5.5.3 Lookup Table Command Generation

	5.6 DMPGL Functions That Generate Commands
	5.7 3D Command Buffer Specifications
	5.7.1 Basic Specifications
	5.7.2 Single Access
	5.7.3 Burst Access
	5.7.3.1 Writing to a Single Register
	5.7.3.2 Writing to Consecutive Registers

	5.8 PICA Register Information
	5.8.1 Render Start Registers
	5.8.2 Vertex Shader Floating-Point Registers
	5.8.2.1 Address Information
	5.8.2.2 How to Set the Input Mode for 32-Bit Floating-Point Numbers
	5.8.2.3 How to Set the Input Mode for 24-Bit Floating-Point Numbers

	5.8.3 Vertex Shader Boolean Registers
	5.8.4 Vertex Shader Integer Registers
	5.8.5 Vertex Shader Starting Address Setting Registers
	5.8.6 Registers That Set the Number of Input Vertex Attributes
	5.8.7 Registers That Set the Number of Output Registers Used by the Vertex Shader
	5.8.8 Registers That Set the Vertex Shader Output Mask
	5.8.9 Registers That Set Vertex Shader Output Attributes
	5.8.10 Clock Control Setting Registers for Vertex Shader Output Attributes
	5.8.11 Vertex Shader Program Code Setting Registers
	5.8.12 Registers That Map Vertex Attributes to Input Registers
	5.8.13 Registers That Set Fixed Vertex Attribute Values
	5.8.14 Registers for Vertex Attribute Array Settings
	5.8.14.1 Base Address
	5.8.14.2 Internal Vertex Attributes
	5.8.14.3 Fixed Vertex Attribute Mask
	5.8.14.4 Vertex Attribute Count
	5.8.14.5 Load Arrays
	5.8.14.6 Padding Components and Automatic Padding for the Load Array
	5.8.14.7 Setting the Load Array and Performance

	5.8.15 Other Setting Registers Related to the Vertex Shader
	5.8.16 Texture Address Setting Registers
	5.8.17 Render Buffer Setting Registers
	5.8.18 Texture Combiner Setting Registers
	5.8.19 Registers That Set Fragment Lighting
	5.8.19.1 Enabling and Disabling Lighting
	5.8.19.2 Global Ambient Settings
	5.8.19.3 Per-Light Settings
	5.8.19.4 Lookup Table Settings
	5.8.19.5 Setting the Range of Lookup Table Arguments
	5.8.19.6 Setting Lookup Table Input Values
	5.8.19.7 Setting the Output Scaling for Lookup Tables
	5.8.19.8 Shadow Attenuation Settings
	5.8.19.9 Miscellaneous Settings

	5.8.20 Texture Setting Registers
	5.8.20.1 Shadow Texture Settings
	5.8.20.2 Setting the Texture Sampler Type
	5.8.20.3 Setting the Texture Coordinate Selection
	5.8.20.4 Procedural Texture Settings
	5.8.20.5 Lookup Table Settings for Procedural Textures
	5.8.20.6 Texture Resolution
	5.8.20.7 Texture Formats
	5.8.20.8 Texture WRAP Modes
	5.8.20.9 Texture Filter Modes
	5.8.20.10 Texture Level of Detail
	5.8.20.11 Texture Border Color
	5.8.20.12 Registers for Texture LOD Bias Settings
	5.8.20.13 Shadow Texture Settings
	5.8.20.14 Gas Texture Use Settings
	5.8.20.15 Clearing the Texture Caches

	5.8.21 Registers for Gas Settings
	5.8.21.1 Gas-Related Reserved Uniform Settings
	5.8.21.2 Shading Lookup Table Settings

	5.8.22 Fog Setting Registers
	5.8.22.1 Fog-related Reserved Uniform Settings
	5.8.22.2 Fog Lookup Table Settings

	5.8.23 Fragment Operation Setting Registers
	5.8.24 Shadow Attenuation Factor Setting Registers
	5.8.25 w Buffer Setting Registers
	5.8.26 User Clip Setting Registers
	5.8.27 Alpha Test Setting Registers
	5.8.28 Framebuffer Access Control Setting Registers
	5.8.29 Viewport Setting Registers
	5.8.30 Depth Test Setting Registers
	5.8.31 Logical Operation and Blend Setting Registers
	5.8.32 Early Depth Test Setting Registers
	5.8.33 Stencil Test Setting Registers
	5.8.34 Culling Setting Registers
	5.8.35 Scissoring Setting Registers
	5.8.36 Color Mask Setting Registers
	5.8.37 Block Format Setting Registers
	5.8.38 Settings Registers Specific to the Rendering API
	5.8.38.1 With the Vertex Buffer in Use
	5.8.38.2 Without the Vertex Buffer in Use

	5.8.39 Settings Registers Specific to the Geometry Shader
	5.8.39.1 Overview
	5.8.39.2 Geometry Shader Floating-Point Registers
	5.8.39.3 Geometry Shader Boolean Registers
	5.8.39.4 Geometry Shader Integer Registers
	5.8.39.5 Geometry Shader Starting Address Setting Registers
	5.8.39.6 Registers That Set the Number of Input Vertex Attributes
	5.8.39.7 Registers That Set the Number of Output Registers Used by the Geometry Shader
	5.8.39.8 Register That Sets the Geometry Shader Output Register Mask
	5.8.39.9 Registers That Set Geometry Shader Output Attributes
	5.8.39.10 Clock Control Setting Registers for Geometry Shader Output Attributes
	5.8.39.11 Geometry Shader Program Code Setting Registers
	5.8.39.12 Registers That Map Vertex Attributes to Geometry Shader Input Registers
	5.8.39.13 Miscellaneous Registers

	5.8.40 Settings Registers When Reserved Geometry Shaders Are Used
	5.8.40.1 Point Shader
	5.8.40.2 Line Shader
	5.8.40.3 Silhouette Shader
	5.8.40.4 Catmull-Clark Subdivision
	5.8.40.5 Loop Subdivision
	5.8.40.6 Particle System

	5.8.41 Clearing the Framebuffer Cache
	5.8.42 Commands That Generate Interrupts (Split Commands)
	5.8.43 Command Buffer Execution Registers
	5.8.43.1 Overview
	5.8.43.2 Use Example 1
	5.8.43.3 Use Example 2
	5.8.43.4 Notes

	5.8.44 Settings Information for Otherwise Undocumented Bits

	5.9 Code to Convert Formats for PICA Register Settings
	5.9.1 Converting from float32 to float24
	5.9.2 Converting from float32 to float16
	5.9.3 Converting from float32 to float31
	5.9.4 Converting from float32 to float20
	5.9.5 Converting a 32-Bit Floating-Point Number into an 8-Bit Signed Fixed-Point Number with 7 Fractional Bits
	5.9.6 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits
	5.9.7 Converting a 32-Bit Floating-Point Number into a 12-Bit Signed Fixed-Point Number with 11 Fractional Bits (Alternate Method)
	5.9.8 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 8 Fractional Bits
	5.9.9 Converting a 32-Bit Floating-Point Number into a 13-Bit Signed Fixed-Point Number with 11 Fractional Bits
	5.9.10 Converting a 32-Bit Floating-Point Number into a 16-Bit Signed Fixed-Point Number with 12 Fractional Bits
	5.9.11 Converting a 32-Bit Floating-Point Number into an 8-Bit Unsigned Fixed-Point Number with No Fractional Bits
	5.9.12 Converting a 32-Bit Floating-Point Number into an 11-Bit Unsigned Fixed-Point Number with 11 Fractional Bits
	5.9.13 Converting a 32-Bit Floating-Point Number into a 12-Bit Unsigned Fixed-Point Number with 12 Fractional Bits
	5.9.14 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number with 24 Fractional Bits
	5.9.15 Converting a 32-Bit Floating-Point Number into a 24-Bit Unsigned Fixed-Point Number with 8 Fractional Bits
	5.9.16 Converting a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned Integer
	5.9.17 Alternate Conversion from a 32-Bit Floating-Point Number Between 0 and 1 into an 8-Bit Unsigned Integer
	5.9.18 Converting a 32-Bit Floating-Point Number Between -1 and 1 into an 8-Bit Signed Integer
	5.9.19 Converting a 16-Bit Floating-Point Value into a 32-Bit Floating-Point Value

	5.10 Command Cache Restrictions and Precautions
	5.11 PICA Register List

	6 Error Codes

