

 2009-2011 Nintendo CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

DMPGL 2.0 Specifications
Version 2.6

Digital Media Professionals Inc.

The content of this document is highly confidential
and should be handled accordingly.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 2  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 3 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Table of Contents

1 DMPGL 2.0 Overview ...17

1.1 About This Document ...17

1.2 Structure of This Document ...17

1.3 Single-Thread Model ..18

1.4 Programmable Vertex Processing and Fixed Fragment Processing ...18

1.5 Creating Programmable Geometry ..18

1.6 Examples and Notations ..18
1.6.1 Showing Variables, Constants, Functions, and Reserved Uniforms ..18
1.6.2 Notation of Sets ..18

2 DMPGL 2.0 Pipeline ...20

2.1 Overview Figure for the DMPGL 2.0 Pipeline ..20

2.2 Vertex Input ..22

2.3 Vertex Processing ..23

2.4 Vertex Cache ..24

2.5 Geometry Creation ...25

2.6 Triangle Setup ..26
2.6.1 Triangle Construction ...26
2.6.2 Culling ..26
2.6.3 Clipping ..26
2.6.4 Window Coordinate Conversion ...27

2.7 Rasterization ..27

2.8 Texel Generation ..28
2.8.1 Texture-Coordinate Generation ..28
2.8.2 Address and LOD Generation ..29
2.8.3 Obtaining Texels ...29
2.8.4 Filtering ...29

2.9 Procedural Textures ...29

2.10 Fragment Lighting ..30
2.10.1 Vector Generation ..30
2.10.2 Dot Product Generation ...31
2.10.3 LUT Access ..31
2.10.4 Color Generation ..31

2.11 Texture Combiners ...31

2.12 Fog ...32

2.13 Per-Fragment Operations ..32

2.14 Framebuffer Operations ...33

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 4  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

2.14.1 Read Pixels .. 33
2.14.2 Copy Pixels .. 33
2.14.3 Render Textures ... 34
2.14.4 Clear the Framebuffer .. 34

2.15 Coordinate Systems .. 34

3 DMP Shaders ... 36

3.1 Reserved Uniforms .. 36

3.2 Vertex Shaders .. 36

3.3 Geometry Shaders ... 37

3.4 Fragment Shaders ... 38

4 Primitives .. 39

4.1 Points ... 39
4.1.1 How to Use Points ... 39
4.1.2 Point Size ... 40
4.1.3 Point Sprites ... 40
4.1.4 Point Rendering Method .. 40
4.1.5 Point Clipping ... 41
4.1.6 Multisample Rendering .. 41
4.1.7 List of Reserved Uniforms ... 41

4.2 Lines .. 42
4.2.1 How to Use Lines ... 42
4.2.2 Line Width .. 42
4.2.3 Line Rendering Method ... 42
4.2.4 Multisample Rendering .. 43
4.2.5 List of Reserved Uniforms ... 43

4.3 Silhouettes ... 43
4.3.1 How to Use Silhouettes ... 44
4.3.2 Silhouette Primitives .. 44
4.3.3 Method for Creating Silhouette Edges ... 46
4.3.4 Vertex Shaders When Silhouettes Are in Use ... 47
4.3.5 Silhouette Colors ... 47
4.3.6 Front-Facing Settings .. 47
4.3.7 Creating Silhouette Edges on Open Edges ... 48
4.3.8 Specifying Multiple Strip Arrays ... 48
4.3.9 List of Reserved Uniforms ... 49

4.4 Subdivisions ... 50
4.4.1 Catmull-ClarkSubdivision ... 51
4.4.2 Loop Subdivision ... 53
4.4.3 How to Process Subdivisions .. 56

DMPGL 2.0 Specifications

 2009-2011 Nintendo 5 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

4.4.4 List of Reserved Uniforms ..56

4.5 Particle Systems ..56
4.5.1 How to Use Particle Systems ...57
4.5.2 Input of Control Points ..57
4.5.3 Particle Colors ..58
4.5.4 Particle Size ...58
4.5.5 Generated Particle Count ...59
4.5.6 Particle Running Time ..59
4.5.7 Generating Random Values ...59
4.5.8 Texture Settings..60
4.5.9 List of Reserved Uniforms ..61
4.5.10 Reserved Geometry Shaders ...62

4.6 Vertex State Collections ...62
4.6.1 Creating Vertex State Collections ..62
4.6.2 Binding Vertex State Collections ..63
4.6.3 Deleting Vertex State Collections ...63

5 Rasterization ...64

5.1 Texture Units ..64
5.1.1 Enabling Texture Units ...64
5.1.2 Specifying Texture Units ...65
5.1.3 Texture Image Specifications ...65
5.1.4 Copying From the Framebuffer ..68
5.1.5 Partial Texture Images..69
5.1.6 Compressed Textures ..69
5.1.7 Lookup Tables ..70
5.1.8 Creating Textures ...73
5.1.9 Binding Textures ...73
5.1.10 Texture Parameters ..73
5.1.11 Input of Coordinates to Texture Units ...74
5.1.12 Loading Texture Mipmap Data ...75
5.1.13 Automatically Generating Texture Mipmap Data ..76
5.1.14 Texture Coordinate Precision ...77
5.1.15 Acquiring Texture Level Parameters ..77

5.2 Texture Combiners ...79
5.2.1 Overview ..79
5.2.2 Combiner Buffers ...81
5.2.3 Other Combiner Features ..82
5.2.4 List of Reserved Uniforms ..83

5.3 Texture Collections ...85
5.3.1 Creating Texture Collections ..85
5.3.2 Binding Texture Collections ..85

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 6  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

5.3.3 Deleting Texture Collections .. 86

5.4 Native PICA Format ... 86
5.4.1 Byte Order .. 86
5.4.2 V-Flipping ... 89
5.4.3 Addressing ... 89

5.5 Early Depth Tests ... 91
5.5.1 Overview .. 91
5.5.2 Clear Value for the Early Depth Buffer ... 92
5.5.3 Block Mode for Early Depth Tests .. 92
5.5.4 Enabling and Disabling Early Depth Tests ... 93
5.5.5 Setting the Comparison Function for Early Depth Tests .. 93
5.5.6 Clearing the Early Depth Buffer ... 93
5.5.7 Changing to and Recovering from Block-32 Mode .. 94

6 Reserved Fragment Shaders ... 95

6.1 Fragment Operations ... 95
6.1.1 Switching Fragment Operations .. 95
6.1.2 List of Reserved Uniforms ... 95

6.2 Procedural Textures ... 95
6.2.1 How to Use Procedural Textures ... 96
6.2.2 Creating and Assigning Lookup Tables.. 97
6.2.3 Random-Number Generation .. 97
6.2.4 Clamping .. 98
6.2.5 Mapping Calculations .. 99
6.2.6 Lookup Tables for Mapping Calculations ... 101
6.2.7 List of Reserved Uniforms ... 104

6.3 DMP Fragment Lighting ... 106
6.3.1 Eye Coordinate System ... 107
6.3.2 Primary and Secondary Colors .. 107
6.3.3 Lookup Tables (LUTs) .. 109
6.3.4 Geometry Factors .. 111
6.3.5 Shadow Attenuation Terms .. 112
6.3.6 Bump Mapping ... 112
6.3.7 Fresnel Factors .. 113
6.3.8 Spotlight Attenuation Term ... 113
6.3.9 Distance Attenuation Term ... 114
6.3.10 Texture Combiner Input ... 114
6.3.11 List of Reserved Uniforms ... 115

6.4 DMP Shadows ... 118
6.4.1 DMP Shadow Overview ... 119
6.4.2 Shadow Texture Units .. 119
6.4.3 Shadow Reference Pass ... 119

DMPGL 2.0 Specifications

 2009-2011 Nintendo 7 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

6.4.4 Cube-Map Shadow Filtering ...120
6.4.5 Shadow Accumulation Pass ...121
6.4.6 Attenuation Factors ..122
6.4.7 Shadow Artifacts...123
6.4.8 Shadow Texture Format ...123
6.4.9 List of Reserved Uniforms ..124

6.5 Fog ...124
6.5.1 Enabling Fog ..125
6.5.2 Setting Lookup Table Content ..125
6.5.3 Lookup Table Input Values ...125
6.5.4 Specifying the Fog Color ..125
6.5.5 Fog Calculations...126
6.5.6 Fog Z-Flipping ..126
6.5.7 List of Reserved Uniforms ..126

6.6 Gas ...126
6.6.1 Gas Textures ..127
6.6.2 Rendering Density Values ..127
6.6.3 Shading ..128
6.6.4 List of Reserved Uniforms ..131

6.7 Alpha Tests ...131
6.7.1 Enabling and Disabling Alpha Tests ...132
6.7.2 Setting Reference Values Used by Alpha Tests ...132
6.7.3 Controlling Alpha Test Comparisons ..132
6.7.4 List of Reserved Uniforms ..132

6.8 Clipping ..133
6.8.1 Clipping Volumes..133
6.8.2 List of Reserved Uniforms ..134

6.9 w Buffer ..134
6.9.1 Depth Values When the w Buffer Is Enabled ...134
6.9.2 Enabling and Disabling the w Buffer ..134
6.9.3 The w Buffer and the Depth Range ..135
6.9.4 The w Buffer and Polygon Offset ...135
6.9.5 List of Reserved Uniforms ..135

7 Miscellaneous ...136

7.1 Logical Operations ...136

7.2 Flush and Finish ...137

7.3 Enable and Disable ..137

7.4 DrawElements and DrawArrays ...137

7.5 LineWidth ...137

7.6 PixelStorei ..137

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 8  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

7.7 SampleCoverage ... 137

7.8 ReadPixels ... 138

7.9 Framebuffer Objects .. 138
7.9.1 Specifications Particular to the PICA on Desktop Environment .. 139
7.9.2 Specifications Particular to the Actual Hardware Environment ... 140

7.10 Uniform{1234}{if}(v) ... 140

7.11 GenerateMipmap ... 140

7.12 VertexAttribPointer ... 140

7.13 Clear .. 140

7.14 BlendFuncSeparate ... 141

7.15 Viewport ... 141

7.16 Dithering... 141

7.17 BufferData .. 141

7.18 Vertex Buffers .. 141
7.18.1 Restriction 1 ... 141
7.18.2 Restriction 2 ... 142
7.18.3 Restriction 3 ... 142

7.19 Getting the State .. 143

7.20 Hint ... 144

7.21 CreateShader and CreateProgram .. 144

7.22 StencilFuncSeparate ... 144

7.23 StencilMaskSeparate ... 144

7.24 StencilOpSeparate ... 144

7.25 UniformMatrix .. 144

7.26 Location of Uniforms .. 145

7.27 PolygonOffset .. 145

7.28 LinkProgram... 145

7.29 Functions to Set or Get Multiple Uniforms at Once ... 145

7.30 DepthRange ... 146

7.31 GetError ... 146

7.32 Obtaining Object Addresses .. 147

7.33 Depth Information Textures .. 147
7.33.1 Rendering Depth Information to Textures .. 147
7.33.2 Copying to a Texture from a Depth Buffer ... 148

Appendix A DMPGL 2.0 Functions .. 149

Appendix B Uniform State Tables.. 151

DMPGL 2.0 Specifications

 2009-2011 Nintendo 9 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Code
Code 3-1 ShaderBinary ..36
Code 3-2 VertexAttribPointer ..36
Code 3-3 CreateShader ..37
Code 3-4 ShaderBinary ..37
Code 4-1 Output Attributes for Control Point Bounding Boxes ...57
Code 5-1 ActiveTexture ...65
Code 5-2 TexImage2D ..65
Code 5-3 CopyTexImage2D ...68
Code 5-4 CopyTexSubImage2D ...69
Code 5-5 CompressedTexImage2D ...69
Code 5-6 TexImage1D ..71
Code 5-7 TexSubImage1D..72
Code 5-8 GenTextures ..73
Code 5-9 BindTexture ...73
Code 5-10 TexParameter ..73
Code 5-11 #pragma output_map ..75
Code 5-12 EarlyDepthFuncDMP ..93
Code 5-13 ClearEarlyDepthDMP ..93
Code 5-14 RenderBlockModeDMP ..94
Code 6-1 TexImage1D .. 110
Code 7-1 LogicOp ...136
Code 7-2 Flush and Finish ..137
Code 7-3 DrawElements and DrawArrays ..137
Code 7-4 ReadPixels ..138
Code 7-5 Sample Vertex Data Structure (Padding for Alignment) ...141
Code 7-6 Sample Vertex Data Structure (Padding for Stride) ..142
Code 7-7 Sample Vertex Data Structure (Not Enough Extra Padding) ..142
Code 7-8 Sample Vertex Data Structure (Enough Extra Padding) ...142
Code 7-9 UniformsDMP ..145
Code 7-10 GetUniformsDMP ..146

Tables
Table 2-1 DMPGL Coordinate Systems and Variables ...34
Table 4-1 Reserved Uniform Settings for Points ...41
Table 4-2 Reserved Uniform Settings for Lines ..43
Table 4-3 Reserved Uniform Settings for Silhouettes ...50
Table 4-4 Reserved Uniform Settings for Subdivisions ..56
Table 4-5 Reserved Uniform Settings for Particle Systems ..61
Table 4-6 Particle System Filenames and Features ...62

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 10  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Table 5-1 Texture Unit Types .. 64
Table 5-2 Texture Unit samplerType ... 65
Table 5-3 format and type ... 66
Table 5-4 Conversion from RGBA Pixels into the Internal Texture Format .. 67
Table 5-5 Corresponding Color and Texture Formats .. 74
Table 5-6 Relationship Between data_name and Attributes Sent from the Vertex Shader 75
Table 5-7 format and type Combinations Supporting Automatic Mipmap Generation 76
Table 5-12 Byte-Order Differences Between the Standard OpenGL and Native PICA Formats 87
Table 6-1 Reserved Uniform Settings for Fragment Operations .. 95
Table 6-2 Noise-Control Parameters .. 98
Table 6-3 Shift Mode Definitions ... 99
Table 6-4 Clamp Calculations for Each Mode .. 99
Table 6-5 G1 and G2 Modes .. 101
Table 6-6 Color Lookup Table Assignments ... 103
Table 6-7 Texture MinFilter Settings ... 104
Table 6-8 Reserved Uniform Settings for Procedural Textures .. 104
Table 6-9 Reserved Uniforms Related to Primary Color Settings (i Is an Integer from 0 to 7) 107
Table 6-10 Reserved Uniforms Related to Secondary Color Settings (i Is an Integer, 0–7) 108
Table 6-11 Configuration Provided by DMP Fragment Lighting ... 109
Table 6-12 Lookup Table Input Values ... 111
Table 6-13 Reserved Uniform Settings for Each Light ... 115
Table 6-14 Reserved Uniform Settings for Materials .. 116
Table 6-15 Reserved Uniforms and Values That Can Be Set in the Light Environment 117
Table 6-16 Reserved Uniform Settings for DMP Shadows .. 124
Table 6-17 Reserved Uniform Settings for Fog .. 126
Table 6-18 Reserved Uniform Settings for Gas .. 131
Table 6-19 Alpha Test Comparison Methods .. 132
Table 6-20 Reserved Uniform Settings for Alpha Tests .. 132
Table 6-21 Reserved Uniform Settings for Clipping ... 134
Table 6-22 Reserved Uniform Settings for the w Buffer ... 135
Table 7-1 Logical Operators for Images ... 136
Table 7-2 Image Formats for the Render Buffer ... 139
Table 7-3 Unsupported States .. 143
Table 7-4 Texture Formats and the Corresponding Depth Buffer Formats .. 147
Table A-1 Feature-Limited Functions .. 149
Table B-1 Texture Environment State Uniforms (i = 0, 1, 2) ... 151
Table B-2 Fragment Lighting State Uniforms (i = 0, 1, 2, 3, 4, 5, 6, 7) ... 153
Table B-3 Texture State Uniforms ... 157
Table B-4 Procedural Texture State Uniforms .. 158
Table B-5 Gas State Uniforms .. 160
Table B-6 Fog State Uniforms .. 160
Table B-7 Per-Fragment Operations State Uniforms ... 161

DMPGL 2.0 Specifications

 2009-2011 Nintendo 11 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Table B-8 Point State Uniforms ...161
Table B-9 Line State Uniforms ..162
Table B-10 Silhouette State Uniforms ...162
Table B-11 Subdivision State Uniforms ...163
Table B-12 Particle System State Uniforms ..163

Figures
Figure 2-1 Overview Figure for the DMPGL 2.0 Pipeline ...21
Figure 2-2 Vertex Processor and Registers Used ..23
Figure 2-3 The Relationship Between Vertex Processing and the Vertex Cache24
Figure 2-4 Processor Structure Without Geometry Creation ..25
Figure 2-5 Processor Structure with Geometry Creation ..25
Figure 2-6 Sub-Processes That Compose the Triangle Setup Process ...26
Figure 2-7 Clipping to the View Volume ..27
Figure 2-8 Sub-Processes That Compose the Texel Creation Process ...28
Figure 2-9 Sub-Processes for Generating Procedural Textures ...30
Figure 2-10 Sub-Processes That Compose the Fragment Lighting Process ...30
Figure 2-11 Texture Combiner Structure ...32
Figure 2-12 Default Mode for Per-Fragment Operations ..33
Figure 2-13 Conversion from Eye Coordinates to Window Coordinates ..35
Figure 4-1 How Points Are Rendered ...41
Figure 4-2 Line Rendering Method ...43
Figure 4-3 Silhouette Primitive Example...45
Figure 4-4 Silhouette Triangle Indices ..45
Figure 4-5 Silhouette Strip Indices ..46
Figure 4-6 Creation of a Silhoutte Rectangle by Edge 1-2 and Normal Vectors n1 and n246
Figure 4-7 Specifying the End of a Silhouette Strip Array ..49
Figure 4-8 Example of a Catmull-Clark Subdivision Patch ...52
Figure 4-9 Array of Vertex Indices for a Patch ..53
Figure 4-10 A Loop Subdivision Patch ..54
Figure 4-11 Array of Vertex Indices for a Loop Subdivision Patch..55
Figure 4-12 Particle Bezier Curve Trajectory Created by Control Points ...57
Figure 5-1 Relationship Between Combiners and Combiner Buffers ...82
Figure 5-2 4-Byte Swap ..87
Figure 5-3 3-Byte Swap ..87
Figure 5-4 2-Byte Swap ..88
Figure 5-5 Byte Swap for Compressed Textures ..88
Figure 5-6 Byte Swap for ETC Textures with Alpha Components ..88
Figure 5-7 Linear Addressing in the OpenGL Format ...90
Figure 5-8 Block Addressing in the Native PICA Format ..90
Figure 5-9 Linear Addressing (Left) and Block Addressing (Right) for Compressed Textures91

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 12  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Figure 6-1 Graphics Pipeline for Procedural Textures ... 96
Figure 6-2 Procedural Textures .. 97
Figure 6-3 RGBA-Shared Mode for Mapping Calculations .. 100
Figure 6-4 Independent Alpha Mode for Mapping Calculations ... 100
Figure 6-5 Color Lookup Table Settings ... 103
Figure 6-6 Color Lookup Table Settings (When LOD Is in Use)... 103

Equations
Equation 2-1 Relationship Between DMPGL 2.0 and OpenGL ES 1.1 Projection Matrices 35
Equation 4-1 Point Clipping .. 41
Equation 4-2 Relationship Between Silhouette Rectangle Vertices ... 47
Equation 4-3 Calculation of yscale_factor .. 47
Equation 4-4 Output Normal Vectors.. 47
Equation 4-5 Calculation of Control Point Bounding Box Size ... 58
Equation 4-6 Distance-Attenuated Particle Size .. 59
Equation 4-7 Algorithm for a Pseudo-Random Number Generator ... 60
Equation 5-1 imageSize ... 70
Equation 5-2 Relationship Between Alpha Values and Texels ... 89
Equation 6-1 Noise Function .. 97
Equation 6-2 Noise Modulation .. 98
Equation 6-3 RGBA-Shared Mode for Mapping Calculations .. 100
Equation 6-4 Independent Alpha Mode for Mapping Calculations ... 100
Equation 6-5 F Function Lookup Table Arrays ... 101
Equation 6-6 Color Lookup Table Arrays .. 102
Equation 6-7 Primary Color .. 107
Equation 6-8 Secondary Color ... 108
Equation 6-9 Recalculating the Z Component of the Bump Map Perturbation Vectors 113
Equation 6-10 Finding the Distance Attenuation Lookup Table Input Values ... 114
Equation 6-11 Per-Fragment Depth Value ... 119
Equation 6-12 Per-Fragment Shadow Texture Position ... 120
Equation 6-13 Bias Parameter ... 120
Equation 6-14 Shadow Intensity Attenuation Factor .. 122
Equation 6-15 Offset ... 123
Equation 6-16 Lookup Table Array ... 125
Equation 6-17 Fog Fragment Color .. 126
Equation 6-18 Additive Blending of D1 ... 127
Equation 6-19 Additive Blending of D2 ... 127
Equation 6-20 Additive Blending of D2 with GREATER or GEQUAL Depth Tests 128
Equation 6-21 Additive Blending of D2 with ALWAYS Depth Tests .. 128
Equation 6-22 Density Value d1 ... 129
Equation 6-23 Density Value d2 ... 129

DMPGL 2.0 Specifications

 2009-2011 Nintendo 13 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Equation 6-24 Shading Lookup Table Elements ...129
Equation 6-25 Shading Intensity ...130
Equation 6-26 Planar Shading Intensity ...130
Equation 6-27 View Shading Intensity ..130
Equation 6-28 RGB Shading Values ...130
Equation 6-29 Alpha Shading Value ...131
Equation 6-30 Viewing Volume ...133
Equation 6-31 Clipping Plane Coefficients ...133
Equation 6-32 Clipping Plane Half-Space ..134
Equation 6-33 w Buffer Depth Values ...134
Equation 7-1 Relationship Between Zw and Zd ...146

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 14  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Revision History
Version Revision Date Description

2.6 2011/03/17

• Revised descriptions of “read pixel” and “copy pixel” frame buffer
operations.

• Added information about getting texture level parameters.
• Added description of reserved uniform

dmp_LightEnv.absLutInput{RR,RG,RB,D0,D1,SP,FR}.
• Added supplementary information and corrected typos in shadow

attenuation terms and bump mapping for DMP fragment lighting.
• Corrected typos.

2.5 2011/01/31

• Removed DMP_subdivision0.obj from the specification.
• Changed the default value of dmp_LightEnv.lutEnabledRefl from
TRUE to FALSE.

• Added descriptions of additive blending for D2 when rendering gas
density information.

• Added supplementary information about random-number generation for
procedural textures.

• Revised Equation 6 11 Per-Fragment Depth Value to match source
document.

• Changed shadow strength to shadow intensity (throughout).

2.4 2010/11/09

• Revised the explanation of DMP shadows. Added that the texture
coordinate r is clamped when the shadow is referenced, the attenuation
factor does not function correctly if a receiver is not rendered in the
shadow buffer, that only the color g-component is used with the shadow
accumulation pass, and made additional comments regarding the range
of values for shadow texture components.

2.3 2010/10/07
• In sections 6.4.3 Shadow Reference Pass and 6.6.1 Gas Textures, clearly

stated that shadow textures and gas textures cannot use mipmaps.
• Fixed typo in the Japanese version.

2.2 2010/09/30

• Explained how the front and back faces are defined for the triangles
rendered by points, lines, and particle systems.

• Added supplementary information on culling.
• Fixed typos.

2.1 2010/09/14 • Added information on the texture-wrapping mode for cube-map shadow
filtering.

2.0 2010/08/20 • Added section 6.9.4 The w Buffer and Polygon Offset.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 15 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Version Revision Date Description

1.9 2010/07/30

• Revised number of texels fetched in section 2.8.2 Address and LOD
Generation.

• Added explanation that distance attenuation is disabled in fragment
writing when LIGHT_ENV_LAYER_CONFIG7_DMP is set in section 6.3.2
Primary and Secondary Colors.

• Added specification details in section 6.4.5 Shadow Accumulation Pass.
• Added description of reading the stencil buffer in section 7.8 ReadPixels.
• Added specifications in section 7.27 PolygonOffset.
• Added new error codes in section 7.31 GetError.
• Added section 7.33 Depth Information Textures.
• Replaced some images to fix issue with broken images when creating a

PDF version.

1.8 2010/07/07

• Revised the specifications of input values to lookup tables in sections
6.3.3 Lookup Tables (LUTs), 6.3.11 List of Reserved Uniforms, and
Appendix B.

• Added subsection 5.1.14 Texture Coordinate Precision under section 5.1
Texture Units in Chapter 5 Rasterization.

• Added specifications to the emission and global ambient terms in the
equation for calculating the fragment lighting primary color in section
6.3.2 Primary and Secondary Colors.

• Added section 7.32 Obtaining Object Addresses to Chapter 7
Miscellaneous.

• Added supplemental information about images in the HILO8 texture
format in section 5.1.3 Texture Image Specifications.

1.7 2010/06/18
• Revised descriptions of the B and A components for HILO8_DMP.
• Revised restrictions on 4-bit texture formats.

1.6 2010/06/04

• Added support in ReadPixels for reading out the depth buffer.
• Added section 7.31 GetError to Chapter 7 Miscellaneous.
• Added restrictions applying to 4-bit texture formats.
• Added description of automatic texture mipmap generation in the new

section 5.1.13 Automatically Generating Texture Mipmap Data.

1.5 2010/05/11

• Revised lookup table assignments for
LIGHT_ENV_LAYER_CONFIG3_DMP fragment lighting.

• Removed LIGHT_ENV_LAYER_CONFIG8_DMP,
LIGHT_ENV_LAYER_CONFIG9_DMP, and
LIGHT_ENV_LAYER_CONFIG10_DMP from the fragment lighting
specifications.

• Added restrictions imposed by specifications for early depth tests in
section 5.5.1 Overview.

• Added information on the maximum number of particles that can be
generated by the particle system.

1.4 2010/04/23

• Added supplementary information about the display buffer to section
5.5.3 Block Mode.

• Added error specifications to section 7.26 Uniform Location.
• Fixed typos.
• Added supplementary items about the shadow reference pass.
• Added specifications related to the shadow texture format.
• Revised explanations of LIGHT_ENV_SP_DMP.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 16  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Version Revision Date Description

1.3 2010/04/02 • Added descriptions of macros to specify the native formats for shadow
and gas textures.

1.2 2010/03/19

• Fixed typos.
• Revised settings for the dmp_TexEnv[i].combineAlpha uniform.
• Standardized all clip coordinate and normalized device coordinate

notation to the DMPGL 2.0 specifications. Added section 2.15 Coordinate
Systems to Chapter 2 DMPGL 2.0 Pipeline to describe coordinate system
differences with the OpenGL ES 1.1 specifications.

• Revised information on compressed texture sizes.
• Added sections 7.9 Framebuffer Objects, 7.21 CreateShader and

CreateProgram, and 7.30 DepthRange to Chapter 7 Miscellaneous.

1.1 2009/11/30

• Revised explanations in section 5.1.4 Copying from the Framebuffer.
• Changed the specifications for ADD_MULT in section 5.2.3 Other

Combiner Features.
• Added glStencilFuncSeparate, glStencilMaskSeparate, and

glStencilOpSeparate to the list of unsupported functions.
• Revised specifications for gas textures.
• Revised specifications for selecting texture coordinate input.
• Added sections 7.25 UniformMatrix, 7.26 Uniform Location, 7.27

PolygonOffset, and 7.28 LinkProgram.
• Added section 5.5 Early Depth Tests.
• Added Figure 5-6 Byte Swap for ETC Textures with Alpha.
• Added the L4A4, L4, and A4 formats.
• Removed descriptions related to the OpenGL ES Native Platform

Graphics Interface (EGL).

1.0 2009/10/30 Initial version (branched from version 1.5 of the TEG2 document).

DMPGL 2.0 Specifications

 2009-2011 Nintendo 17 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

1 DMPGL 2.0 Overview
This document explains the DMPGL 2.0 specifications. The reader is expected to have an
understanding of basic computer graphics algorithms and related graphics hardware or the OpenGL
or OpenGL ES graphics system.

1.1 About This Document
This document explains the DMPGL 2.0 specifications in terms of their differences and extended
specifications as compared to the OpenGL ES Common Profile Specification Version 2.0.23 (Full
Specification). The basic DMPGL specifications comply with the aforementioned OpenGL ES 2.0
Specifications. DMP-specific features and extensions to the standard OES/ARB features are
explained in terms of their differences as compared with the OpenGL ES 2.0 Specifications.

Unless specified otherwise, when this document refers to the "OpenGL ES 2.0 Specifications" it
indicates the OpenGL ES Common Profile Specification Version 2.0.23 (Full Specification). In the
same way, the "OpenGL ES 1.1 Specifications" indicate the OpenGL ES Common/Common-Lite
Profile Specification Version 1.1.12 (Full Specification).

1.2 Structure of This Document
This document comprises the following chapters.

• Chapter 1 DMPGL 2.0 Overview
• Chapter 2 DMPGL 2.0 Pipeline
• Chapter 3 DMP Shaders
• Chapter 4 Primitives
• Chapter 5 Rasterization
• Chapter 6 Reserved Fragment Shaders
• Chapter 7 Miscellaneous

This is Chapter 1, which gives an overview of DMPGL 2.0. Chapter 2 describes the DMPGL 2.0
pipeline. Chapter 3 describes the DMPGL 2.0 shader environment. Chapter 4 describes the primitives
handled by DMPGL 2.0. In addition to the standard primitives (points, lines, and triangles), DMPGL
2.0 can handle rendering units that are not supported by OpenGL ES 2.0, including adjacent triangles
and subdivision patches. Chapter 5 mainly describes the texture environment and DMPGL-specific
handling of textures in fragment processing. Chapter 6 focuses on the fixed pipeline feature that
currently implements DMPGL 2.0-specific effects, from the programmable pipeline view. Chapter 7
gives other items that warrant special mention.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 18  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

1.3 Single-Thread Model
The DMPGL 2.0 implementation does not consider a multi-threaded environment. As a result,
DMPGL 2.0 functions must not be called from multiple threads. DMPGL 2.0 also does not support
multiple rendering contexts. DMPGL 2.0 functions must be called on only a single rendering context.

1.4 Programmable Vertex Processing and Fixed Fragment Processing
DMPGL 2.0 provides a programmable pipeline view (from OpenGL ES 2.0) for vertex and fragment
processing. However, the current implementation does not allow you to attach any user-defined
fragment shader. You can only attach fragment shaders that have already been defined by DMPGL
2.0. The fragment pipeline is simply a fixed pipeline which has been given the appearance of a
programmable view when considered through the API. You therefore cannot change fragment
shaders. This document refers to these unchangeable fragment shaders as reserved fragment
shaders. Changes to the context state by related existing OpenGL ES commands are emulated by
changing the uniforms implemented by the reserved fragment shaders.

1.5 Creating Programmable Geometry
DMPGL 2.0 provides a programmable pipeline view for geometry processing that can create vertices.
However, the current implementation does not allow you to attach any user-defined geometry shader.
You can only attach geometry shaders provided by DMPGL 2.0. Unlike reserved fragment shaders,
geometry shaders are implemented by programmable processing.

1.6 Examples and Notations

1.6.1 Showing Variables, Constants, Functions, and Reserved Uniforms

This document uses the Courier New font for function names, constant names, argument names,
and reserved uniform names. Function names are shown in bold and argument names are shown in
bold italics.

Example:
void Command(type argument);

SYMBOLIC_CONSTANTS

1.6.2 Notation of Sets

Sets are sometimes shown in curly brackets {}. If a string is connected to a pair of brackets, it
indicates a set that combines the elements of the string and set. For example, example{A,B,C} has
the same meaning as exampleA, exampleB, and exampleC. If two or more sets of strings and
brackets are connected, they indicate a set of every possible combination.

Some reserved uniforms include a number in square brackets, such as [0], [1], or [2]. Where the
notation [i] is used with a range explicitly given in the form (i is 0, 1, or 2), [i] indicates
the set {[0], [1], [2]}.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 19 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Example 1) The notation “example{0,1}.sub{X,Y,Z}” indicates the set {example0.subX,
example0.subY, example0.subZ, example1.subX, example1.subY, example1.subZ}.

Example 2) The notation “example[i].sub{X,Y,Z} (i is 0, 1, or 2)” indicates the set
{example[0].subX, example[0].subY, example[0].subZ, example[1].subX,

example[1].subY, example[1].subZ, example[2].subX, example[2].subY,

example[2].subZ}.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 20  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

2 DMPGL 2.0 Pipeline
DMPGL 2.0 follows the OpenGL ES 2.0 interface, but in the actual pipeline implementation, the
structure of vertex processing most closely resembles the OpenGL ES 2.0 pipeline, and the structure
of fragment processing most closely resembles the OpenGL ES 1.1 pipeline.

This chapter gives an overview of the DMPGL 2.0 pipeline.

2.1 Overview Figure for the DMPGL 2.0 Pipeline
Figure 2-1 gives an overview of the DMPGL 2.0 pipeline. Although the structure basically follows the
OpenGL ES 2.0 and 1.1 pipelines, note that there are DMP-specific extensions.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 21 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Figure 2-1 Overview Figure for the DMPGL 2.0 Pipeline

The arrows indicate the flow of data.

Vertex Input

Vertex Cache

Triangle Setup

Fragment Lighting

Vertex Processing

Rasterization

Texel Generation

Texture Combiner

Geometry Creation

Fog

Per-Fragment Operations

Framebuffer Operations

Frame Buffer

Texture Memory

Vertex Buffer

Main Memory

Texture Rendering

Read Pixels

Copy Pixels

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 22  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

The DMPGL 2.0 pipeline mainly comprises the following processes.

• Vertex input
• Vertex processing
• Vertex cache
• Geometry creation
• Triangle setup
• Rasterization
• Texel generation
• Procedural textures
• Fragment lighting
• Texture combiner
• Fog
• Per-fragment operations
• Framebuffer operations

The following sections explain the individual processes.

2.2 Vertex Input
This stage does input processing of vertex data. In both DMPGL 2.0 and OpenGL ES 2.0, there is not
a clear distinction between coordinates, normals, and so on in the handled vertex data. The
aforementioned attributes are determined by how the data is mapped to specific vertex processing.
However, the following general attributes are input as vertex data during graphics-specific processing.

• Vertex coordinates
• Normal vectors
• Tangent vectors
• Texture coordinates
• Vertex colors

In general, vertex coordinates are the only required attributes in the list above. Normal vectors and
tangent vectors are not required in unlit environments. Texture coordinates are not required in
environments that have disabled texture processing, nor when they are created during vertex
processing. Vertex colors are not required in lit environments.

Vertex processing can run general-purpose calculations, so if you can assume that Vertex processing
will create the required attributes for the next stage, it follows that no particular attributes are fixed as
input attributes.

In DMPGL 2.0, the vertex input process converts any vertex data that is not stored as a float into a
float. However, note that this process does not normalize the data.

Data can be input to either of the following locations with DMPGL 2.0.

• Vertex data that does not use the vertex buffer
• Vertex data that does use the vertex buffer

DMPGL 2.0 Specifications

 2009-2011 Nintendo 23 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

There is no support for simultaneously reading mixed vertex data, some of which uses and some of
which does not use the vertex buffer.

Although it also depends on the type and other aspects of the vertex data, performance is generally
better with vertex data that uses the vertex buffer.

2.3 Vertex Processing
Per-vertex processing is run on the input vertex data. DMPGL 2.0 uses a processor that can handle
vector data comprising four 24-bit floats. This processor can run general-purpose calculations but it
cannot read or write data from VRAM. It can read data from constant registers, and it can read from
and write to temporary registers. Vertex attribute data loaded by the vertex-input process is written to
output registers. The processor writes its output data to the output registers, and the data is then sent
to the next process.

Figure 2-2 Vertex Processor and Registers Used

Vertex Processor

Constant Register Constant Register
Constant Register Constant Register

Temporary
Register

Temporary
RegisterTemporary

Register
Temporary

Register

Input Register

Input Register

Output Register

Output Register

The DMPGL 2.0 implementation processes vertices in parallel on multiple vertex processors.

Vertex processors are ordinarily used to run graphics-specific processing. The following can be
considered as vertex processing in a general graphics pipeline.

• Coordinate conversion from object space to eye space (modelview transform)
• Coordinate conversion from eye space to clip space (projection transform)
• Per-vertex color creation by lighting processes
• Texture-coordinate generation

To generate texture coordinates, you can transform input texture coordinates using matrices, or you
can generate texture coordinates themselves from other vertex attributes. Vertex colors do not need
to be generated when fragment lighting is enabled.

OpenGL ES 1.1 clearly defines the content of vertex processing and has a unique API for configuring
the aforementioned processes. In contrast, like OpenGL ES 2.0, DMPGL 2.0 does not use an API to
define the content of vertex processing.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 24  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

In addition to instructions required for general-purpose calculations, the vertex processors have a
combination of instructions optimal for 3D graphics processing such as the processes mentioned
above. Programs run on the vertex processors are called vertex programs and are defined and
loaded by the user. DMPGL 2.0 allows user-defined programs to be used, and implements this
capability through the vertex shader mechanism.

2.4 Vertex Cache
The cache is used to save some of the vertex data that is either created or handled by vertex
processing. If the vertex input process determines that the input vertex data is the same as the
original data for a vertex that exists in the cache, that input vertex data is not sent to vertex
processing; instead, the already-processed data in the cache is sent on to the next process. In
general, if vertex data is input using TRIANGLES, that vertex tends to be processed multiple times,
but this duplicate processing can be omitted if there is a processed vertex in the cache.

DMPGL 2.0 has the following conditions for using the vertex cache.

• Vertex data must be input in a format that accesses the vertex index. In other words, vertex data
must be input by a call to DrawElements.

• Vertex data must use the vertex buffer. In other words, data must be input using vertex buffer
objects.

Figure 2-3 The Relationship Between Vertex Processing and the Vertex Cache

Vertex Cache

Vertex Attribute Data

Vertex Index Data

Vertex Input Vertex Processing

Index Data

Processed
Vertex Data

Index Data
Attribute Data

Cache Data

Processed Vertex Data

During vertex processing, if already-processed vertex data with the same index exists in the vertex
cache, the data in the cache is used.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 25 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

2.5 Geometry Creation
The vertex processing outlined in the previous section processes the input vertex data one vertex at a
time, but it cannot create the vertices themselves. This geometry creation process is different
because in addition to processing vertices in a way similar to vertex processing, it can create the
vertices themselves and thus output more vertices than were input.

In DMPGL 2.0, all primitives other than triangles must be created by geometry shaders. For example,
the geometry creation process creates four vertices when given a single input vertex for a point
primitive. Likewise, it creates four vertices when given two input vertices for a line primitive.

Just like vertex processing, the content of geometry creation is not defined by the API. Programs run
by this process are called geometry programs. They are generally defined and loaded by the user.
Like vertex programs, they are implemented using the vertex shader mechanism, but the DMPGL 2.0
implementation does not allow user-defined geometry programs.

Geometry creation is not required by the pipeline and is omitted when only triangle primitives are
handled.

Only one of the vertex processors is shared with the geometry processor by the DMPGL 2.0
implementation. In other words, a single processor is used both for vertices and geometry. Pipelines
that use geometry creation therefore have a structure resembling the following figure. No other
structure exists.

Figure 2-4 Processor Structure Without Geometry Creation

Vertex Cache

Vertex Processor

Vertex Processor

Vertex Processor

Vertex Processor

Vertex Input

Figure 2-5 Processor Structure with Geometry Creation

Vertex Cache

Vertex Processor

Vertex Processor

Vertex Processor

Geometry Processor
Vertex Input

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 26  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

2.6 Triangle Setup
This process performs the following main steps.

• Triangle construction
• Culling
• Clipping
• Window coordinate conversion

Figure 2-6 Sub-Processes That Compose the Triangle Setup Process

Culling Clipping
Window

Coordinate
Conversion

Triangle
Construction

2.6.1 Triangle Construction

This creates triangles from the individual vertices sent from vertex processing or the vertex cache.
For TRIANGLES, this process creates a single triangle from three transferred vertices; for
TRIANGLE_STRIP and TRIANGLE_FAN, it creates a single triangle from one transferred vertex.

DMPGL 2.0 handles all non-triangle primitives as triangles. For example, for a point primitive,
geometry creation takes a single input vertex and generates four vertices. These four vertices
generate two triangles. In other words, at this stage of processing there is no distinction between
different primitives.

2.6.2 Culling

This process determines whether the generated triangles are front- or back-facing. When culling is
enabled, triangles that are determined to be "culling faces" are not processed beyond this step. If a
triangle is rendered identically regardless of whether culling is enabled or disabled, the time taken to
process it is likewise unaffected by whether culling is enabled or disabled because a triangle’s facing
(front or back) is always checked.

2.6.3 Clipping

Triangles that survive the culling process are clipped here to the view volume and user-defined
clipping planes. The clipping implementation in DMPGL 2.0 involves the creation of new vertices and
new triangles for clipped triangles.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 27 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Figure 2-7 Clipping to the View Volume

A

B

C

E

F

D

When the triangle ABC is clipped, the new vertices D, E, and F are created and the triangle ABC is
split into triangles ADE and AEF.

2.6.4 Window Coordinate Conversion

Vertex coordinates are handled as homogenous 4-component coordinates but this process divides by
the fourth coordinate, transforming the coordinates into normalized device coordinates and mapping
the vertex into 2D space. This mapping and viewport transformation fixes the position of the triangle
in the display and simultaneously creates a depth value. This depth value is used later by the depth
test when it removes hidden surfaces.

In addition to supporting ordinary depth values that are divided by the fourth coordinate w, DMPGL
2.0 supports depth values that are not divided by w (the w buffer). In this case, a user-defined scaling
coefficient is required.

In DMPGL 2.0, this sub-process handles polygon offsets.

DMPGL 2.0 clip coordinates and normalized device coordinates differ somewhat from the OpenGL
ES 1.1 definition. (See section 2.15 Coordinate Systems.)

2.7 Rasterization
This process converts triangles into sets of fragments. Rasterization generates fragments that occupy
the space inside the triangles, then interpolates the vertex attributes over the set of affected
fragments and assigns the interpolated attribute values to individual fragments based on the
fragment's position. All subsequent processes operate on the fragments that are generated in this
step.

Unlike OpenGL ES 2.0, DMPGL 2.0 implements a fixed pipeline for subsequent processing and
therefore there is a limited, fixed set of attributes that can be assigned to fragments. The following
main attributes can be assigned.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 28  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

• Window coordinates
• Depth value
• Texture coordinates and their partial differential values
• Quaternions
• View vectors
• Vertex colors

In DMPGL 2.0, scissoring is handled by this step, not by the per-fragment operations.

2.8 Texel Generation
Texel generation takes texture images loaded into memory and uses them to create texels
corresponding to the texture coordinates of the fragments. This mainly comprises the following
processes. In addition to ordinary 2D textures, DMPGL 2.0 can create texels from procedural textures.
This section describes processing when handling 2D textures. Texel generation for 2D textures
comprises the following sub-processes.

• Texture-coordinate generation
• Address and LOD generation
• Texel acquisition
• Filtering

Figure 2-8 Sub-Processes That Compose the Texel Creation Process

Address and
LOD

Generation

Texel
Acquisition Filtering

Texture-
Coordinate
Generation

2.8.1 Texture-Coordinate Generation

This process generates texture coordinates. OpenGL ES 2.0 does not distinguish between vertex
attributes and therefore both texture and vertex coordinates have four components. When handling
multiple textures, there are only as many sets of texture coordinates as there are textures.

With an ordinary 2D texture, the first and second components of the texture coordinates are the
components generated by this step. When a 2D texture is used as a perspective texture, the first and
second components are divided by the fourth component when the texture coordinates are generated.
When 2D textures are used to make a cubic environment map, the first, second, and third
components are first used to select the textures to reference. (A cubic environment map is defined by
six 2D textures, one of which is targeted for addressing) Next, texture coordinates are generated for
the selected texture images.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 29 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

DMPGL 2.0, on the other hand, uses a special method for generating texture coordinates. For all
units other than unit 0, fragments save texture coordinates with only two components. In other words,
only unit 0 can be used for cubic environment maps and perspective textures.

Even unit 0 saves only three components for texture coordinates. Although the aforementioned
method generates texture coordinates for cubic environment maps, for perspective textures, the
generated coordinates are divided by the third component. You must therefore be careful with texture
coordinates generated by vertex processing.

2.8.2 Address and LOD Generation

This process generates addresses to use for accessing the texture images from the texture
coordinates created by the previous process. If the texture is composed of mipmaps, an LOD is
calculated; this LOD can then be evaluated to indicate which mipmap level of texture image to access.
The LOD is generated from the partial derivative of the texture coordinates assigned to the fragment.

In DMPGL 2.0, one, two, four, or eight texels are obtained for a single fragment (the number of texels
is affected by subsequent filtering), so the same number of corresponding addresses is generated.

2.8.3 Obtaining Texels

Texels are obtained from the image data in memory, using the addresses and LOD generated by the
previous process. The DMPGL 2.0 implementation gets one texel per fragment per enabled texture
when the filtering mode is point sampling, four texels simultaneously when binary filtering is enabled,
and twice as many texels simultaneously when trilinear filtering is enabled for each mode.

2.8.4 Filtering

DMPGL 2.0 supports both point sampling (NEAREST, NEAREST_MIPMAP_XXX) and binary filtering
(LINEAR, LINEAR_MIPMAP_XXX). Trilinear filtering (XXX_MIPMAP_LINEAR) can also be enabled for
both, in which case the filtering effects of the two optimal mipmap level textures are interpolated to
produce the final texel color.

When the texture format is SHADOW_DMP or SHADOW_NATIVE_DMP, filter operations are in a special
mode and the aforementioned process is entirely replaced. For details, see section 6.4 DMP
Shadows.

2.9 Procedural Textures
DMPGL 2.0 can handle procedural textures in addition to ordinary 2D textures. In OpenGL ES 2.0, a
series of processes to create procedural textures is defined by the user as a fragment program; in
DMPGL 2.0, procedural textures are handled by a fixed pipeline process. The following is the
structure of sub-processes used to generate procedural textures.

• Random number generation
• UV generation
• Address and LOD generation

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 30  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

• LUT access

Figure 2-9 Sub-Processes for Generating Procedural Textures

UV
Generation

Address and
LOD

Generation
LUT Access

Random
Number

Generation

For details on each of the sub-processes, see section 6.2 Procedural Textures.

2.10 Fragment Lighting
DMPGL 2.0 has pipeline features that support per-fragment lighting calculations. Fragment lighting
mainly comprises the following four sub-processes. Several of these processes can use the output of
texel generation, and it is also possible to apply the contributions of bump mapping and shadows to
color generation.

• Vector and geometry factor generation
• Dot product generation
• LUT (lookup table) access
• Color generation

Figure 2-10 Sub-Processes That Compose the Fragment Lighting Process

Dot Product
Generation LUT Access

Color
Generation

Vector and
Geometry

Factor
Generation

Texel Generation

2.10.1 Vector Generation

This sub-process creates the various vectors used for fragment lighting calculations. The following
vectors are created.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 31 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

• Normal vectors
• Tangent vectors
• View vectors
• Half-angle vectors
• Light vectors
• Spotlight-direction vectors

All vectors are created as unit vectors. The results of texel generation can be used to add
perturbations to the normal vectors and tangent vectors (bump mapping and tangent mapping).

Geometry factors are also created in this step.

2.10.2 Dot Product Generation

This process calculates the dot products used for color calculations and LUT access, based on the
vectors generated by the previous process. This sub-process finds the dot products of the following
vector pairs.

• Light vector and normal vector
• Half-angle vector and normal vector
• View vector and normal vector
• Half-angle vector and view vector
• Light vector and spotlight-direction vector
• Tangent vector and the reflection of the half-angle vector from the tangent plane

2.10.3 LUT Access

This sub-process gets values from the lookup tables, using the dot products generated by the
previous sub-process as inputs.

2.10.4 Color Generation

This sub-process uses pipelined operations to calculate the final fragment colors. This sub-process
can add shadow contributions to the results of texture generation. For details, see section 6.3 DMP
Fragment Lighting.

2.11 Texture Combiners
The texture combiners calculate the final fragment colors given three of the following inputs. The
formulas they use are fixed, and the user selects which formulas to use. DMPGL 2.0 has the following
main inputs.

• Output from texel generation
• Output from fragment lighting
• Vertex colors from rasterization
• User-defined constant colors
• Output from the previous-stage combiner unit

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 32  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

This process comprises six combiner units that operate on the aforementioned inputs and are
connected in series.

Figure 2-11 Texture Combiner Structure

Texture
Combiner 0

Texture
Combiner 1

Texture
Combiner 2

Texture
Combiner 3

Texture
Combiner 4

Texture
Combiner 5

During texture combiner calculation, output from combiner unit n-1 is added to combiner unit n (n > 0).

DMPGL 2.0 has a special relationship connecting the texture combiners and texel generation process.
In the same way, the relationship is even more complicated in a mode with gas shading. For details,
see Chapter 5 Rasterization (on textures) and Chapter 6.6 Gas.

2.12 Fog
This process combines the results from the previous process with fog colors and blending coefficients.
DMPGL 2.0 calculates the blending coefficients from values looked up in the fog table, which takes
depth values as inputs. The table has a resolution of 128 levels.

There is also a mode that supports gas shading. In that mode, fog processing has special behavior.
For details, see section 6.6 Gas.

2.13 Per-Fragment Operations
In the DMPGL 2.0 default mode, per-fragment operations are comprised of the same processes as in
OpenGL ES 2.0. Sub-processes are run sequentially.

• Alpha test
• Stencil test
• Depth test
• Blending or logical operations
• Masking of the various framebuffers

DMPGL 2.0 Specifications

 2009-2011 Nintendo 33 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Figure 2-12 Default Mode for Per-Fragment Operations

Stencil Test Depth Test

Blending

Alpha Test

Logical
Operations

Masking

Framebuffer

DMPGL 2.0 supports logical operations. Blending and logical operations are mutually exclusive
processes. Unlike OpenGL ES 2.0, scissoring is not performed in DMPGL 2.0.

In DMPGL 2.0, processing specific to rendering shadows and gaseous objects is done here in per-
fragment operations. This processing entirely replaces the processes of the aforementioned default
mode. For details on the mode for shadows and gas, see section 6.4 DMP Shadows and section 6.6
Gas.

2.14 Framebuffer Operations
The framebuffer operations all involve the framebuffer. This stage comprises the following sub-
processes.

• Read pixels
• Copy pixels
• Render textures
• Clear the framebuffer

2.14.1 Read Pixels

This sub-process transfers the contents of the color buffer into main memory.

2.14.2 Copy Pixels

This sub-process transfers all or part of the color buffer to texture memory. DMPGL 2.0 does not
support transfers when the color buffer format and texture format do not match. Transfers with format
conversions are not supported.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 34  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

It is also possible to transfer the depth buffer or stencil buffer to texture memory. See section 7.33.2
Copying to a Texture from a Depth Buffer for details.

2.14.3 Render Textures

This sub-process supports direct writes to texture memory. DMPGL 2.0 implements this feature using
framebuffer objects.

2.14.4 Clear the Framebuffer

Unlike in OpenGL ES 2.0, in DMPGL 2.0 the framebuffer is cleared entirely independent of the
pipeline and is unaffected by scissor tests or masking.

2.15 Coordinate Systems
This section describes the DMPGL 2.0 coordinate systems. The table below shows the coordinate
systems used in DMPGL 2.0 and the variable notation used in each. Both DMPGL 2.0 and OpenGL
ES 2.0 generate the same window coordinates from the same eye coordinates, but the calculations
themselves differ somewhat.

Table 2-1 DMPGL Coordinate Systems and Variables

 Variables Description

Eye coordinates WeZeYeXe ,,,
Coordinate system after modelview transformation, with the viewpoint
set as the origin

Clip coordinates WcZcYcXc ,,, Coordinate system after projection transformation

Normalized device
coordinates ZdYdXd ,,

Coordinate system after clipping and w division (also called
perspective division)

Window
coordinates ZwYwXw ,,

Coordinate system using X and Y for the window’s pixel coordinates
and Z for the depth values

Figure 2-13 shows the process for transforming from eye coordinates to window coordinates. Note
that in DMPGL 2.0, the clip coordinate Zc and the normalized device coordinate Zd undergo
different handling compared to the corresponding coordinates under OpenGL ES 1.1.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 35 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Figure 2-13 Conversion from Eye Coordinates to Window Coordinates

















Zw
Yw
Xw



































=





















We
Ze
Ye
Xe

Mproj

Wc
Zc
Yc
Xc
















=

















WcZc
WcYc
WcXc

Zd
Yd
Xd

















×−−
×+
×+

=
















Zdnearfarnear
heightYd
widthXd

Zw
Yw
Xw

)(
)212(
)212(

)10(−≥≥ Zd

)0(WcZc −≥≥



















We
Ze
Ye
Xe

Eye
coordinates

Transformation
to clip

coordinates

Transformation
to normalized

device
coordinates

Transformation
to window

coordinates

Window
coordinates

The relationship between the projection matrix DMPGLMproj (that projects the eye coordinates into the

clip coordinates used by DMPGL 2.0) and the projection matrix
OESMproj (that projects the eye

coordinates into the clip coordinates used by OpenGL ES 1.1) can be expressed with the following
equation.

Equation 2-1 Relationship Between DMPGL 2.0 and OpenGL ES 1.1 Projection Matrices



































−−
=

















OESDMPGL MprojMproj

1000
5.05.000

0010
0001

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 36  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

3 DMP Shaders
As mentioned in Chapter 1 DMPGL 2.0 Overview, DMPGL 2.0 provides a programmable pipeline
view (from OpenGL ES 2.0) for vertex and fragment processing. A programmable vertex creation view
is also provided.

DMPGL 2.0 does not support shader programs written in the OpenGL ES Shading Language. Shader
programs are written in a proprietary assembly language provided by DMPGL 2.0.

3.1 Reserved Uniforms
DMPGL 2.0 defines reserved uniforms (described later) to use with reserved shaders (fragments and
geometry). Reserved uniforms start with the string "dmp_". To avoid collisions with reserved uniforms,
the user's shaders must therefore not use uniforms that start with the string "dmp_".

3.2 Vertex Shaders
The series of procedures involved in the programmable vertex processing provided by DMPGL 2.0
complies with section 2.10 Vertex Shaders of the OpenGL ES 2.0 specifications, but the DMPGL 2.0
implementation does not support several of the OpenGL ES 2.0 features.

In DMPGL 2.0, any user-defined vertex shader object can be created and attached, but vertex shader
objects are required to be attached to program objects. In DMPGL 2.0, the loading and compiling
operations described in the OpenGL ES 2.0 specifications, section 2.10.1 Loading and Compiling
Shader Source, are not supported. In other words, ShaderSource and CompileShader do not
exist. User-defined shaders are always loaded by ShaderBinary.

Code 3-1 ShaderBinary
void ShaderBinary(sizei count, const uint *shader,

 enum binaryformat, const void *binary, sizei length);

Specify PLATFORM_BINARY_DMP for the third argument, binaryformat.

In DMPGL 2.0, the fourth argument in the following code cannot be set to TRUE.

Code 3-2 VertexAttribPointer
void VertexAttribPointer(uint index, int size, enum type,

 boolean normalize, sizei stride, const void *pointer);

In DMPGL 2.0, normalization must be explicitly performed by a vertex shader. If you specify vertex
attributes that require normalization, you must write code in the vertex shader to perform that
normalization.

Any output attributes may be set for a vertex shader. Note, however, that sometimes there are
required output attributes, depending on what reserved uniforms are set in the target program object.
If the reserved uniform dmp_FragmentLighting.enabled is set to TRUE, for example, the vertex

DMPGL 2.0 Specifications

 2009-2011 Nintendo 37 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

shader must calculate valid quaternion attributes and configure them to be output. When a vertex
shader is attached to a program object that targets a geometry shader that creates points, the size
attribute is required to be output in addition to position. See each chapter for details on which
output attributes need to be set for vertex shaders.

For details on the assembly language and vertex shaders provided by DMPGL 2.0, see the separate
Vertex Shader Reference Manual.

3.3 Geometry Shaders
The series of procedures involved in the programmable geometry creation provided by DMPGL 2.0
complies with section 2.10 Vertex Shaders in the OpenGL ES 2.0 specifications, but like vertex
shaders, several features are not supported.

You cannot create or attach arbitrary user-defined geometry shaders in DMPGL 2.0. You can only
load precompiled shader programs provided by DMPGL 2.0 and attach those shader objects to
program objects. DMPGL provides the following geometry shaders.

• Point shaders
• Line shaders
• Silhouette primitive shaders
• Catmull-Clark subdivision shaders
• Loop subdivision shaders
• Particle system shaders

Several shaders also create vertices and primitives based on vertex information obtained from vertex
shaders.

CreateShader and DeleteShader are used to create and delete geometry objects. When creating
a geometry object, set the first argument, type, to GEOMETRY_SHADER_DMP.

Code 3-3 CreateShader
CreateShader(GEOMETRY_SHADER_DMP);

Just as with vertex shaders, ShaderSource and compilation using CompileShader are not
supported. Shaders are loaded by ShaderBinary.

Code 3-4 ShaderBinary
void ShaderBinary(sizei count, const uint *shader,

 enum binaryformat, const void *binary, sizei length);

Specify PLATFORM_BINARY_DMP for the third argument, binaryformat.

In DMPGL 2.0, you cannot use ShaderBinary to load geometry programs separately from vertex
shader programs. To load geometry programs, call ShaderBinary with binary code that includes
both a geometry program and a vertex program, as a pair. You must set the second argument,

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 38  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

shader, to a pointer to an array that has stored handles to both the vertex shader object and the
geometry shader object.

The required vertex attributes are already decided for the geometry shaders provided by DMPGL 2.0,
so you need only calculate and output the attributes targeted by the vertex shaders. The required
vertex attributes differ between the various geometry shaders. For details, see Chapter 4 Primitives.

There are reserved uniforms in program objects with attached geometry shaders. These reserved
uniforms all have undefined initial values. You must therefore always set values for the reserved
uniforms. You cannot use the names of these reserved uniforms as symbols in user-defined vertex
shaders. To get the location of a reserved uniform, use GetUniformLocation, just as with user-
defined shaders. Because it is optional to attach geometry shaders, note that you may not be able to
obtain uniform locations for some program objects.

When using geometry shaders to render, the mode argument for DrawElements and DrawArrays
must be GEOMETRY_PRIMITIVE_DMP. Specifying any other value will generate an INVALID_ENUM
error.

3.4 Fragment Shaders
The series of procedures involved in the programmable fragment processing provided by DMPGL 2.0
complies with section 2.10 Vertex Shaders in the OpenGL ES 2.0 specifications. However, some
OpenGL ES 2.0 features are not supported.

You cannot create or attach arbitrary user-defined fragment shaders in the current DMPGL 2.0
implementation. You can only attach the reserved fragment shader object. In DMPGL 2.0, program
objects must always have the reserved fragment shader attached to them.

The fragment shader object provided by DMPGL 2.0 has the following name.

• DMP_FRAGMENT_SHADER_DMP

Use AttachShader to attach the reserved fragment shader object. Set the second argument (the
name of the shader object) to DMP_FRAGMENT_SHADER_DMP. The creation and deletion of shaders
using CreateShader and DeleteShader is not supported. As with vertex shaders and geometry
shaders, you cannot use ShaderSource or CompileShader. You also cannot use ShaderBinary
for fragment shaders.

There are reserved uniforms in program objects that have attached the reserved fragment shader.
These reserved uniforms do have initial values. You cannot use the names of these reserved
uniforms as symbols in user-defined vertex shaders. For details on the initial values, see Appendix B
Uniform State Table. To get the location of a reserved uniform, use GetUniformLocation, just as
with user-defined shaders.

DMPGL 2.0 does not apply shader variables (section 3.8.1 of the OpenGL ES 2.0 specifications). It
also does not use the shader inputs and shader outputs described in section 3.8.2 of the OpenGL ES
2.0 specifications. Texture access, described in the same section 3.8.2 of the OpenGL ES 2.0
specifications, entails the texture limitations given in Chapter 5 Rasterization of this document.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 39 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

4 Primitives
This chapter explains how primitives are created. OpenGL ES 2.0 supports points, lines, and triangles.
DMPGL 2.0 supports these features and also adds unique features that are not supported by
OpenGL ES 2.0, such as silhouettes and subdivisions.

On the other hand, in DMPGL 2.0 some features are invoked differently. To render points and lines
with OpenGL ES 2.0, DrawElements and DrawArrays are called with POINTS, LINES,
LINE_STRIP, or LINE_LOOP specified as the mode argument. DMPGL 2.0 has a different method for
rendering points and lines using reserved geometry shaders. Triangles are rendered in the same way
as OpenGL ES 2.0. However, multisample rendering of triangles is not supported.

Section 4.1 Points and 4.2 Lines describe points and lines. Section 4.3 Silhouettes, 4.4 Subdivisions,
and 4.5 Particle Systems describe silhouettes, subdivisions, and particle systems. For details on each
of these topics, see the relevant sections.

DMPGL 2.0 introduces vertex state collections as an extended feature of vertex buffer objects. These
are described in section 0 Asterisks (*) in the Filename column stand for DMP_particleSystem.

Vertex State Collections.

4.1 Points
This section describes functionality for rendering points. Points can be rendered either by taking each
vertex as the center of a point, or as point sprites. You can set the size of each point as well as
enable and disable distance attenuation on a per-point basis.

4.1.1 How to Use Points

To render a point with DMPGL 2.0, link a user vertex shader to one of the reserved geometry shaders
DMP_pointN.obj (where N = 0,1,2,3,4,5,6). Specify a geometry shader whose number 0-6 at the
end of its name is the same as the number of vertex attributes output by the vertex shader, not
counting vertex coordinates and point size.

To use a point geometry shader, the vertex shader must output at least two vertex attributes, the
vertex coordinates and point size, to predetermined registers. To set vertex coordinates as a vertex
attribute to output, specify position for data_name, corresponding to the vertex shader assembly
code #pragma output_map. Likewise, to set the point size as an attribute to output, specify
generic for data_name, corresponding to #pragma output_map. When you set the
mapped_register corresponding to #pragma output_map, you must set the lowest-numbered
output register for the vertex coordinates and the next lowest-numbered output register for the point
size. You can set all other vertex attributes freely with #pragma output_map. You must also set the
reserved uniform dmp_Point.viewport by calling glUniform2fv with the 2-component array
(1/viewport width, 1/viewport height) specified for value.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 40  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

The points described by section 2.6.1 Primitive Types of the OpenGL ES 2.0 specifications do not
exist in DMPGL 2.0. You cannot call DrawElements and DrawArrays with POINTS specified for
mode.

4.1.2 Point Size

The description of point size in section 3.3 Points of the OpenGL ES 2.0 specifications does not apply
to DMPGL 2.0. In DMPGL 2.0, the point size is specified by a vertex attribute. You must either use
VertexAttrib to specify a fixed size or VertexAttribPointer to use a vertex array to specify a
size for each point. There is no upper limit on point size. Behavior is undefined for a point size of 0 or
less.

As a DMP-specific feature, you can enable or disable distance attenuation of individual point sizes.
When distance attenuation is disabled, the point size is multiplied by the vertex clipping coordinate
𝑤𝑐 and that effect is then canceled by 𝑤𝑐 division during transformation to window coordinates.
When distance attenuation is enabled, the aforementioned process is skipped. To configure distance
attenuation, call Uniform1i on the reserved uniform dmp_Point.distanceAttenuation with
TRUE or FALSE specified for value. Distance attenuation is enabled by TRUE and disabled by FALSE.

4.1.3 Point Sprites

In a point sprite, a point's texture coordinates are replaced with texture coordinates for point sprites.
To use point sprites, link a user vertex shader object to one of the reserved geometry shaders
DMP_pointSpriteN_T.obj (where N = 0,1,2,3 and T = 1,2,3). Specify a reserved geometry shader
whose number N(0,1,2,3) in its name DMP_pointSpriteN_T.obj is the same as the number of
vertex attributes output by the vertex shader, not counting the vertex coordinates, point size, and
texture coordinates. Also, the number T(1,2,3) in the specified reserved geometry shader's name
must be the same as the number of texture coordinates.

Vertex shaders must also use #pragma output_map to configure output for all texture coordinates
used. When you configure output for texture coordinates in mapped_register, specify the lowest-
numbered output register after the point size. When more than one texture coordinate is used, you
must pack two texture coordinates into a single output register, using the register's XY components
for the first set of texture coordinates and its ZW components for the second. The shader must output
dummy values to output registers to which texture coordinates are assigned. This dummy output data
is replaced with the point sprite's texture coordinates by the geometry shader.

In texture coordinates for point sprites, the texture coordinate s is 0 at the left edge of a point sprite
and 1 at the right edge. In the same way, the texture coordinate t is 0 at the bottom edge of a point
sprite and 1 at the top. The texture coordinates r and q are fixed at 0 and 1, respectively.

4.1.4 Point Rendering Method

In DMPGL 2.0, the geometry shader renders a point by taking the vertex input to it by the vertex
shader as the center of the point, then rendering two triangles to form a square having the specified
point size as the length of each side. This is not adjusted to match the vertex coordinate grid or in any

DMPGL 2.0 Specifications

 2009-2011 Nintendo 41 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

other way. The two triangles are rendered to be front-facing with a counterclockwise winding
(displayed when CCW is specified for FrontFace).

Figure 4-1 How Points Are Rendered

Input Vertex

Generated Polygon

4.1.5 Point Clipping

Points are clipped according to the following equation.

Equation 4-1 Point Clipping

−𝑤𝑐 ≤ 𝑧𝑐 ≤ 0

4.1.6 Multisample Rendering

DMPGL 2.0 does not incorporate the series of processes described in section 3.3.1 Point Multisample
Rasterization of the OpenGL ES 2.0 specifications.

4.1.7 List of Reserved Uniforms

The following table shows settings for the reserved uniforms that are used by points.

Table 4-1 Reserved Uniform Settings for Points

Uniform Type Value

dmp_Point.viewport vec2
(1/viewport width, 1/viewport height)
Undefined by default

dmp_Point.distanceAttenuation bool
TRUE
FALSE

Undefined by default

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 42  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

4.2 Lines
This section describes functionality for rendering lines. The line feature renders a line that connects
two vertices. There are two types of lines: separate lines and strip lines. Separate lines are lines that
are rendered independently for each pair of vertices. In other words, the first vertex specifies the
starting point of the first line and the next vertex specifies the ending point of the first line. The next
two vertices specify the starting and ending points, respectively, of the next line. This is repeated for
all vertices. A strip line, on the other hand, is rendered as a continuous line that connects all vertices.
In other words, the first vertex specifies the starting point of the first line and the next vertex specifies
both the ending point of the first line and the starting point of the next line. This is repeated for all
vertices. You can also specify the width of lines.

4.2.1 How to Use Lines

To render lines in DMPGL 2.0, link a user vertex shader to one of the reserved geometry shaders:
DMP_separateLineN.obj (where N = 0,1,2,3,4,5,6) for separate lines, or DMP_stripLineN.obj
(where N = 0,1,2,3,4,5,6) for strip lines. Specify a reserved geometry shader whose number 0-6 at the
end of its name is the same as the number of vertex attributes output by the vertex shader, not
counting vertex coordinates.

To use a line geometry shader, the vertex shader must output at least the vertex coordinates. To set
vertex coordinates as a vertex attribute to output specify position for data_name, corresponding
to the vertex shader assembly code #pragma output_map. When you set the mapped_register
corresponding to #pragma output_map, you must set the lowest-numbered output register for the
vertex coordinates. You can set all other vertex attributes freely with #pragma output_map.

The line strips, line loops, and separate lines discussed in section 2.6.1 Primitive Types of the
OpenGL ES 2.0 specifications do not exist in DMPGL 2.0. You cannot call DrawElements or
DrawArrays with LINE_STRIP, LINE_LOOP, or LINES specified for mode.

4.2.2 Line Width

To set the line width, call Uniform4fv on the reserved uniform dmp_Line.width with the 4
components (viewport width / line width, viewport height / line height, viewport width x viewport height,
2 / line width) set for value. This reserved uniform is undefined by default and must be set. Behavior
is undefined for a line width of 0.0 or less. LineWidth, mentioned in section 3.4 Line Segments of
the OpenGL ES 2.0 specifications, does not exist in DMPGL 2.0.

4.2.3 Line Rendering Method

DMPGL 2.0 does not incorporate the series of processes described in sections 3.4.1 Basic Line
Segment Rasterization and 3.4.2 Other Line Segment Features of the OpenGL ES 2.0 specifications.
In DMPGL 2.0, the geometry shader renders a line by creating a rectangle formed of two polygons
from the two vertices input to it by the vertex shader. The two newly created polygons comprise four
vertices (A', A'', B', and B''), which are created in the y-direction from the two input vertices A and B
(depending on the orientation of the line segment AB, the polygons might also be created in the x-

DMPGL 2.0 Specifications

 2009-2011 Nintendo 43 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

direction). The line segments A'A'' and B'B'' are centered on A and B, respectively, and are as long as
the line width. This is not adjusted to match the output vertex coordinate grid or in any other way. The
two polygons are rendered to be front-facing with a counterclockwise winding (displayed when CCW is
specified for FrontFace).

Figure 4-2 Line Rendering Method

A

A”

A’

B’

B

B”

Generated Polygons

4.2.4 Multisample Rendering

DMPGL 2.0 does not incorporate the series of processes described in section 3.4.4 Line Multisample
Rasterization of the OpenGL ES 2.0 specifications.

4.2.5 List of Reserved Uniforms

The following table shows shows settings for the reserved uniforms that are used by lines.

Table 4-2 Reserved Uniform Settings for Lines

Uniform Type Value

dmp_Line.width vec4
�

𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 𝑤𝑖𝑑𝑡ℎ
𝑙𝑖𝑛𝑒 𝑤𝑖𝑑𝑡ℎ ,

𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 ℎ𝑒𝑖𝑔ℎ𝑡
𝑙𝑖𝑛𝑒 𝑤𝑖𝑑𝑡ℎ , 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 𝑤𝑖𝑑𝑡ℎ × 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 ℎ𝑒𝑖𝑔ℎ𝑡,

2. 𝑓
𝑙𝑖𝑛𝑒 𝑤𝑖𝑑𝑡ℎ�

Undefined by default

4.3 Silhouettes
This section describes functionality for rendering silhouettes. Silhouettes introduce a new primitive
type, silhouette primitives, which allow you to render silhouette edges around polygons. By combining
the silhouette edges of polygons with shadow functionality, you can render soft shadows, also called
penumbras.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 44  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

4.3.1 How to Use Silhouettes

To render silhouettes, link a user vertex shader to the reserved geometry shader
DMP_silhouetteTriangle.obj for silhouette triangles, or DMP_silhouetteStrip.obj for
silhouette strips. To use a silhouette geometry shader, the vertex shader must output three vertex
attributes: the vertex coordinates, color, and normal (you cannot output any vertex attributes other
than these). To set vertex coordinates as a vertex attribute to output, specify position for
data_name, corresponding to the vertex shader assembly code #pragma output_map. Likewise,
to set the color as an attribute to output, specify color for data_name, corresponding to #pragma
output_map. To set the normal as an attribute to output, specify generic for data_name,
corresponding to #pragma output_map. When you set the mapped_register corresponding to
#pragma output_map, you must start from the lowest-numbered output register for the vertex
coordinates, then set the next-lowest registers for the color and the normal, in that order.

Calls to DrawArrays are not supported when silhouette shaders are in use. Although silhouette
primitives (described in section 4.3.2 Silhouette Primitives) are used to render vertex data, the vertex
data and index data must be used by glBindBuffer and glBufferData for the vertex buffer. You
must also call Disable with CULL_FACE specified for cap to disable culling before you call
DrawElements.

4.3.2 Silhouette Primitives

Silhouettes are rendered using the new silhouette primitive type. A silhouette primitive comprises four
triangles: one at the center and three around it, each sharing an edge with the center triangle. These
four adjacent triangles together are called a triangle with neighborhood (hereinafter TWN). When an
edge shared by the center triangle and an adjacent triangle is determined to be a silhouette edge, a
rectangular polygon is generated there as the silhouette edge.

When TWN triangles have edges that are not shared with any other triangles, it is possible to specify
another adjacent triangle formed of two points on those unshared edges and taking as its third vertex
one of the vertices of the center triangle.

Triangles with edges shared by three or more triangles have not been taken into account.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 45 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Figure 4-3 Silhouette Primitive Example

2

0

1

4

5

3

6

7

The center triangle (2,1,3) has the three adjacent triangles (2,0,1), (3,1,5), and (2,3,4).

You can specify TWN vertex indices as either silhouette triangles or silhouette strips.

With silhouette triangles, a single TWN comprises six vertices. To keep the center triangle front-facing,
two of its vertices are taken as the first and second vertices of the TWN. The third vertex of the TWN
is the remaining vertex of the adjacent triangle that shares an edge with these first two vertices. Next,
the remaining vertex of the center triangle is taken as the fourth vertex. The fifth vertex is the
remaining vertex of the adjacent triangle that shares the first and fourth vertices. Finally, the sixth
vertex is the remaining vertex of the adjacent triangle that shares the second and fourth vertices.
Figure 4-4 gives the TWN indices for the TWNs having the center triangles (2,1,3) and (3,1,5) in the
silhouette primitive example shown in Figure 4-3.

Figure 4-4 Silhouette Triangle Indices

…………………..2 1 0 3 4 5 3 1 2 5 K6 7

With silhouette strips, the first six vertices specify a single TWN and each following pair of vertices
specifies a single TWN. The indices for the first six vertices are determined according to the same
rules as silhouette triangles. Afterwards, the last adjacent triangle specified for the N'th TWN is taken
as the center triangle of the N+1'th TWN. The second and third vertices of the center triangle for the
N'th TWN are taken as the first and second vertices of the center triangle for the N+1'th TWN. Likewise,
the last vertex of the N'th TWN is taken as the third vertex of the center triangle for the N+1'th TWN.
The two vertices explicitly specified for the N+1'th TWN are the remaining vertices of the adjacent
triangles that, respectively, share an edge with the first and third vertices and second and third
vertices of the center triangle for that TWN. Figure 4-5 gives the TWN indices for the TWNs having
the center triangles (2,1,3) and (3,1,5) in the silhouette primitive example shown in Figure 4-3.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 46  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Figure 4-5 Silhouette Strip Indices

…………………..2 1 0 3 4 5 7 K6

4.3.3 Method for Creating Silhouette Edges

To render silhouette edges, new rectangular polygons are generated on the edges of the center
triangle for a TWN. Silhouette edges are created when the center triangle for a TWN is front-facing
and one of its adjacent triangles is not front-facing. The center triangle and the adjacent triangle share
two vertices; two additional vertices are added along the normal vectors of those shared vertices, and
those four vertices are used to generate the rectangular polygon that forms the silhouette edge.

Figure 4-6 Creation of a Silhoutte Rectangle by Edge 1-2 and Normal Vectors n1 and n2

2

1

0

3

n1

n2

1'

2'

Vertices 1' and 2' are the newly generated vertices. The generated silhouette rectangle comprises
vertices 2, 1, 1', and 2'.

In the following equation, the vertices on the edge (1 and 2 in Figure 4-6) are given by (x, y, z, w) and
the vertices along the normal vectors (1' and 2' in Figure 4-6) are given by (x', y', z', w').

DMPGL 2.0 Specifications

 2009-2011 Nintendo 47 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Equation 4-2 Relationship Between Silhouette Rectangle Vertices

�

𝑥′

𝑦′

𝑧′

𝑤′

� = �
𝑥 + 𝑥𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑛𝑥 × 𝑤_𝑠𝑐𝑎𝑙𝑒
𝑦 + 𝑦𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑛𝑦 × 𝑤_𝑠𝑐𝑎𝑙𝑒

𝑧
𝑤

�

The normal vector output by the vertex shader is taken as (nx, ny, nz) in this equation. To set
xscale_factor and yscale_factor, call Uniform2fv on the reserved uniform
dmp_Silhouette.width with value specified as a 2-component floating-point vector. The
following equation shows how yscale_factor is calculated.

Equation 4-3 Calculation of yscale_factor

𝑦𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑥𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡. 𝑤𝑖𝑑𝑡ℎ ÷ 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡. ℎ𝑒𝑖𝑔ℎ𝑡

When Uniform1i is called on the reserved uniform dmp_Silhouette.scaleByW with TRUE
specified for value, w_scale takes the value of the w component of the vertices on the edge (vertices
1 and 2 in Figure 4-6). A value of 1.0 is used for w_scale when FALSE is specified for value.

4.3.4 Vertex Shaders When Silhouettes Are in Use

Vertex shaders must output normal vector data when silhouettes are in use. To obtain this output data,
the vertex shader must take the vertex normal vectors input to it by the application, apply the
modelview transformation, and normalize them over their x and y components. In other words, after
the modelview transformation the output normal vector n' must be normalized from the eye-
coordinate normal vector n = (nx, ny, nz) as follows.

Equation 4-4 Output Normal Vectors

𝑛′ =
𝑛

�𝑛𝑥2 + 𝑛𝑦2

4.3.5 Silhouette Colors

The vertex color of the vertices lying on the center and adjacent triangles of the TWN is used for the
color of those vertices of the silhouette edge. Set the color of the new vertices created along the
normal vectors to form the silhouette edge by calling Uniform4fv on the reserved uniform
dmp_Silhouette.color with the 4-component floating-point array (R, G, B, A) specified for value.
The configured values are clamped between 0 and 1.

4.3.6 Front-Facing Settings

When silhouettes are in use, you must call Uniform1i on the reserved uniform
dmp_Silhouette.frontFaceCCW with value set to TRUE or FALSE to match the FrontFace
setting. Specify TRUE when FrontFace is set to CCW and FALSE when it is set to CW.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 48  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

4.3.7 Creating Silhouette Edges on Open Edges

When the center triangle of a TWN has an edge that is not shared with any other triangles (an open
edge), the adjacent triangle for that edge is specified so that it comprises the two points on the edge
and the remaining vertex of the center triangle. In other words, the adjacent triangle is specified so
that it folds over and exactly overlaps the center triangle. To configure silhouette edges to either
always or never be created on open edges, call Uniform1i on the reserved uniform
dmp_Silhouette.acceptEmptyTriangles with value set to TRUE or FALSE. When it is TRUE,
silhouette edges are always generated on the open edges of polygons, such as described above.
When FALSE, silhouette edges are never generated on open edges.

Unlike normal silhouette edges, open-edge silhouettes are rendered by a line that connects the two
vertices on the edge. In other words, they are rendered just like line primitives and are unaffected by
the normal vectors for the vertices on the edge.

Open-edge silhouettes are configured separately from the settings for ordinary silhouette edges. You
can configure the silhouette color, width of the silhouette edge, and bias in the view direction. You can
also enable or disable scaling by the w component of vertex coordinates with respect to either or both
the width of the silhouette edge and the bias in the view direction.

Open-edge silhouettes are rendered in a configured solid color; the edge's vertex colors are not used.
To configure the color of open-edge silhouettes, call Uniform4fv on the reserved uniform
dmp_Silhouette.openEdgeColor with value set to the color.

The width of an open-edge silhouette is configured in the same way as a line primitive. To set it, call
Uniform4fv on the reserved uniform dmp_Silhouette.openEdgeWidth with value set to the
four components (viewport width / silhouette width, viewport height / silhouette width, viewport width x
viewport height, 2 / silhouette width). You can scale this silhouette width by the w component of the
vertex coordinates. To scale by the w component, call Uniform1i on the reserved uniform
dmp_Silhouette.openEdgeWidthScaleByW with value set to TRUE. To not scale the width of
open-edge silhouettes by the w component, specify FALSE.

You can apply a bias in the view direction for open-edge silhouettes. To configure this, call
Uniform1fv on the reserved uniform dmp_Silhouette.openEdgeDepthBias with value set to
the bias factor. Setting a positive value will move the open-edge silhouette toward the viewpoint and a
negative value will move it away. You can scale this bias factor by the w component of the vertex
coordinates. To scale by the w component, call Uniform1i on the reserved uniform
dmp_Silhouette.openEdgeDepthBiasScaleByW with value set to TRUE. To not scale the view-
direction bias of open-edge silhouettes by the w component, specify FALSE.

4.3.8 Specifying Multiple Strip Arrays

To render silhouette strip arrays used for multiple silhouettes (hereafter called simply "strip arrays")
with a single call to DrawElements, you must specify the end of each strip array. After the first six
vertices in a strip array, even-numbered vertices always belong to center triangles. If the same vertex
value is used for two even-numbered vertices in a row, however, it indicates that the end of that strip
array has been reached. The strip array specifies the remaining vertex of the adjacent triangle whose

DMPGL 2.0 Specifications

 2009-2011 Nintendo 49 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

edge is shared with the second and third vertices of the final center triangle, then the strip array ends.
Another strip array can then be re-specified from its starting six vertices. When you reuse the first six
vertices of a strip array to specify a second or subsequent strip array, its first center triangle can start
with a different orientation than the FrontFace setting. In this case, specifying the first vertex of that
strip array twice in a row indicates that it starts with the opposite orientation from the FrontFace
setting.

Figure 4-7 Specifying the End of a Silhouette Strip Array

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

For the example in Figure 4-7, a silhouette strip array that starts with the triangle at vertices 0, 1, and
2 and ends with the triangle at vertices 6, 7, and 8 would have the vertex indices {0, 1, 10, 2, 11, 3, 12,
4, 13, 5, 14, 6, 15, 7, 16, 8, 17, 8, 9}. If this silhouette strip array started with the opposite orientation
from the FrontFace setting, it would have the vertex indices {0, 0, 1, 10, 2, 11, 3, 12, 4, 13, 5, 14, 6,
15, 7, 16, 8, 17, 8, 9}.

Although you can demarcate between multiple silhouette strip arrays by specifying the end of each in
this way, failure to specify the end of the very last silhouette strip in this same way and instead
connect it to another triangle sometimes causes double silhouettes to be generated on that edge.
When applying alpha blending or similar operations on silhouettes, it is best to specify the end of
every strip array, as described in this section.

4.3.9 List of Reserved Uniforms

The following table shows settings for the reserved uniforms that are used by silhouettes.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 50  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Table 4-3 Reserved Uniform Settings for Silhouettes

Uniform Type Value

dmp_Silhouette.width vec2
Each component is 0.0 or greater
Undefined by default

dmp_Silhouette.scaleByW bool
TRUE
FALSE
Undefined by default

dmp_Silhouette.color vec4
Each component is between 0.0 and 1.0
Undefined by default

dmp_Silhouette.frontFaceCCW bool
TRUE
FALSE

Undefined by default

dmp_Silhouette.acceptEmptyTriangles bool
TRUE
FALSE
Undefined by default

dmp_Silhouette.openEdgeColor vec4
Each component is between 0.0 and 1.0
Undefined by default

dmp_Silhouette.openEdgeWidth vec4
�

𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 𝑤𝑖𝑑𝑡ℎ
𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑤𝑖𝑑𝑡ℎ

, 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 ℎ𝑒𝑖𝑔ℎ𝑡
𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑤𝑖𝑑𝑡ℎ

,

𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 𝑤𝑖𝑑𝑡ℎ × 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 ℎ𝑒𝑖𝑔ℎ𝑡, 2.𝑓
𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑤𝑖𝑑𝑡ℎ

�

Undefined by default

dmp_Silhouette.openEdgeDepthBias
floa
t

Any
Undefined by default

dmp_Silhouette.openEdgeWidthScaleByW bool
TRUE
FALSE

Undefined by default

dmp_Silhouette.openEdgeDepthBiasScaleB
yW

bool
TRUE
FALSE
Undefined by default

4.4 Subdivisions
This section describes subdivision features. DMPGL 2.0 provides a complete implementation for both
Catmull-Clark subdivision and Loop subdivision. Both features use geometry shaders to subdivide
primitives. The Catmull-Clark method splits up quads to create more detailed quads, while Loop
subdivision splits up triangles to create more detailed triangles. Subdivisions use a new primitive type,
the subdivision patch, to subdivide input polygons and thereby generate finer polygons to insert into a
later stage of the fragment pipeline. You can set the subdivision level. Catmull-Clark and Loop
subdivision differ in several ways, including how they are used, the definition of their subdivision
patches, and their limitations.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 51 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

4.4.1 Catmull-ClarkSubdivision

This section explains Catmull-Clark subdivision. When this section simply refers to "subdivision," it
indicates Catmull-Clark subdivision.

4.4.1.1 How to Use Catmull-Clark Subdivision

To use Catmull-Clark subdivision, link a user vertex shader to one of the reserved geometry shaders
DMP_subdivisionN.obj (where N = 1,2,3,4,5,6). The number of attributes sent by the vertex
shader determines which of these to use. To use Catmull-Clark subdivision, the vertex shader must
output at least two attributes, one of which must be a vertex coordinate. To set vertex coordinates as
a vertex attribute to output, specify position for data_name, corresponding to the vertex shader
assembly code #pragma output_map. When you set the mapped_register corresponding to
#pragma output_map, you must set the lowest-numbered output register for the vertex coordinates.
You can set all other vertex attributes freely with #pragma output_map, but when quaternions are
output by the vertex shader, you must set them to the next-lowest output register number after the
vertex coordinates. The number (1-6) at the end of the reserved geometry shader name must have
the same value as the number of vertex attributes, not counting the vertex coordinates.

Calls to DrawArrays are not supported when subdivision shaders are in use. Although Catmull-Clark
subdivision patches (described in section 4.4.1.2 Definition of Catmull-Clark Subdivision Patches) are
used to render vertex data, the vertex data and index data must be used by BindBuffer and
BufferData for the vertex buffer.

4.4.1.2 Definition of Catmull-Clark Subdivision Patches

DMPGL 2.0 introduces a new primitive type, Catmull-Clark subdivision patches. Catmull-Clark
subdivision patches are made up of all vertices in the polygon(s) to subdivide and all vertices that
share an edge with those vertices. In Catmull-Clark subdivision, an extraordinary vertex is one that
does not have 4 adjoining edges. The number of adjoining edges to a vertex is called the valence of
the vertex. A Catmull-Clark subdivision patch must comprise only quads and must not have more than
one extraordinary point. In general, after one or two subdivisions all subdivision patches are
guaranteed to satisfy these two conditions.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 52  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Figure 4-8 Example of a Catmull-Clark Subdivision Patch

15

0

20

18

21

1

2

3

4

5

6

7

11

8

9

10

12

13 14

16

17

19

Vertex 9 is an extraordinary vertex with a valence of 5.

4.4.1.3 Vertex Indices for Catmull-Clark Subdivision Patches

The number of vertices in a patch depends on the valence of its extraordinary vertex. In other words,
a subdivision patch is not a primitive with a fixed vertex count. As a result, the vertex count of a
subdivision patch is stored at the start of the vertex indices used by that patch. The patch's vertex
indices are stored next. A single patch can contain up to 32 vertices. A patch's behavior is undefined if
it is specified with more than 32 vertices.

The order of the vertex indices that are stored subsequent to the patch's vertex count is determined
according to the following rules.

1. The first vertex is either a vertex of the central quad to be subdivided or the extraordinary vertex, if
one exists.

2. The second, third, and fourth vertices are the remaining 3 vertices of the central quad. They are
numbered in either clockwise or counterclockwise order so that the quad is front-facing according
to the FrontFace setting.

3. The fifth vertex is the vertex that forms an edge with the first vertex and a surface with both the first
and second vertices.

4. The remaining vertices are specified in the same direction (clockwise or counterclockwise) as the
central quad. Figure 4-9 shows the vertex indices for the example in Figure 4-8.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 53 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Figure 4-9 Array of Vertex Indices for a Patch

The patch size is stored at the start of the indices for each patch.

The indices for each patch must be stored so that patches sharing the same extraordinary vertex are
consecutive. Vertex 9 is the extraordinary vertex in Figure 4-8, so the patches with the central quads
(9,5,6,10), (9,10,16,15), (9,15,14,13), (9,13,12,8), and (9,8,4,5) must have their indices stored
consecutively. If patches sharing the same extraordinary point are not consecutive in the index array,
continuity between subdivision patches is not guaranteed and the mesh could develop holes.

4.4.2 Loop Subdivision

This section explains Loop subdivision. When this section simply refers to "subdivision," it indicates
Loop subdivision.

4.4.2.1 How to Use Loop Subdivision

To use Loop subdivision, link a user vertex shader to one of the reserved geometry shaders
DMP_loopSubdivisionN.obj (where N = 1,2,3,4). The number of output registers used by the
vertex shader determines which of these to use. To use a geometry shader for Loop subdivision, the
vertex shader must output at least the vertex coordinates and valences. The valence is the number of
edges adjacent to a vertex. To set vertex coordinates as a vertex attribute to output, specify
position for data_name, corresponding to the vertex shader assembly code #pragma
output_map. To set the valence as a vertex attribute to output, specify generic for data_name,
corresponding to the vertex shader assembly code #pragma output_map. When you set the
mapped_register corresponding to #pragma output_map, you must set the lowest-numbered
output register for the vertex coordinates. You can set all other vertex attributes freely with #pragma
output_map, but when quaternions are output by the vertex shader, you must set them to the next-
lowest output register number after the vertex coordinates. The valence must be set to the highest-
numbered output register. In other words, you must use output registers first for the vertex
coordinates and then for quaternions, miscellaneous attributes, and the valence, in that order. The
number (1-4) at the end of the reserved geometry shader name must have the same value as the
number of output registers used for vertex attributes, not counting the valence. Because the upper
limit is 4, vertex shaders can use up to four output registers. Note that, unlike Catmull-Clark
subdivision, this is the number of output registers, not the number of output attributes. Although you
can use only up to four output registers, you can use more than four output attributes by setting more
than one attribute in a single register (for example, you could set texture coordinate 0 in o1.xy and
texture coordinate 1 in o1.zw). However, quaternions cannot be set to the same output register as
another attribute.

Calls to DrawArrays are not supported when subdivision is in use. Although Loop subdivision
patches (described in section 4.4.2.2 Definition of a Loop Subdivision Patch) are used to render

…………………..9 5 6 10
8 4 0 1 2 3 7 11 17 16 15 14 13 12

9 10 16 15
5 6 7 11 17 21 20 19 18 14 13 12

8 418 18

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 54  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

vertex data, the vertex data and index data must be used by BindBuffer and BufferData for the
vertex buffer.

4.4.2.2 Definition of a Loop Subdivision Patch

DMPGL 2.0 introduces a new primitive type, the Loop subdivision patch. Loop subdivision patches
are made up of all vertices in the polygon(s) to subdivide and all vertices that share an edge with
those vertices. Each vertex in a Loop subdivision patch must have a valence of at least 3 and no
more than 12, and the sum of the valances of all vertices in each single polygon of a Loop subdivision
patch must be 29 or less. If a Loop subdivision patch contains a vertex with a valence less than 3, this
can be handled by adding imaginary vertices to increase its valence.

Figure 4-10 A Loop Subdivision Patch

v0

v1 v2

e00e10

e20

e01

e11

e21

e0(k0-4)

e1(k1-4)

e2(k2-4)

・・・・・・

・・・・・・

・・・・・・

In Figure 4-10, the polygon with vertices v0, v1, and v2 is the target of subdivision. k0, k1, and k2
are the valences of v0, v1, and v2, respectively. If two vertices share an edge, they are said to be
adjacent. Vertices that are adjacent to v0 but not adjacent to v1 are named e00, e01, … ,
e0(k0-4) in counterclockwise order of adjacency, starting with the vertices adjacent to v2. In the
same way, vertices that are adjacent to v1 but not adjacent to v2 are named e10, e11, … ,
e1(k1-4) in counterclockwise order of adjacency, starting with the vertices adjacent to v0. Vertices
that are adjacent to v2 but not adjacent to v0 are named e20, e21, … , e2(k2-4) in
counterclockwise order of adjacency, starting with vertices adjacent to v1. The patch comprises all of
these vertices.

4.4.2.3 Vertex Indices of a Loop Subdivision Patch

The total number of vertices in a patch depends on the valence of the vertices. In other words, a
subdivision patch is not a primitive with a fixed vertex count. As a result, the size of each subdivision
patch is stored in the first vertex index that it uses. When a center triangle with the three vertices v0,

DMPGL 2.0 Specifications

 2009-2011 Nintendo 55 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

v1, and v2 is subdivided, the patch size is three vertices larger than the sum of all vertices that share
an edge with vertex v0, v1, or v2.

Using Figure 4-10 as an example, the order of the vertex indices that are stored subsequent to the
patch's vertex count is determined according to the following rules.

1. The three vertices v0, v1, and v2 of the center triangle that is the target of subdivision are taken as
the first, second, and third vertices in line with the FrontFace setting.

2. Next come all vertices that share an edge with v0, followed by all vertices that share an edge with
v1, followed by all vertices that share an edge with v2, in order.

3. A fixed value of 12 is specified next, followed by the vertices v0, v1, and v2 again.

4. The vertices e00, e10, and e20 are specified after that. In this case, e00 is the vertex that shares
an edge with both v0 and v2 but is not v1. In the same way, e10 and e20 correspond to the
edges v0v1 and v1v2, respectively.

5. The vertices e01, e11, and e21 are specified after that. e01 is the vertex that shares an edge with
v0 and is adjacent to v0 next after e00 in counterclockwise order. In the same way, e11 and e21
correspond to vertices v1 and v2, respectively.

6. Last, the vertices e0(k0-4), e1(k1-4), and e2(k2-4) are specified. Here, k0, k1, and k2 are
the valences of v0, v1, and v2, respectively. e0(k0-4) is the vertex that shares an edge with v0
and is adjacent to v0 next after e10 in clockwise order. In the same way, e1(k1-4) and e2(k2-
4) correspond to vertices v1 and v2, respectively.

Figure 4-11 Array of Vertex Indices for a Loop Subdivision Patch

12 v0 v1 v2 e0
0

e1
0

e2
0

e0
1

e1
1

e2
1

e0
(k

0-
4)

e1
(k

1-
4)

e2
(k

2-
4)

Vertices that
share an edge

with v0

Vertices that
share an edge

with v1

Vertices that
share an edge

with v2Σk
i+

3

v0 v1 v2

Vertices that share an edge with either v0, v1, or v2 may be specified in any order for that vertex, but
they must use the same order in all patches. For example, vertices that share an edge with v0 must
have the same order in all patches that contain v0.

v1, e00, e01, and e0(k0-4) are also included in the vertices that share an edge with v0. These
vertices and the corresponding vertices for v1 and v2 are specified more than once. This definition
was nevertheless adopted for efficiency and to simplify the geometry shader implementation.
Because the cache is hit after the vertices are processed, these duplications within the definition do
not actually cause a performance penalty.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 56  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

4.4.3 How to Process Subdivisions

The geometry shaders for Loop subdivision and Catmull-Clark subdivision accumulate the processed
vertex data and subdivide a single patch as soon as all the vertex data for that single patch has been
input. When subdivided, a polygon has new vertices created both inside it and on its edges and its
original vertex positions are changed.

You can specify the subdivision level by calling Uniform1f on the reserved uniform
dmp_Subdivision.level with value set to 0, 1, or 2. Increasing the level results in a finer
subdivision. Although Loop subdivision does not generate vertices at level 0, the position of the vertex
coordinates change and the resulting model therefore does not match the original. At level 0, Catmull-
Clark subdivision generates a single new vertex only at the center of rectangular patches; the position
of each of the vertex coordinates is also changed.

All vertex attributes other than the coordinates of the new vertices are calculated by interpolating the
vertex attributes of the original polygon targeted for subdivision. You must configure the shader to
either use or not use quaternions as vertex attributes, because quaternions need to be interpolated
differently from the other vertex attributes. To configure the use of quaternions, call Uniform1i on
the reserved uniform dmp_Subdivision.fragmentLightingEnabled with value set to either
TRUE or FALSE. Specify TRUE to use quaternions and FALSE otherwise.

4.4.4 List of Reserved Uniforms

The following table shows settings for the reserved uniforms that are used by subdivisions.

Table 4-4 Reserved Uniform Settings for Subdivisions

Uniform Type Value

dmp_Subdivision.level float

0
1
2
Undefined by default

dmp_Subdivision.fragmentLightingEnabled bool
TRUE
FALSE
Undefined by default

4.5 Particle Systems
This section describes particle system features. Particle systems are defined as a set of point sprites.
In a particle system, multiple point sprites are placed randomly along a Bézier curve obtained from
configured control points. The particle system configures bounding boxes centered on each of the
control points, and the control points that define the Bézier curve move randomly inside of these
bounding boxes. In other words, the Bézier curve for all the point sprites are defined randomly within
a given bounding box. The geometry shader generates the size, color, and texture coordinates of
each of these point sprites. The point sprites generated by a particle system are hereafter called
particles. Each particle is rendered using two triangles just like a point primitive. These two triangles

DMPGL 2.0 Specifications

 2009-2011 Nintendo 57 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

are rendered to be front-facing with a counterclockwise winding (displayed when CCW is specified for
FrontFace).

Figure 4-12 Particle Bezier Curve Trajectory Created by Control Points

4.5.1 How to Use Particle Systems

To use a particle system with DMPGL 2.0, link a user vertex shader to one of the reserved geometry
shaders DMP_particleSystem_X_X_X_X.obj (where X = 0 or 1). Each X (0 or 1) in the reserved
geometry shader name indicates whether a particle system feature is on or off. Respectively, these
features are: particle time clamping; texture coordinate rotation; use of the RGBA particle color
components (or only the alpha component when this feature is off); and texture coordinate 2. Details
are given in Table 4-6.

Calls to DrawArrays are not supported when particle systems are in use.

4.5.2 Input of Control Points

Particle systems require four control points to define a Bézier curve. As a result, the vertex shader
that is linked to the particle system's geometry shader must output both the vertex coordinates for the
control point and the size of the bounding box to center on that control point.

The vertex coordinates are output in clip space. If the size of a bounding box is given as radii of Rx,
Ry, and Rz in object coordinates for the X, Y, and Z directions, the bounding box size is input as the
three vectors (Rx, 0, 0), (0, Ry, 0), and (0, 0, Rz) converted from object space to clip
space. The vertex shaders sets the output attributes as follows.

Code 4-1 Output Attributes for Control Point Bounding Boxes
#pragma output_map (position , o0)

#pragma output_map (generic , o1)

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 58  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

#pragma output_map (generic , o2)

#pragma output_map (generic , o3)

#pragma output_map (generic , o4)

The vertex coordinates in clip space are output to o0. When the bounding box's radii in the XYZ
directions are given by Rx, Ry, and Rz in object coordinates, o1-o4 are calculated and output as
follows.

Equation 4-5 Calculation of Control Point Bounding Box Size

�

𝑜1. 𝑥 𝑜1. 𝑦 𝑜1. 𝑧 0
𝑜2. 𝑥 𝑜2. 𝑦 𝑜2. 𝑧 0
𝑜3. 𝑥 𝑜3. 𝑦 𝑜3. 𝑧 0
𝑜4. 𝑥 𝑜4. 𝑦 𝑜4. 𝑧 0

� = 𝑀𝑝𝑟𝑜𝑗 x 𝑀𝑚𝑜𝑑𝑒𝑙𝑣𝑖𝑒𝑤 x �

𝑅𝑥 0 0 0
0 𝑅𝑦 0 0
0 0 𝑅𝑧 0
0 0 0 0

�

In this equation, Mproj and Mmodelview correspond to the projection and modelview matrices, respectively.

4.5.3 Particle Colors

The color of each particle is interpolated from the control point color according to the particle's
position on the Bézier curve. You can configure two types of control point colors. The first uses all of
the RGBA components and the second uses only the alpha component. To set all of the RGBA
components, use one of the reserved geometry shaders DMP_particleSystem_X_X_1_X.obj
and call UniformMatrix4fv on the reserved uniform dmp_PartSys.color, specifying a pointer to
a 4x4 matrix that stores the RGBA values for the four control points. In this 4x4 matrix, store the
components in RGBA order, starting with the first control point and ending with the fourth control point.

To set only the alpha component, use one of the reserved geometry shaders
DMP_particleSystem_X_X_0_X.obj and call UniformMatrix4fv on the reserved uniform
dmp_PartSys.aspect, specifying a pointer to a 4x4 matrix that stores the alpha values for the four
control points in its fourth column. Store the alpha components in the 4x4 matrix starting with the first
control point in the first row and ending with the fourth control point in the fourth row.

Using all of the RGBA components results in worse performance than using only the alpha
components. We recommend using only the alpha component when you do not need the RGB
components.

4.5.4 Particle Size

The size of each particle is determined by interpolating the particle sizes specified for the control
points according to the particle's position on the Bézier curve. To specify the particle size for each
control point, call UniformMatrix4fv on the reserved uniform dmp_PartSys.aspect, specifying
a pointer to a 4x4 matrix with the size of the four control points in its first column. Store the sizes in
the 4x4 matrix starting with the first control point in the first row and ending with the fourth control
point in the fourth row.

To set the minimum and maximum particle size, call Uniform2fv on the reserved uniform
dmp_PartSys.pointSize with value set to an array storing the minimum and maximum size, in

DMPGL 2.0 Specifications

 2009-2011 Nintendo 59 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

that order. Because you also need to take the screen size into consideration, you must also call
Uniform2fv on the reserved uniform dmp_PartSys.viewport with value set to the array (1 /
viewport width, 1 / viewport height).

When particles are configured to use distance attenuation, the attenuated size derived_size is shown
by the following equation. The particle size is given by size and the distance from the viewpoint is
given by d.

Equation 4-6 Distance-Attenuated Particle Size

𝑑𝑒𝑟𝑖𝑣𝑒𝑑_𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 × �
1

𝑎 + 𝑏 × 𝑑 + 𝑐 × 𝑑2

To set the attenuation coefficients a, b, and c, call Uniform3fv on the reserved uniform
dmp_PartSys.distanceAttenuation with value set to an array storing a, b, and c, in that order.

4.5.5 Generated Particle Count

To set the maximum number of particles that can be generated, call Uniform1fv on the reserved
uniform dmp_PartSys.countMax with value set to an array storing a number one less than the
maximum number of particles that can be generated. You must specify a value of 0.0 or greater. If
you set dmp_PartSys.countMax to a maximum value greater than 256, however, only 255 particles
are generated because 255 particles is the maximum number supported by the shader
implementation.

4.5.6 Particle Running Time

Time settings are required for particle systems. As the time increases from 0, generated particles
move from within the bounding box around the first control point to within the bounding box around
the fourth control point. To set the current time, call Uniform1fv on the reserved uniform
dmp_PartSys.time with value set to an array storing the current time. The specified current time
is converted by a random value for each particle. As that final value changes within the range from 0
to 1, the particle moves between the first and fourth control points.

If one of the shaders DMP_particleSystem_0_X_X_X.obj is used as the reserved geometry
shader, particles outside the range 0 to 1 are not rendered. When one of the shaders
DMP_particleSystem_1_X_X_X.obj is used, the current time loops within the range from 0 to 1.
In other words, particles that reach the fourth control point are re-generated by the first control point.

To set the speed of particle movement, call Uniform1fv on the reserved uniform
dmp_PartSys.speed with value set to an array storing a value for the speed.

4.5.7 Generating Random Values

Random values generated by a random number function determine the particle execution time and
the position of the control points that define the Bézier curve, which itself determines particle positions.
The details of the random number function are dependent on the geometry shader implementation

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 60  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

and are not given in this specification. The random number function does, however, use an
implementation similar to the following algorithm for a pseudo-random number generator.

Equation 4-7 Algorithm for a Pseudo-Random Number Generator

𝑋𝑁+1 = (𝑎𝑋𝑁 + 𝑏) mod 𝑚

Values must be set for a, b, and m in Equation 4-7. To set them, call Uniform4fv on the reserved
uniform dmp_PartSys.randomCore with value set to the array (a, b, m, 1/m). To set the random
seed corresponding to X0 in Equation 4-7, call Uniform4fv on the reserved uniform
dmp_PartSys.randSeed with value set to an array with 4 components. The values set in the array
are applied as random values to the x, y, and z components of the Bézier curve that determines the
particle positions, and to the particle time.

4.5.8 Texture Settings
4.5.8.1 Usable Texture Units

Geometry shaders for particle systems are implemented to output texture coordinate 0 and texture
coordinate 2. To use texture coordinate 2, set the reserved geometry shader to
DMP_particleSystem_X_X_X_1.obj; to not use it, set the reserved geometry shader to
DMP_particleSystem_X_X_X_0.obj.

4.5.8.2 Texture Coordinates

Particle systems automatically generate texture coordinates. Texture coordinate 0’s uv components
indicate the lower-left, lower-right, upper-left, and upper-right of a particle using (0,0), (1,0),
(0,1), and (1,1), respectively. Texture coordinate 2’s uv components indicate the lower-left, lower-
right, upper-left, and upper-right of a particle using (-1,-1), (1,-1), (-1,1), and (1,1),
respectively.

You can also rotate and scale texture coordinates (although only texture coordinate 2 allows scaling).
Texture coordinates are not rotated or scaled when the reserved geometry shader is set to
DMP_particleSystem_X_1_X_X.obj. The texture coordinates are rotated and scaled when the
reserved geometry shader is set to DMP_particleSystem_X_0_X_X.obj.

The texture coordinates for each particle are rotated and scaled by values calculated by interpolating
the corresponding settings of each control point by the particle's position on the Bézier curve. To
configure the scaling value and rotation angle (in radians) for the texture coordinates at the four
control points, call UniformMatrix4fv on the reserved uniform dmp_PartSys.aspect and
specify a pointer to a 4x4 matrix, with the rotation angles in column 2 and the scaling values in
column 3. The 4x4 matrix stores the settings for control points 1-4 respectively in rows 1-4.

Given a rotation angle of A and a scaling value of R, texture coordinate 0’s uv components are the
following.

• Lower left: (0.5 × (1.0 + (− cos 𝐴 + sin 𝐴)), 0.5 × (1.0 + (− cos 𝐴 − sin 𝐴)))
• Lower right: (0.5 × (1.0 + (cos 𝐴 + sin 𝐴)), 0.5 × (1.0 + (− cos 𝐴 + sin 𝐴)))
• Upper left: (0.5 × (1.0 + (− cos 𝐴 − sin 𝐴)), 0.5 × (1.0 + (cos 𝐴 − sin 𝐴)))

DMPGL 2.0 Specifications

 2009-2011 Nintendo 61 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

• Upper right: (0.5 × (1.0 + (cos 𝐴 − sin 𝐴)), 0.5 × (1.0 + (cos 𝐴 + sin 𝐴)))

Texture coordinate 2’s uv components are the following.

• Lower left: (𝑅(− cos 𝐴 + sin 𝐴), 𝑅(− cos 𝐴 − sin 𝐴))
• Lower right: (𝑅(cos 𝐴 + sin 𝐴), 𝑅(− cos 𝐴 + sin 𝐴))
• Upper left: (𝑅(− cos 𝐴 − sin 𝐴), 𝑅(cos 𝐴 − sin 𝐴))
• Upper right: (𝑅(cos 𝐴 − sin 𝐴), 𝑅(cos 𝐴 + sin 𝐴))

4.5.9 List of Reserved Uniforms

The following table shows settings for the reserved uniforms that are used by particle systems.

Table 4-5 Reserved Uniform Settings for Particle Systems

Uniform Type Value

dmp_PartSys.color mat4
Each component is in the range [0.0, 1.0]
Undefined by default

dmp_PartSys.aspect mat4

Four of the following vectors:
(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑖𝑧𝑒, 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒, 𝑎𝑙𝑝ℎ𝑎)
where 1.0 ≤ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑖𝑧𝑒 and 0.0 ≤ 𝑎𝑙𝑝ℎ𝑎 ≤ 1.0
No range is specified for the other values

Undefined by default

dmp_PartSys.time float
Unspecified range
Undefined by default

dmp_PartSys.speed float
A value larger than 0.0
Undefined by default

dmp_PartSys.countMax float
0.0 or greater
Undefined by default

dmp_PartSys.randSeed vec4
Unspecified range
Undefined by default

dmp_PartSys.randomCore vec4
Unspecified range
Undefined by default

dmp_PartSys.distanceAttenuation vec3
Each component is 0.0 or greater
Undefined by default

dmp_PartSys.viewport vec2
�

1
𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡. 𝑤𝑖𝑑𝑡ℎ ,

1
𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡. ℎ𝑒𝑖𝑔ℎ𝑡�

Undefined by default

dmp_PartSys.pointSize vec2
Each component is 0.0 or greater
Undefined by default

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 62  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

4.5.10 Reserved Geometry Shaders

The reserved geometry shaders for particle systems are split into different files by the features they
offer. Table 4-6 shows their filenames and corresponding features.

Table 4-6 Particle System Filenames and Features

Filename Time Clamping Texture Coordinate
Rotation RGBA Color Texture Coordinate 2

*_0_0_0_0.obj Clamps Uses — —

*_0_0_0_1.obj Clamps Uses — Uses

*_0_0_1_0.obj Clamps Uses Uses —

*_0_0_1_1.obj Clamps Uses Uses Uses

*_0_1_0_0.obj Clamps — — —

*_0_1_0_1.obj Clamps — — Uses

*_0_1_1_0.obj Clamps — Uses —

*_0_1_1_1.obj Clamps — Uses Uses

*_1_0_0_0.obj — Uses — —

*_1_0_0_1.obj — Uses — Uses

*_1_0_1_0.obj — Uses Uses —

*_1_0_1_1.obj — Uses Uses Uses

*_1_1_0_0.obj — — — —

*_1_1_0_1.obj — — — Uses

*_1_1_1_0.obj — — Uses —

*_1_1_1_1.obj — — Uses Uses

Asterisks (*) in the Filename column stand for DMP_particleSystem.

4.6 Vertex State Collections
Vertex state collections are used to bind vertex buffer objects and set other vertex attributes at the
same time, as a single batch operation. A vertex state collection is a pseudo-vertex state object that
shares namespaces with vertex buffer objects.

4.6.1 Creating Vertex State Collections

To create a vertex state collection object, use either GenBuffers or BindBuffer to bind an unused
name to VERTEX_STATE_COLLECTION_DMP. Name 0 is reserved as the default vertex state
collection object.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 63 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

4.6.2 Binding Vertex State Collections

To bind a vertex state collection, call BindBuffer with target set to
VERTEX_STATE_COLLECTION_DMP and buffer set to the name of a vertex state object. The vertex
state collection object for name 0 is bound by default.

When a vertex state collection is bound, all settings for array buffers, element array buffers, and
vertex attributes that are bound thereafter are associated with that vertex state collection.
Associations with this vertex state collection will continue until another vertex state collection is bound.
Binding a vertex state collection has the same effect as binding the vertex buffer associated with that
vertex state collection and setting all of the vertex attributes. Specifically, vertex attribute settings are
the settings configured by EnableVertexAttribArray, DisableVertexAttribArray,
VertexAttrib{1234}{fv}, and VertexAttribPointer.

4.6.3 Deleting Vertex State Collections

To delete a vertex state collection, specify its name to buffers in DeleteBuffers just as you
would a normal vertex buffer object. Deleting a vertex state collection does not affect the vertex buffer
objects associated with it. A bound vertex state collection is not deleted at the moment
DeleteBuffers is called on it. It is deleted as soon as another vertex state collection is bound. A
vertex state collection object upon which DeleteBuffers is called remains in use until it is actually
deleted. Any attempt to delete the default vertex state collection object is ignored.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 64  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

5 Rasterization

5.1 Texture Units
The DMPGL 2.0 texture units have five features: 2D textures, cube maps, shadows, projection
textures, and procedural textures. A 2D texture samples colors from a single texture image allocated
to it, using texture coordinates represented by (s, t, r). A cube-map texture uses a predetermined
method to sample colors from a single texture that is itself selected via calculations based on the
texture coordinates (s, t, r) from among the six 2D texture images allocated to it. A shadow texture
samples special values used by the shadow features of reserved fragment shaders from the texture
coordinates (s, t, r) in the texture image allocated to it. A procedural texture generates colors using a
formal procedure from the texture coordinates (s, t, r). Table 5-1 shows the relationship between the
texture numbers and their features.

There are four built-in texture units. They each have different features as shown in Table 5-1.

Table 5-1 Texture Unit Types

Texture Unit 2D Textures Cube-Map
Textures

Shadow
Textures

Projection
Textures

Procedural
Textures

TEXTURE0 Yes Yes Yes Yes

TEXTURE1 Yes

TEXTURE2 Yes

TEXTURE3 Yes

The following reserved fragment shaders are among those that request special texture settings:
shadows (see section 6.4 DMP Shadows), gas (see section 6.6 Gas), bump mapping (see section
6.3.6 Bump Mapping), and fragment lighting (see section 6.3 DMP Fragment Lighting). This section
explains the details of textures without addressing the textures used by these special reserved
fragment shaders.

Note: You can only use up to three independent texture coordinates for the four texture units. For
details, see section 5.1.11 Input of Coordinates to Texture Units.

5.1.1 Enabling Texture Units

To enable or disable a texture unit in OpenGL ES, call Enable or Disable with cap set to the
constant TEXTURE_2D. In DMPGL 2.0, however, there are different procedures: to disable a texture
unit, call Uniform1i on the reserved uniform dmp_Texture[i].samplerType with FALSE
specified. To enable a texture unit, call Uniform1i on the reserved uniform
dmp_Texture[i].samplerType with TEXTURE_2D, TEXTURE_PROCEDURAL_DMP,
TEXTURE_CUBE_MAP_DMP, TEXTURE_SHADOW_2D_DMP, or TEXTURE_SHADOW_CUBE_DMP specified.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 65 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

For details on reserved uniforms and reserved fragment shaders, see Chapter 6 Reserved Fragment
Shaders.

The following values can be specified to dmp_Texture[i].samplerType (where i is 0, 1, 2, or 3)
for each texture unit.

Table 5-2 Texture Unit samplerType

Uniform Value

dmp_Texture[0].samplerType

FALSE (default)
TEXTURE_2D
TEXTURE_CUBE_MAP
TEXTURE_SHADOW_2D_DMP
TEXTURE_PROJECTION_DMP
TEXTURE_SHADOW_CUBE_DMP

dmp_Texture[1].samplerType

FALSE (default)
TEXTURE_2D

dmp_Texture[2].samplerType

FALSE (default)
TEXTURE_2D

dmp_Texture[3].samplerType

FALSE (default)
TEXTURE_PROCEDURAL_DMP

5.1.2 Specifying Texture Units

Texture unit settings that do not use reserved uniforms are applied to the texture unit selected by
ACTIVE_TEXTURE. Use the following command to set ACTIVE_TEXTURE.

Code 5-1 ActiveTexture
void ActiveTexture(enum texture);

In DMPGL 2.0, you can get the number of built-in texture units by calling GetIntegerv with
MAX_COMBINED_TEXTURE_IMAGE_UNITS specified. Setting a value for ACTIVE_TEXTURE equal to
or larger than MAX_COMBINED_TEXTURE_IMAGE_UNITS causes the error INVALID_ENUM to occur.
Setting ACTIVE_TEXTURE to the texture unit TEXTURE3, which is used only for procedural textures,
also causes the error INVALID_ENUM to occur. Table 5-1 shows the features and texture unit
numbers for the ACTIVE_TEXTURE status.

5.1.3 Texture Image Specifications

Use TexImage2D to specify the texture images used by 2D textures and cube-map textures, as well
as the texture images used by the gas textures and shadow textures used by some reserved
fragment shader features.

Code 5-2 TexImage2D
void TexImage2D(enum target, int level,

 int internalformat, sizei width, sizei height,

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 66  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

 int border, enum format, enum type, void* data);

The argument target must be TEXTURE_2D for 2D images and one of the following for cube maps:
TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MAP_NEGATIVE_Z. Use format, type,
and data to specify the image data format, data type, and a pointer to the image data, respectively.
When data is set to 0, a texture region is allocated without an image specified.

Table 5-3 shows the allowed combinations for format and type.

Table 5-3 format and type

format argument type argument

RGBA UNSIGNED_SHORT_4_4_4_4

RGBA UNSIGNED_SHORT_5_5_5_1

RGBA UNSIGNED_BYTE

RGB UNSIGNED_SHORT_5_6_5

RGB UNSIGNED_BYTE (only valid for TEXTURE_2D)

ALPHA UNSIGNED_BYTE

ALPHA UNSIGNED_4BITS_DMP

LUMINANCE UNSIGNED_BYTE

LUMINANCE UNSIGNED_4BITS_DMP

LUMINANCE_ALPHA UNSIGNED_BYTE

LUMINANCE_ALPHA UNSIGNED_BYTE_4_4_DMP

SHADOW_DMP UNSIGNED_INT

GAS_DMP UNSIGNED_SHORT

HILO8_DMP UNSIGNED_BYTE

RGBA_NATIVE_DMP UNSIGNED_SHORT_4_4_4_4

RGBA_NATIVE_DMP UNSIGNED_SHORT_5_5_5_1

RGBA_NATIVE_DMP UNSIGNED_BYTE

RGB_NATIVE_DMP UNSIGNED_SHORT_5_6_5

RGB_NATIVE_DMP UNSIGNED_BYTE (only valid for TEXTURE_2D)

ALPHA_NATIVE_DMP UNSIGNED_BYTE

ALPHA_NATIVE_DMP UNSIGNED_4BITS_DMP

LUMINANCE_NATIVE_DMP UNSIGNED_BYTE

LUMINANCE_NATIVE_DMP UNSIGNED_4BITS_DMP

LUMINANCE_ALPHA_NATIVE_DMP UNSIGNED_BYTE

LUMINANCE_ALPHA_NATIVE_DMP UNSIGNED_BYTE_4_4_DMP

SHADOW_NATIVE_DMP UNSIGNED_INT

GAS_NATIVE_DMP UNSIGNED_SHORT

HILO8_DMP_NATIVE_DMP UNSIGNED_BYTE

DMPGL 2.0 Specifications

 2009-2011 Nintendo 67 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

You must specify data in the native PICA format to the data argument when format is set to one of
the *_NATIVE_DMP values. For details, see section 5.4 Native PICA Format.

Use a negative value to specify the mipmap level to load in the level argument. Both 0 and -1 are
treated as identical. All levels of a mipmap are loaded together; individual levels cannot be loaded
separately. The image data specified by the data argument is stored contiguously level by level,
starting from the lowest-level data. When automatically generating mipmaps, however, only the
lowest level of data is stored in data. Specifying a value higher than 0 for the level argument
causes an INVALID_VALUE error.

Both width and height must be an integer power of 2 between 8 and 1024. Otherwise, an
INVALID_VALUE error will occur.

When target is TEXTURE_CUBE_MAP_* and the width and height values are unequal, the error
INVALID_OPERATION occurs for TexImage2D. Likewise, all values set for each of the
TEXTURE_CUBE_MAP_* targets must be the same except for the data argument.

Use internalformat to specify the base internal format. Table 5-4 shows how the base internal
format corresponds to the R, G, B, and A components included in an image. The NATIVE modifier
has been omitted within this table to so that the distinction between formats with and without the
modifier can be ignored.

Table 5-4 Conversion from RGBA Pixels into the Internal Texture Format

Base Internal
Format RGBA Internal

Components

ALPHA A A

LUMINANCE R L

LUMINANCE_ALPHA R,A L,A

RGB R,G,B R,G,B

RGBA R,G,B,A R,G,B,A

HILO8_DMP R,G Nx,Ny

If internalformat and format are not the same, an INVALID_OPERATION error occurs for
TexImage2D.

The following explanations pertain to the HILO8_DMP format, the UNSIGNED_BYTE_4_4_DMP type,
and the UNSIGNED_4BITS_DMP type, which are unique to DMPGL and are shown in some
combinations in Table 5-3. Section 5.4 Native PICA Format explains the formats with the NATIVE
modifier.

The HILO8_DMP format contains R and G components. The UNSIGNED_BYTE type can be specified
for this format, and eight bits each are used for the R and G components. The B and A components
for HILO8_DMP are output as 0 and 1, respectively.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 68  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

The UNSIGNED_BYTE_4_4_DMP type is used when each pixel is stored in a single byte and has two
4-bit components. The upper four bits and the lower four bits are used for separate components of
the same pixel. DMPGL 2.0 allows you to use UNSIGNED_BYTE_4_4_DMP in combination with the
LUMINANCE_ALPHA and LUMINANCE_ALPHA_NATIVE_DMP formats, in which case the upper four
bits represent the luminance and the lower four bits represent the alpha value.

The UNSIGNED_4BITS_DMP type is used when two pixels are stored in a single byte and each pixel
has one 4-bit component. DMPGL 2.0 allows you to use the UNSIGNED_4BITS_DMP type in
combination with the LUMINANCE, ALPHA, LUMINANCE_NATIVE_DMP, and ALPHA_NATIVE_DMP
formats.

When the UNSIGNED_4BITS_DMP type is used, the upper bits are stored in the higher addresses.
Pixels are therefore packed starting at the lower four bits of the first byte, followed by the higher four
bits of the first byte, followed by the lower four bits of the second byte, and so on.

Note: If you simultaneously enable texture formats that use UNSIGNED_4BITS_DMP (4-bit formats)
and other texture formats (non-4-bit formats) and use them as multitextures, there are
restrictions on the regions in which textures can be placed. Specifically, when data that uses a
4-bit format is placed in VRAM, any data that uses a non-4-bit format must be placed in a
different memory region. VRAM-A and VRAM-B are handled as separate memory regions.
Behavior becomes unstable if 4-bit and non-4-bit formats are stored in the same memory
region. When data that uses a 4-bit format is placed in FCRAM, however, there are no
restrictions on the placement of data that uses a non-4-bit format. ETC formats are handled
as non-4-bit formats for the purposes of these restrictions.

5.1.4 Copying From the Framebuffer

Use CopyTexImage2D to copy data from the framebuffer into a texture.

Code 5-3 CopyTexImage2D
void CopyTexImage2D(enum target, int level,

 enum internalformat, int x, int y, sizei width,

 sizei height, int border);

The argument target must be TEXTURE_2D for 2D images and one of the following for cube maps:
TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MAP_NEGATIVE_Z. The texture selected
as the target must use the RGB or RGBA format.

The specifications of the width, height, and border arguments for CopyTexImage2D are
inherited from TexImage2D. However, the texture image is taken from the framebuffer instead of
TexImage2D’s data argument. The error INVALID_VALUE occurs with CopyTexImage2D when the
texture format is not compatible with the framebuffer format.

Note: The OpenGL ES 2.0 specifications allow copy operations that entail format conversions but
DMPGL 2.0 does not. In DMPGL 2.0, you must set x and y to multiples of 8. If you specify a

DMPGL 2.0 Specifications

 2009-2011 Nintendo 69 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

number that is not a multiple of 8, INVALID_VALUE occurs. You must also set level to 0. If
you specify a number other than 0, INVALID_OPERATION occurs.

However, there is one exception: when automatically generating mipmaps, you can use a
negative value to specify the mipmap level in level without causing INVALID_OPERATION.
For details, see section 5.1.13 Automatically Generating Texture Mipmap Data.

You cannot use CopyTexImage2D with block-32 mode. Attempts to do so will not cause an
error, but images will fail to be transferred correctly. For more details on block-32 mode, see
section 5.5.3 Block Mode.

5.1.5 Partial Texture Images

Use CopyTexSubImage2D to limit CopyTexImage2D to processing a partial image. You must use
TexImage2D to create the texture image to copy before calling CopyTexSubImage2D.

Code 5-4 CopyTexSubImage2D
void CopyTexSubImage2D(enum target, int level,

 int xoffset, int yoffset, int x, int y, sizei width,

 sizei height);

The argument target must be TEXTURE_2D for 2D images and one of the following for cube maps:
TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MAP_NEGATIVE_Z.

Note: In DMPGL 2.0, you must set xoffset, yoffset, x, y, width, and height to multiples of 8.
If you specify a number that is not a multiple of 8, INVALID_VALUE occurs. You must set
level to 0. If you specify a number other than 0, INVALID_OPERATION occurs.

When automatically generating mipmaps, an additional restriction applies: you must set level
to the same value set for level in the previous call to TexImage2D or CopyTexImage2D, or
INVALID_OPERATION occurs. For details, see section 5.1.13 Automatically Generating Texture
Mipmap Data.

You cannot use CopyTexSubImage2D with block-32 mode. Attempts to do so will not cause an
error, but images will fail to be transferred correctly. For more details on block-32 mode, see
section 5.5.3 Block Mode for Early Depth Tests. Likewise, TexSubImage2D is not supported.

5.1.6 Compressed Textures

You can use a compressed image as a texture.

Code 5-5 CompressedTexImage2D
void CompressedTexImage2D(enum target, int level,

 int internalformat, sizei width, sizei height,

 int border, sizei imageSize, void* data);

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 70  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

The argument target must be TEXTURE_2D for 2D images and one of the following for cube maps:
TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MAP_NEGATIVE_Z.

You can set internalformat equal to ETC1_RGB8_NATIVE_DMP or
ETC1_ALPHA_RGB8_A4_NATIVE_DMP.

When ETC1_RGB8_NATIVE_DMP is specified, a 4x4 pixel, 24-bit RGB image that is compressed into
64 bits is set in data. Both width and height must be an integer power of 2 between 16 and 1024.
If this range is exceeded, INVALID_VALUE occurs. Use a negative value to specify the mipmap level
to load in the level argument.

When ETC1_ALPHA_RGB8_A4_NATIVE_DMP is specified, a 4x4 pixel, 32-bit RGBA image that is
compressed into 128 bits is set in data. Both width and height must be integer powers of 2
between 8 and 1024. An INVALID_VALUE error occurs if this range is exceeded. The first 64 bits of
compressed data are alpha data and the last 64 bits are RGB data. The 64 bits of alpha data
represent 4x4 texels using four bits of alpha data per texel. The relationship between texels and alpha
data is explained in section 5.4.1.2 Byte Order for Compressed Textures.

If you set internalformat equal to some other value than those described here,
INVALID_OPERATION occurs.

You must set imageSize equal to the size (in bytes) of the image data. The ETC1 texture size is
given by the number of bytes yielded by Equation 5-1. The width and height of the original texture
image are given by w and h, respectively.

The value of blockSize is 8 when internalformat is ETC1_RGB8_NATIVE_DMP and 16 when
internalformat is ETC1_ALPHA_RGB8_A4_NATIVE_DMP.

Equation 5-1 imageSize

𝐸𝑇𝐶𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑆𝑖𝑧𝑒 =
𝑤
4

×
ℎ
4

× 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒

The equation above produces the size of a single mipmap level. Take the total sum of these values
for all mipmap levels, and specify that sum in the imageSize argument.

CompressedTexSubImage2D, which processes partial images, is not supported.

5.1.7 Lookup Tables

Procedural textures, fragment shading, fog, and gas all use reserved fragment shaders that are
implemented using one-dimensional tables called lookup tables. The number of lookup tables can be
obtained by calling GetIntegerv with MAX_LUT_TEXTURES_DMP specified.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 71 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

5.1.7.1 Lookup Table Numbers

A lookup table is indicated by the expression LUT_TEXTUREi_DMP. The i in this expression is an
integer from 0 to the number of lookup tables minus 1 and is called the lookup table number.
LUT_TEXTUREi_DMP is defined to be LUT_TEXTURE0_DMP +i.

5.1.7.2 Lookup Table Objects

The content of a lookup table is set by a special texture object called a lookup table object. A lookup
table object is created using GenTextures just like a normal texture. Lookup table object 0 is
reserved by DMPGL. Binding 0 to a lookup table object will detach the lookup table object. The
detached lookup table will no longer be usable. If a lookup table is detached by a reserved fragment
shader, an INVALID_OPERATION error will occur if you call DrawElements or DrawArrays with
that table specified.

5.1.7.3 Setting the Content of a Lookup Table Object

Use TexImage1D to set the content of a lookup table object.

Code 5-6 TexImage1D
void TexImage1D(enum target, int level, int internalformat,

 sizei width, int border, enum format, enum type, void* data);

target can only be set to LUT_TEXTUREi_DMP.

width cannot exceed the maximum number of entries in the lookup table. If the maximum number of
entries is exceeded, TexImage1D causes an INVALID_VALUE error. The maximum number of
entries in a lookup table can be obtained by specifying MAX_LUT_ENTRIES_DMP and calling the
GetIntegerv function.

level is only allowed to be 0. If a nonzero value is specified, TexImage1D causes an
INVALID_VALUE error.

type is only allowed to be FLOAT. If a type other than FLOAT is specified, TexImage1D causes an
INVALID_ENUM error.

format and internalformat are only allowed to be LUMINANCEF_DMP. If a format other than
LUMINANCEF_DMP is specified, TexImage1D causes an INVALID_ENUM error.

You can set the width argument to any value that does not exceed the maximum number of entries
in the lookup table. When you load data with a size specified by width, the data is loaded to the
lookup table object bound to the LUT_TEXTUREi_DMP value specified to target. Each reserved
fragment shader that accesses a lookup table object has independent restrictions on the value of
width and the content of data. See the definitions in the various reserved fragment shaders.

5.1.7.4 Partially Setting the Content of a Lookup Table Object

Use TexSubImage1D to partially set a lookup table object. This function overwrites a subarray within
the array set by TexImage1D. You must use TexImage1D to create the lookup table before calling
TexSubImage1D.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 72  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Code 5-7 TexSubImage1D
void TexSubImage1D(enum target, int level, int xoffset,

 sizei width, enum format, enum type, const void* data);

You can only set target to LUT_TEXTUREi_DMP. The lookup table object bound to the
LUT_TEXTUREi_DMP specified as target is the lookup table whose content is partially replaced by
this function.

xoffset indicates the number of the first element to overwrite within the already-configured array.
width specifies the number of elements to overwrite. You can set the width and xoffset
arguments to any value as long as their total does not exceed the maximum number of entries in the
lookup table. If the maximum value is exceeded, TexSubImage1D causes an INVALID_VALUE error.
The maximum number of entries in a lookup table can be obtained by specifying
MAX_LUT_ENTRIES_DMP and calling the GetIntegerv function.

level is only allowed to be 0. If a nonzero value is specified, TexSubImage1D causes an
INVALID_VALUE error.

type is only allowed to be FLOAT. If a type other than FLOAT is specified, TexSubImage1D causes
an INVALID_ENUM error.

format is only allowed to be LUMINANCEF_DMP. If a format other than LUMINANCEF_DMP is
specified, TexSubImage1D causes an INVALID_ENUM error.

Note: The commands TexImage1D and TexSubImage1D do not exist in the OpenGL ES 1.1 and
2.0 specifications. Their definitions are analogous to the OpenGL specifications, but they do
not allow uses defined by OpenGL. In particular, these commands cannot be used to assign
colors to object surfaces. DMPGL 2.0 uses 1D textures so that they can be referenced by
procedural textures (see section 6.2 Procedural Textures), fragment lighting (see section 6.3
DMP Fragment Lighting), gas (see section 6.6 Gas), and fog (see section 6.5 Fog).

DMPGL 2.0 does not contain CopyTexImage1D, CopyTexSubImage1D, or other possible
commands corresponding to TexImage1D. There are also no settings that use
TexParameter.

5.1.7.5 Using Lookup Table Objects

Reserved fragment shaders use lookup tables. To specify a lookup table to use, set its lookup table
number in a dedicated reserved uniform. The content of a configured lookup table is determined by
the lookup table object bound to it. For details on the reserved uniforms used to set a lookup table for
a reserved fragment shader, see the description of each reserved fragment shader.

5.1.7.6 Getting Bound Lookup Table Objects

To get the ID of the lookup table object that is currently bound to LUT_TEXTUREi_DMP, set the
pname argument of GetIntegerv to TEXTURE_BINDING_LUTi_DMP.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 73 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

5.1.8 Creating Textures

Use GenTextures to create texture objects and texture collection objects. (Texture collection objects
are a new feature added to DMPGL 2.0. They do not exist in the OpenGL ES 2.0 specifications. For
details, see section 5.3 Texture Collections.)

Code 5-8 GenTextures
void GenTextures(sizei n, uint* textures);

This generates an object for a 2D texture, cube map, lookup table, or texture collection.

5.1.9 Binding Textures

Use BindTexture to bind texture objects and texture collection objects. (Texture collection objects
are a new feature added to DMPGL 2.0. They do not exist in the OpenGL ES 2.0 specifications. For
details, see section 5.3 Texture Collections.)

Code 5-9 BindTexture
void BindTexture(enum target, int texture);

The target argument allows the following values: TEXTURE_2D, TEXTURE_CUBE_MAP,
TEXTURE_COLLECTION_DMP, or LUT_TEXTUREi_DMP (where i is between 0 and the number of
lookup tables minus one). If any other value is specified, BindTexture causes an INVALID_ENUM
error.

5.1.10 Texture Parameters

Use TexParameter{if}{v} to specify parameters to texture objects. To give a parameter to a
texture object, call TexParameter with target set to the target object, pname set to the parameter
name, and param set to the parameter value.

Code 5-10 TexParameter
void TexParameter{if}(enum target, enum pname, T param);

void TexParameter{if}v(enum target, enum pname, T params);

The target argument is the same as the one specified to commands such as TexImage2D and
TexImage1D. The pname argument can only use the names given in Table 5-5. As new features
added to DMPGL 2.0 that do not exist in OpenGL ES 2.0, in this command you can specify border
clamping, the Level of Detail (LOD) bias, the minimum LOD, and automatic mipmap generation. To
activate border clamping, call TexParameteri with pname set to TEXTURE_WRAP_S and param set
to CLAMP_TO_BORDER. Regions clamped from a texture use the specified border color.

To specify the border color, call TexParameterfv with pname set to TEXTURE_BORDER_COLOR and
params set to the color.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 74  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

To automatically generate mipmaps, call TexParameteri with pname set to GENERATE_MIPMAP
and param set to TRUE. For details, see section 5.1.13 Automatically Generating Texture Mipmap
Data.

Table 5-5 Corresponding Color and Texture Formats

Name Type Value

TEXTURE_WRAP_S int

REPEAT (default)
MIRRORED_REPEAT
CLAMP_TO_EDGE
CLAMP_TO_BORDER

TEXTURE_WRAP_T int The same as TEXTURE_WRAP_S

TEXTURE_MIN_FILTER int

NEAREST (default)
LINEAR
NEAREST_MIPMAP_NEAREST
NEAREST_MIPMAP_LINEAR
LINEAR_MIPMAP_NEAREST
LINEAR_MIPMAP_LINEAR

TEXTURE_MAG_FILTER int
NEAREST (default)
LINEAR

TEXTURE_BORDER_COLOR vec4
Each component is in the range [0.0, 1.0]
(0, 0, 0, 0) by default

TEXTURE_LOD_BIAS float
In the range [-16.0,16.0]
0.0 by default

TEXTURE_MIN_LOD int
Unspecified range
-1000 by default

GENERATE_MIPMAP bool
TRUE
FALSE (default)

5.1.11 Input of Coordinates to Texture Units

A vertex shader (or geometry shader when one is in use) can output up to three texture coordinates.
Texture coordinate 0 and texture coordinate 1 are supplied to texture unit 0 and texture unit 1,
respectively.

Texture unit 2 can select either texture coordinate 1 or 2 as input. Set the reserved uniform
dmp_Texture[2].texcoord to either TEXTURE1 or TEXTURE2 to input texture coordinate 1 or 2,
respectively, into texture unit 2.

Texture unit 3 can select texture coordinate 0, 1, or 2 as input. Set the reserved uniform
dmp_Texture[3].texcoord to TEXTURE0, TEXTURE1, or TEXTURE2 to input texture coordinate 0,
1, or 2, respectively, into texture unit 3.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 75 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

The attribute name specified as data_name and the output registers specified in mapped_register
to #pragma output_map assign a vertex shader's output registers and the texture coordinates sent
from the vertex shader.

Code 5-11 #pragma output_map
#pragma output_map(data_name, mapped_register);

The texture coordinates output by the vertex shader are specified by data_name. Table 5-6 shows
the relationship between data_name and the texture coordinates sent from the vertex shader. For
details on how texture coordinates are assigned to output registers by the vertex shader, see the
Vertex Shader Reference Manual.

Table 5-6 Relationship Between data_name and Attributes Sent from the Vertex Shader

data_name Attribute Sent from the Vertex Shader

texture0 Texture unit 0's u and v coordinates

texture0w Texture unit 0's w coordinate

texture1 Texture unit 1's u and v coordinates

texture2 Texture unit 2's u and v coordinates

If you set the reserved uniform dmp_Texture[0].samplerType, which specifies the type of texture
unit 0, to TEXTURE_PROJECTION_DMP, TEXTURE_SHADOW_DMP, TEXTURE_CUBE_MAP, or
TEXTURE_CUBE_SHADOW_DMP, you must use #pragma output_map to assign an output register to
both texture0 and texture0w in the vertex shader. The texture unit's output is undefined if an
output register has not been assigned for both of these. If #pragma output_map is used to assign
an output register to texture0w in the vertex shader but the reserved uniform
dmp_Texture[0].samplerType is set to TEXTURE_2D, the coordinate output to texture0w is
simply ignored.

Assume that the coordinates (u, v, w) are supplied to a texture unit by the vertex shader. Only texture
unit 0 can use texture coordinate w. Texture units 1, 2, and 3 cannot use w. When w is enabled, the
coordinates (u, v) are divided by w. Specifying a value of TEXTURE_PROJECTION_DMP to the
reserved uniform dmp_Texture[0].samplerType is the same as specifying TEXTURE_2D with w
enabled.

5.1.12 Loading Texture Mipmap Data

To load more than one mipmap level of data for a 2D texture or cube-map texture, set the level
argument of TexImage2D or CompressedTexImage2D to a negative value indicating the number of
mipmap levels and the data argument to data that consecutively stores all the mipmap levels you
want to load in order of data size, from the largest-sized level to the smallest. You cannot specify
each level separately as you can with the standard OpenGL specifications.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 76  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

5.1.13 Automatically Generating Texture Mipmap Data

It is possible to automatically generate mipmap data for some formats and sizes of textures. To
automatically generate mipmap data, first set the texture parameter GENERATE_MIPMAP to TRUE,
then specify -2 or smaller for level in TexImage2D, CopyTexImage2D, or CopyTexSubImage2D.

With TexImage2D, the automatically generated data extends from the lowest-level data, specified in
data, through to data for the highest level. If a second or higher level of data was already specified in
data, that previous data is invalidated and the new automatically generated mipmap data is used
instead. If 0 was specified in data, no mipmaps are generated.

With CopyTexImage2D and CopyTexSubImage2D, the image in the current color buffer is
transferred into the texture's lowest-level data and that transferred data is used as the base for
generating all the higher-level mipmap data.

Mipmap data is automatically generated for all the levels in level except the lowest level.

Only some texture formats support automatic mipmap generation. Each of these texture formats,
corresponding to different upper limits on LOD, has a different minimum height and width of textures
that can be generated in that format. Table 5-7 shows the format and type arguments with which this
feature is supported, and the corresponding minimum texture dimensions.

Table 5-7 format and type Combinations Supporting Automatic Mipmap Generation

format Argument type Argument Minimum Automatically Generatable Size
(Texels)

RGBA UNSIGNED_SHORT_4_4_4_4 64

RGBA UNSIGNED_SHORT_5_5_5_1 64

RGBA UNSIGNED_BYTE 32

RGB UNSIGNED_SHORT_5_6_5 64

RGB UNSIGNED_BYTE 32

RGBA_NATIVE_DMP UNSIGNED_SHORT_4_4_4_4 64

RGBA_NATIVE_DMP UNSIGNED_SHORT_5_5_5_1 64

RGBA_NATIVE_DMP UNSIGNED_BYTE 32

RGB_NATIVE_DMP UNSIGNED_SHORT_5_6_5 64

RGB_NATIVE_DMP UNSIGNED_BYTE 32

For example, if the size of the lowest-level data is 128x128, format is RGBA, and type is
UNSIGNED_BYTE, two levels of data can be automatically generated: 64x64 and 32x32.

If you specify a value for level that conflicts with the limits imposed by the minimum generatable
mipmap sizes shown in Table 5-7, the INVALID_OPERATION error occurs.

In calls to CopyTexSubImage2D when GENERATE_MIPMAP is TRUE, you must set level to the
same value set for level in the previous call to TexImage2D or CopyTexImage2D. Setting a

DMPGL 2.0 Specifications

 2009-2011 Nintendo 77 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

different value for level causes an error. In contrast, when GENERATE_MIPMAP is FALSE, setting
any nonzero value for level causes an error.

5.1.14 Texture Coordinate Precision

The term actual hardware environment refers to all hardware environments (development or retail
hardware) and excludes the POD environment. On the actual hardware environment, texture
coordinates within the texture unit are represented using 16-bit values that contain both the integral
part and the decimal part. With this representation, fewer bits will be available for the fractional part
as the absolute value of the integral part increases. The texture sampling precision relies on the bit
precision of the fractional part.

Optimal texture sampling is possible only when the fractional part has sufficient bits available to
represent the number of texels in the texture's width or height. When using bilinear subsampling,
Nintendo recommends that an additional six bits be made available for the decimal part.

5.1.15 Acquiring Texture Level Parameters

The development hardware supports GetTexLevelParameter{if}v, which is an API function for
acquiring texture-level parameters. This API function is able to get parameter information for each
LOD of the currently bound texture.

void GetTexLevelParameter{if}v(enum target, int level, enum pname, T params);

target can be specified as one of the following: TEXTURE_2D, TEXTURE_CUBE_MAP_POSITIVE_X,
TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
TEXTURE_CUBE_MAP_NEGATIVE_Y,

TEXTURE_CUBE_MAP_POSITIVE_Z, and TEXTURE_CUBE_MAP_NEGATIVE_Z. Procedural textures
are not supported. Set level to the mipmap level whose parameter you wish to get. The following
tables shows the available values for pname, and the parameters retrieved in params.

Table 5-1 pname Set Values for GetTexLevelParameter{if}v

pname Parameter Retrieved in params

TEXTURE_WIDTH Texture width in pixels

TEXTURE_HEIGHT Texture height in pixels

TEXTURE_DEPTH Texture depth in pixels (0 is always returned, because this is not
supported)

TEXTURE_BORDER Texture border width in pixels (0 is always returned, because this is
not supported)

TEXTURE_INTERNAL_FORMAT Internal format of texture

TEXTURE_RED_SIZE Number of bits in red component of each pixel

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 78  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

pname Parameter Retrieved in params

TEXTURE_GREEN_SIZE Number of bits in green component of each pixel

TEXTURE_BLUE_SIZE Number of bits in blue component of each pixel

TEXTURE_ALPHA_SIZE Number of bits in alpha component of each pixel

TEXTURE_LUMINANCE_SIZE Number of bits in luminance component of each pixel

TEXTURE_INTENSITY_SIZE Number of bits in intensity component of each pixel

TEXTURE_DEPTH_SIZE Number of bits in depth component of each pixel

TEXTURE_DENSITY1_SIZE_DMP Density information 1 of each pixel (depth information ignoring
intersection with gas texture depth)

TEXTURE_DENSITY2_SIZE_DMP Density information 2 of each pixel (depth information taking
intersection with gas texture depth into account)

TEXTURE_COMPRESSED TRUE is returned if texture is a compressed format, FALSE
otherwise

TEXTURE_COMPRESSED_IMAGE_SIZE Returns the texture size in bytes if the texture is compressed

The following table shows the correspondence between the internal format obtained via
TEXTURE_INTERNAL_FORMAT and the numbers of bits in each pixel component.

Table 5-2 Internal Format Values and Numbers of Bits in Pixel Components

Internal Format R G B Alpha Lum Intensity Depth Density
1

Density
2

RGBA4 4 4 4 4

RGB5_A1 5 5 5 1

RGBA 8 8 8 8

RGB565 5 6 5

RGB 8 8 8

ALPHA 8

ALPHA4_EXT 4

LUMINANCE 8

LUMINANCE4_EXT 4

LUMINANCE_ALPHA 8 8

LUMINANCE4_ALPHA4_EXT 4 4

SHADOW_DMP 8 24

GAS_DMP 16 16

HILO8_DMP 8 8

ETC1_RGB8_NATIVE_DMP 8 8 8

ETC1_ALPHA_RGB8_A4_
NATIVE_DMP

8 8 8 4

DMPGL 2.0 Specifications

 2009-2011 Nintendo 79 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

TEXTURE_INTENSITY_SIZE and TEXTURE_DEPTH_SIZE only return values for the SHADOW_DMP
format. TEXTURE_DENSITY1_SIZE_DMP and TEXTURE_DENSITY2_SIZE_DMP only return values
for the GAS_DMP format.

TEXTURE_COMPRESSED_IMAGE_SIZE gets the size of the mipmap level specified by level. If
TEXTURE_COMPRESSED_IMAGE_SIZE is specified for an uncompressed texture, the error
INVALID_OPERATION will be generated.

If an invalid value is specified in target or pname, the error INVALID_ENUM will be generated. If a
mipmap level that has not been loaded is specified in level, the error INVALID_VALUE will be
generated.

5.2 Texture Combiners

5.2.1 Overview

The OpenGL ES 1.1 specifications mention texture combiners, which use specified combiner
functions to combine multiple texture outputs. Combiner functions were eliminated from the OpenGL
ES specifications starting with OpenGL ES 2.0, but this feature is still provided by the reserved
fragment shaders in DMPGL 2.0. These DMPGL 2.0 specifications use the term texture combiner, or
simply combiner, to refer to the feature for combining textures, fragment light colors, and other
attributes in the later stages of the texture units and fragment light units.

Six combiners are built into the pipeline. These combiners take colors and alpha values from three
textures, three fragment lights, or three other entities; apply a combiner function to each input color
and alpha value; and output the result. The details of this feature are almost entirely the same as the
OpenGL ES 1.1 specifications, and all the differences are explained here.

Combiner buffers are implemented as a DMPGL 2.0-specific feature. Through a combiner buffer, a
combiner can receive source data from the output of a combiner before the one that immediately
precedes it in the pipeline. The combiner buffer is explained in section 5.2.2 Combiner Buffer.

When using combiners, set reserved uniforms with Uniform1i, Uniform2i, Uniform3i, and
Uniform4f. Reserved uniforms carry out the same settings that used TexEnv{i} in the OpenGL
ES 1.1 specifications. The reserved uniforms that correspond to the TexEnv{i} arguments are given
by Table 5-10.

Table 5-10 Relationship Between TexEnv{i} and Reserved Uniforms

OpenGL ES 1.1 Specifications
glTexEnv{i}

DMPGL 2.0
Reserved Uniforms

COMBINE_RGB dmp_TexEnv[i].combineRgb

COMBINE_ALPHA dmp_TexEnv[i].combineAlpha

SRC{0,1,2}_RGB dmp_TexEnv[i].srcRgb

SRC{0,1,2}_ALPHA dmp_TexEnv[i].srcAlpha

OPERAND{0,1,2}_RGB dmp_TexEnv[i].operandRgb

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 80  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

OpenGL ES 1.1 Specifications
glTexEnv{i}

DMPGL 2.0
Reserved Uniforms

OPERAND{0,1,2}_ALPHA dmp_TexEnv[i].operandAlpha

RGB_SCALE dmp_TexEnv[i].scaleRgb

ALPHA_SCALE dmp_TexEnv[i].scaleAlpha

TEXTURE_ENV_COLOR dmp_TexEnv[i].constRgba

In Table 5-8 and throughout this section, i is an integer that indicates combiner 0, 1, 2, 3, 4, or 5.

The combiner source uses one of the reserved uniforms dmp_TexEnv[i].srcRgb (where i is 0, 1,
or 2) or dmp_TexEnv[i].srcAlpha (where i is between 0 and 5). You can set these variables to
the following values.

• TEXTURE0
• TEXTURE1
• TEXTURE2
• TEXTURE3
• CONSTANT
• PRIMARY_COLOR
• PREVIOUS
• FRAGMENT_PRIMARY_COLOR_DMP
• FRAGMENT_SECONDARY_COLOR_DMP
• PREVIOUS_BUFFER_DMP

You can set three inputs simultaneously with Uniform3i.

If you specify PREVIOUS here for dmp_TexEnv[0].srcRgb or dmp_TexEnv[0].srcAlpha, an
INVALID_ENUM error occurs. If you do not select CONSTANT, PREVIOUS, or
PREVIOUS_BUFFER_DMP at least once for dmp_TexEnv[i].srcRgb (where i is between 1 and 5)
and/or dmp_TexEnv[i].srcAlpha (where i is between 1 and 5), an INVALID_ENUM error occurs.
Section 5.2.2 Combiner Buffer explains behavior when PREVIOUS_BUFFER_DMP is set.

The color operand uses the reserved uniform dmp_TexEnv[i].operandRgb (where i is between 0
and 5). You can set this variable to any of the following values.

• SRC_COLOR
• ONE_MINUS_SRC_COLOR
• SRC_ALPHA
• ONE_MINUS_SRC_ALPHA
• SRC_R_DMP
• ONE_MINUS_SRC_R_DMP
• SRC_G_DMP
• ONE_MINUS_SRC_G_DMP
• SRC_B_DMP
• ONE_MINUS_SRC_B_DMP

DMPGL 2.0 Specifications

 2009-2011 Nintendo 81 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

The alpha operand uses the reserved uniform dmp_TexEnv[i].operandAlpha (where i is
between 0 and 5). You can set this variable to any of the following values.

• SRC_ALPHA
• ONE_MINUS_SRC_ALPHA
• SRC_R_DMP
• ONE_MINUS_SRC_R_DMP
• SRC_G_DMP
• ONE_MINUS_SRC_G_DMP
• SRC_B_DMP
• ONE_MINUS_SRC_B_DMP

You can set three inputs simultaneously with Uniform3i. Section 5.2.3 Other Combiner Features
explains behavior when the reserved uniform dmp_TexEnv[i].operandRgb or
dmp_TexEnv[i].operandAlpha is set equal to SRC_R_DMP, ONE_MINUS_SRC_R_DMP,
SRC_G_DMP, ONE_MINUS_SRC_G_DMP, SRC_B_DMP, or ONE_MINUS_SRC_B_DMP.

Use the reserved uniform dmp_TexEnv[i].combineRgb to set the color combiner function. Use
the reserved uniform dmp_TexEnv[i].combineAlpha to set the alpha combiner function. You can
set each of these variables to the following values.

• REPLACE
• MODULATE
• ADD
• ADD_SIGNED
• INTERPOLATE
• SUBTRACT
• DOT3_RGBA
• ADD_MULT_DMP
• MULT_ADD_DMP

DOT3_RGB can also be set, but only for dmp_TexEnv[i].combineRgb.

If you set either dmp_TexEnv[i].combineRgb or dmp_TexEnv[i].combineAlpha to
DOT3_RGBA, you must set the other to DOT3_RGBA as well. Otherwise, combiner behavior is
undefined.

Combiners also accept fragment light colors as sources. To set the primary or secondary color of a
fragment light as a combiner source, assign FRAGMENT_PRIMARY_COLOR_DMP or
FRAGMENT_SECONDARY_COLOR_DMP to the reserved uniform dmp_TexEnv[i].srcRgb or
dmp_TexEnv[i].srcAlpha.

5.2.2 Combiner Buffers

Through a combiner buffer, a combiner can receive source data from the output of a combiner before
the one that immediately precedes it in the pipeline. There are five built-in combiner buffers, in
parallel with the first five combiners. You can choose the source of any combiner buffer except for the

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 82  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

first one to be the output of either the previous combiner or the previous combiner buffer. A combiner
buffer can store a single color and a single alpha value. The color and alpha for a combiner buffer can
each come from different sources.

Figure 5-1 Relationship Between Combiners and Combiner Buffers

Combiner
Buffer 0

Fragment
Light

Texture
Unit 3

Primary
Color

Combiner 0

Combiner
Buffer 1

Combiner 1

Combiner
Buffer 4

Combiner 4 Combiner 5

・・・

・・・

Texture
Unit 2

Texture
Unit 1

Texture
Unit 0

To set the source of a combiner buffer, use Uniform2i on the reserved uniform
dmp_TexEnv[i].bufferInput (where i is 1, 2, 3, or 4) and configure the color and alpha
simultaneously. A combiner buffer references output from the previous-stage combiner when the
reserved uniform dmp_TexEnv[i].bufferInput is set equal to PREVIOUS, and references the
previous-stage combiner buffer when the reserved uniform is set equal to PREVIOUS_BUFFER_DMP.

A combiner references the previous-stage combiner buffer if the reserved uniforms
dmp_TexEnv[i].srcRgb or dmp_TexEnv[i].srcAlpha, which indicate the combiner source,
have been set equal to PREVIOUS_BUFFER_DMP.

The output from the first combiner buffer can be configured as the combiner buffer color. The setting
for the combiner buffer color is used by the reserved uniform dmp_TexEnv[0].bufferColor,
which is set by Uniform4f.

5.2.3 Other Combiner Features

DMPGL 2.0 has implemented ADD_MULT_DMP and MULT_ADD_DMP in addition to the combiner
functions defined by the OpenGL ES 1.1 specifications. ADD_MULT_DMP adds source 0 and source 1,
clamps the sum between 0 and 1, multiplies the result by source 2. MULT_ADD_DMP multiplies source
0 and source 1, and then adds source 2 to the result. Both functions take three inputs. These
functions can be applied to both colors and alpha values.

The new definitions FRAGMENT_PRIMARY_COLOR_DMP and FRAGMENT_SECONDARY_COLOR_DMP
are used as sources when fragment lighting is in use. These constants can be accepted as both color
and alpha sources.

If the reserved uniform dmp_TexEnv[i].operandRgb or dmp_TexEnv[i].operandAlpha is set
equal to any of the following values, a single component is selected from the previous-stage combiner
color and that component is used as a source.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 83 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

• SRC_R_DMP
• ONE_MINUS_SRC_R_DMP
• SRC_G_DMP
• ONE_MINUS_SRC_G_DMP
• SRC_B_DMP
• ONE_MINUS_SRC_B_DMP

If you specify SRC_R_DMP, the source’s R component is selected as source data. If you specify
ONE_MINUS_SRC_R_DMP, the result of subtracting the source’s R component from 1.0 is selected.
The values SRC_G_DMP and ONE_MINUS_SRC_G_DMP behave the same way for the G component,
and SRC_B_DMP and ONE_MINUS_SRC_B_DMP behave the same way for the B component.

5.2.4 List of Reserved Uniforms

Table 5-9 shows settings for the reserved uniforms that are used by combiners.

Table 5-11 Reserved Uniform Settings for Combiners

Uniform Type Value

dmp_TexEnv[i].combineRgb int

• REPLACE (default)
• MODULATE
• ADD
• ADD_SIGNED
• INTERPOLATE
• SUBTRACT
• DOT3_RGB
• DOT3_RGBA
• ADD_MULT_DMP
• MULT_ADD_DMP

dmp_TexEnv[i].combineAlpha int

• REPLACE (default)
• MODULATE
• ADD
• ADD_SIGNED
• INTERPOLATE
• SUBTRACT
• DOT3_RGBA
• ADD_MULT_DMP
• MULT_ADD_DMP

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 84  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Uniform Type Value

dmp_TexEnv[0].srcRgb ivec3

Each component:
• TEXTURE0
• TEXTURE1
• TEXTURE2
• TEXTURE3
• CONSTANT (default)
• PRIMARY_COLOR
• FRAGMENT_PRIMARY_COLOR_DMP
• FRAGMENT_SECONDARY_COLOR_DMP

dmp_TexEnv[i].srcRgb

(i is nonzero) ivec3

Each component:
• TEXTURE0
• TEXTURE1
• TEXTURE2
• TEXTURE3
• CONSTANT
• PRIMARY_COLOR
• PREVIOUS (default)
• PREVIOUS_BUFFER_DMP
• FRAGMENT_PRIMARY_COLOR_DMP
• FRAGMENT_SECONDARY_COLOR_DMP

At least one of either CONSTANT, PREVIOUS, or
PREVIOUS_BUFFER_DMP must be used.

dmp_TexEnv[0].srcAlpha ivec3 Identical to dmp_TexEnv[0].srcRGB

dmp_TexEnv[i].srcAlpha

(i is nonzero) ivec3 Identical to dmp_TexEnv[i].srcRGB (i is nonzero)

dmp_TexEnv[i].operandRgb ivec3

Each component:
• SRC_COLOR (default)
• ONE_MINUS_SRC_COLOR
• SRC_ALPHA
• ONE_MINUS_SRC_ALPHA
• SRC_R_DMP
• ONE_MINUS_SRC_R_DMP
• SRC_G_DMP
• ONE_MINUS_SRC_G_DMP
• SRC_B_DMP
• ONE_MINUS_SRC_B_DMP

DMPGL 2.0 Specifications

 2009-2011 Nintendo 85 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Uniform Type Value

dmp_TexEnv[i].operandAlpha ivec3

• SRC_ALPHA (default)
• SRC_ONE_MINUS_SRC_ALPHA
• SRC_R_DMP
• ONE_MINUS_SRC_R_DMP
• SRC_G_DMP
• ONE_MINUS_SRC_G_DMP
• SRC_B_DMP
• ONE_MINUS_SRC_B_DMP

dmp_TexEnv[i].bufferInput

(i is 1, 2, 3, or 4) ivec2
• PREVIOUS
• PREVIOUS_BUFFER_DMP (default)

dmp_TexEnv[i].scaleRgb float

• 1.0 (default)
• 2.0
• 4.0

dmp_TexEnv[i].scaleAlpha float

• 1.0 (default)
• 2.0
• 4.0

dmp_TexEnv[i].constRgba vec4
Each component is in the range [0.0, 1.0]
(0, 0, 0, 0) by default

dmp_TexEnv[0].bufferColor vec4
Each component is in the range [0.0, 1.0]
(0, 0, 0, 0) by default

5.3 Texture Collections
A texture collection is used to bind several texture objects all at once as a batch operation. A texture
collection is a pseudo-texture object that shares a namespace with other texture objects.

5.3.1 Creating Texture Collections

To create a texture collection object, use either GenTextures or BindTexture to bind an unused
name to TEXTURE_COLLECTION_DMP. Name 0 is reserved as the default texture collection object.

5.3.2 Binding Texture Collections

To bind a texture collection, set target to TEXTURE_COLLECTION_DMP and texture to the name
of a texture object with BindTexture. The texture collection object for name 0 is bound by default.

When a texture collection is bound, all textures (2D textures, cube-map textures, and lookup tables)
bound thereafter are associated with that texture collection. Associations with this texture collection
continue until another texture collection is bound. Binding a texture collection has the same effect as
binding all textures associated with that texture collection.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 86  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

5.3.3 Deleting Texture Collections

To delete a texture collection, specify its name to textures with DeleteTextures just as you
would a normal texture object. Deleting a texture collection does not affect the texture objects
associated with it. A bound texture collection is not deleted at the moment DeleteTextures is
called on it. It is deleted as soon as another texture collection is bound. That texture collection object
is in use from the time DeleteTextures is used until it is actually deleted. Any attempt to delete the
default texture collection object is ignored.

5.4 Native PICA Format
The PICA texture unit supports a different texture format than the one in the standard OpenGL
specifications. The texture format that is actually supported by the PICA texture unit is called the
native PICA format. DMPGL 2.0 has features to load this native PICA format.

The native PICA format and standard OpenGL format mainly differ in the following three ways.

1. Byte Order: The standard OpenGL format and native PICA format have different byte orders
because of internal address processing.

2. V-Flipping: The relationship between the u and v coordinates and texel placement is opposite in the
V-direction between the standard OpenGL format and the native PICA format.

3. Addressing: Texels and compressed blocks are entered in the opposite order because of
differences between linear and block addressing.

The standard OpenGL format and native PICA format also handle compressed and uncompressed
textures differently. As used here, the term uncompressed texture indicates a format loaded with
TexImage2D and compressed texture indicates the ETC format loaded with
CompressedTexImage2D.

To convert an uncompressed texture from standard OpenGL format to native PICA format, first
convert its V-flip, then convert its addressing, and finally convert the byte order. For a compressed
texture, first convert its V-flip, then run ETC compression, then convert its addressing, and finally
convert the byte order. Note that you must run V-flip conversion before ETC compression.

5.4.1 Byte Order

This section explains the differences in byte order between the native PICA format and standard
OpenGL format. Compressed and uncompressed textures have different specifications.

5.4.1.1 Byte Order for Uncompressed Textures

Uncompressed textures loaded by TexImage2D with the type argument set to UNSIGNED_BYTE
have texels with a different internal byte order in the native PICA format and standard OpenGL format.
You can use a "byte swap" to change the byte order per texel and thus switch between the standard
OpenGL format and native PICA format. Table 5-10 shows the required byte swap for each format.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 87 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Table 5-8 Byte-Order Differences Between the Standard OpenGL and Native PICA Formats

Format Type Bytes Byte Swap

RGBA UNSIGNED_BYTE 4 4-byte swap

RGB UNSIGNED_BYTE 3 3-byte swap

RGBA UNSIGNED_SHORT_5_5_5_1 2 None

RGBA UNSIGNED_SHORT_4_4_4_4 2 None

RGB UNSIGNED_SHORT_5_6_5 2 None

LUMINANCE_ALPHA UNSIGNED_BYTE 2 2-byte swap

LUMINANCE UNSIGNED_BYTE 1 None

ALPHA UNSIGNED_BYTE 1 None

LUMINANCE_ALPHA UNSIGNED_BYTE_4_4_DMP 1 None

LUMINANCE UNSIGNED_4BITS_DMP 0.5 None

ALPHA UNSIGNED_4BITS_DMP 0.5 None

When the two formats are compared, the byte order is different in the native PICA format when type
is UNSIGNED_BYTE and there is more than one color component. Byte swaps reverse the order of
bytes within each set of the given number of bytes. This is shown by the following figures.

Figure 5-2 4-Byte Swap

B0 B1 B2 B3 B4 ・・・・ Bn

B3 B2 B1 B0 B7 ・・・・ Bn

OpenGL

PICA native

Figure 5-3 3-Byte Swap

B0 B1 B2 B3 B4 ・・・・ Bn

B2 B1 B0 B5 B4 ・・・・ Bn

OpenGL

PICA native

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 88  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Figure 5-4 2-Byte Swap

B0 B1 B2 B3 B4 ・・・・ Bn

B1 B0 B3 B2 B5 ・・・・ Bn

OpenGL

PICA native

5.4.1.2 Byte Order for Compressed Textures

Compressed textures in native PICA format are equivalent to the same data in standard OpenGL
format divided into 8-byte chunks, with each pair of 8-byte chunks given in reverse order.

Figure 5-5 Byte Swap for Compressed Textures

B0 B1 B2 B3 B4 B5 B6 B7 B8 ・・・・

4×4 pixels (1 block) = 8 bytes

B7 B6 B5 B4 B3 B2 B1 B0 B15 ・・・・

OpenGL

PICA native

Figure 5-6 Byte Swap for ETC Textures with Alpha Components

B7 B6 B5 B4 B3 B2 B1 B0 B15 B14 B13 B12 B11 B10 B9 B8 . . .

PICA native

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 . . .

OpenGL

Alpha (8 bytes) Color (8 bytes)

4x4 pixels (1 block) = 16 bytes

When byte-swapping is taken into account, alpha data has the following relationship with texels.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 89 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Equation 5-2 Relationship Between Alpha Values and Texels

𝑎𝑙𝑝ℎ𝑎 = 𝐵7 + 256 × �𝐵6 + 256 × �𝐵5 + 256 × �𝐵4 + 256

× �𝐵3 + 256 × �𝐵2 + 256 × (𝐵1 + 256 × 𝐵0)�����

𝑎𝑙𝑝ℎ𝑎(𝑢, 𝑣) = 𝑏𝑖𝑡𝑠[4 × (4 × 𝑢 + 𝑣) + 3 . . 4 × (4 × 𝑢 + 𝑣) + 0]

In these equations, B0–B7 is a byte array. alpha uses 64 bits to represent the alpha values for 4x4
texels. bits[n. .m] represent bits n–m (where n is the more significant bit) in the 64 alpha bits.
alpha(u,v) represents the 4-bit alpha value at position (u,v) in the 4x4 texels.

5.4.2 V-Flipping

This section explains differences in V-flipping between the native PICA format and standard OpenGL
format. For both compressed and uncompressed textures, the OpenGL texture format stores the texel
corresponding to the image coordinates (u,v) = (0.0, 0.0) at the starting address of texture data. The
native PICA format, on the other hand, stores the texel with coordinates (u,v) = (0.0, 1.0) at the
starting address of texture data.

5.4.3 Addressing

This section explains addressing differences between the native PICA format and standard OpenGL
format. The standard OpenGL format uses linear addressing, which stores data consecutively in the u
direction starting with the texel at coordinates (u,v) = (0.0, 0.0). The native PICA format, on the other
hand, uses block addressing to store blocks in a zig-zag pattern. Uncompressed and compressed
textures have different block definitions and zig-zag patterns.

5.4.3.1 Addressing for Uncompressed Textures

The standard OpenGL format's linear addressing stores data consecutively in the u direction starting
with the texel at coordinates (u,v) = (0.0, 0.0). The native PICA format's block addressing, on the
other hand, handles 8x8 texel data as a single block and stores blocks in a zig-zag pattern.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 90  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Figure 5-7 Linear Addressing in the OpenGL Format

A0 A1 A2 A3 Aｎ－１ ……..

 A n

u

v

0.0

1.0

1.0

In Figure 5-7, data is stored consecutively in the u direction starting with the texel at coordinates (u,v)
= (0.0, 0.0).

Figure 5-8 Block Addressing in the Native PICA Format

B0

A0 A1

A2 A3 B1

u

v

1.0

1.0

0.0 (8x8) blocks

DMPGL 2.0 Specifications

 2009-2011 Nintendo 91 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Using an 8x8 texel as a single block, Figure 5-8 shows how blocks are stored in the u direction
starting with the one that includes the coordinates (u,v) = (0.0, 1.0). Each texel's data is stored in a
zig-zag pattern within the block.

5.4.3.2 Addressing for Compressed Textures

In a compressed texture, a 4x4 collection of texels is called a block. The standard OpenGL format's
linear addressing stores data consecutively in the u direction starting with the block that contains the
coordinates (u,v) = (0.0, 0.0). In the native PICA format's block addressing, on the other hand, each
2x2 block (equivalent to an 8x8 collection of texel data) is called a meta block; data is stored
consecutively in the u direction starting with the meta block that contains the coordinates (u,v) = (0.0,
1.0).

Figure 5-9 Linear Addressing (Left) and Block Addressing (Right) for Compressed Textures

 B0

B1 B3 B2 B4 B5 B6 B0

B2

B1

B3

B4 B5

B6 B7

B8 B9 B7

B8 B9

v v

u

u

1.0

1.0 0.0

0.0

1.0

1.0

In Figure 5-9, the labels B0, B1, … BN each indicate a block (4x4 texels). In block addressing, shown
on the right, B0, B1, B2, and B3 constitute a single unit (a meta block), and data is stored in meta-
block units along the u direction starting with the block that includes coordinates (u,v) = (0.0, 1.0).

5.5 Early Depth Tests

5.5.1 Overview

DMPGL 2.0 can perform a depth test before the texel-creation process, in addition to the depth test
from the OpenGL ES standard. A depth test that precedes the texel-creation process is called an
early depth test. By using early depth tests together with standard depth tests, you can reject
unnecessary fragments earlier than you could have using only standard depth tests. Early depth tests
are supported only in the actual hardware environment.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 92  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Early depth tests reject fragments at a lower precision than standard depth tests. Consequently, they
may produce different results than standard depth tests. When a fragment mistakenly passes an early
depth test it is called a false pass; if it mistakenly fails an early depth test it is called a false fail. Early
depth tests are designed with the expectation that standard depth tests will correctly fail any fragment
that is a false pass.

Note: Early depth tests must be configured in a way that prevents false fails. A fragment that should
be rendered will not be when a false fail occurs.

Early depth tests must also be disabled when standard depth tests are disabled. False fails will occur
if only early depth tests are enabled.

You cannot set the comparison function for early depth tests in the same operation that you use to set
the comparison function for the standard depth tests; it requires a separate operation. You can set the
comparison function to LESS, LEQUAL, GREATER, or GEQUAL, but it must be the same function as the
comparison function for standard depth tests. Setting different functions may cause false fails to occur.
You cannot use early depth tests if standard depth tests are configured to use a comparison function,
such as EQUAL or NEQUAL, that is not available to early depth tests.

You must always clear the early depth test buffer when you change the comparison function for early
depth tests; otherwise, false fails will occur.

You cannot use early depth tests when the w buffer is enabled.

5.5.2 Clear Value for the Early Depth Buffer

When clearing the early depth buffer, you can specify any non-negative integer value between
0x000000 and 0xffffff. Use 0x000000 when the standard depth buffer is cleared with a value of
0.0 and 0xffffff when the standard depth buffer is cleared with a value of 1.0. If the standard
depth buffer is cleared with any value other than the two just mentioned, multiply that value by
0xffffff and then add an offset to get the value to use to clear the early depth buffer. You must
provide an offset that accounts for the fact that early depth tests have lower precision than standard
depth tests.

We recommend adding an offset of 0x1000 or greater when the early depth test function is LESS or
LEQUAL, and an offset of -0x1000 or less when the early depth test function is GREATER or GEQUAL.
Values must be between 0x000000 and 0xffffff after the offset has been added.

5.5.3 Block Mode for Early Depth Tests

You can choose either block-8 mode or block-32 mode for the render buffer. The render buffer is set
to block-8 mode by default, but this must be changed to block-32 mode to use early depth tests.

Once rendering starts, it must continue to use the same block mode until the render buffer is cleared.
You must clear the render buffer before rendering in a different block mode. Rendering results are not
guaranteed if you render in a different block mode without clearing the render buffer. Consequently,
all objects must be rendered with the render buffer configured to use block-32 mode when some
objects have early depth tests enabled and others do not.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 93 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

A buffer rendered in block-32 mode cannot be used for textures. Consequently, you cannot use early
depth tests when rendering to textures.

In block-32 mode, you can render only to a render buffer with a width and height that are both
multiples of 32 pixels. Also, the display buffer to which the render buffer's image is transferred must
have a width and height that are also multiples of 32.

Note: Because block-32 mode limits sizes to multiples of 32, you cannot render to 240x400 or
320x400 framebuffers.

5.5.4 Enabling and Disabling Early Depth Tests

To enable early depth tests, call Enable with EARLY_DEPTH_TEST_DMP specified. To disable early
depth tests, call Disable with EARLY_DEPTH_TEST_DMP specified. To determine whether early
depth tests are enabled, call IsEnable with EARLY_DEPTH_TEST_DMP specified.

5.5.5 Setting the Comparison Function for Early Depth Tests

Use EarlyDepthFuncDMP to set the comparison function for early depth tests.

Code 5-12 EarlyDepthFuncDMP
void EarlyDepthFuncDMP(enum func);

To set the comparison function for early depth tests, call EarlyDepthFuncDMP with func set to
GEQUAL, GREATER, LEQUAL, or LESS.

To get the comparison function for early depth tests, call GetIntegerv with pname set to
EARLY_DEPTH_FUNC and the function will be given by params.

5.5.6 Clearing the Early Depth Buffer

To clear the early depth buffer, call Clear with mask set to EARLY_DEPTH_BUFFER_BIT_DMP. To
set the value by which to clear the buffer, call ClearEarlyDepthDMP with depth set to the clear
value.

Code 5-13 ClearEarlyDepthDMP
void ClearEarlyDepthDMP(uint depth);

To get the clear value for the early depth buffer, call GetIntegerv with pname set to
EARLY_DEPTH_CLEAR_VALUE_DMP and the value will be given by params.

The depth value used to clear the depth buffer also affects the value used to clear the early depth
buffer. The values are not necessarily equal; to calculate the early depth buffer's clear value, you
must add an offset to the standard depth buffer's clear value that takes into account the lower
accuracy of early depth tests. For more details on the offset, see section 5.5.2 Clear Value for the
Early Depth Buffer

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 94  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

5.5.7 Changing to and Recovering from Block-32 Mode

Use RenderBlockModeDMP to set the pixel block mode for the render buffer.

Code 5-14 RenderBlockModeDMP
void RenderBlockModeDMP(enum mode);

You can set mode to RENDER_BLOCK8_MODE_DMP or RENDER_BLOCK32_MODE_DMP. To set the
render buffer to block-32 mode, call RenderBlockModeDMP with mode set to
RENDER_BLOCK32_MODE_DMP. To set the render buffer to block-8 mode, call
RenderBlockModeDMP with mode set to RENDER_BLOCK8_MODE_DMP.

Call GetIntegerv with pname set to RENDER_BLOCK_MODE to get the render block mode in
params.

As with early depth tests, changes to the block mode are supported only in the actual hardware
environment.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 95 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

6 Reserved Fragment Shaders

6.1 Fragment Operations
This section explains the features of fragment operations. DMPGL 2.0 provides a feature to replace
the standard OpenGL fragment pipeline (starting with the alpha test) with processing unique to
DMPGL 2.0: the shadow and gas features. For more details, see section 6.4 DMP Shadows and
section 6.6 Gas.

6.1.1 Switching Fragment Operations

To change the fragment operation, call Uniform1i on the reserved uniform
dmp_FragOperation.mode. Set value to FRAGOP_MODE_GL_DMP, FRAGOP_MODE_SHADOW_DMP,
or FRAGOP_MODE_GAS_ACC_DMP to switch the fragment operation into standard, shadow, or gas
mode, respectively.

6.1.2 List of Reserved Uniforms

Table 6-1 shows the settings for reserved uniforms that are used by fragment operations.

Table 6-1 Reserved Uniform Settings for Fragment Operations

Uniform Type Value

dmp_FragOperation.mode int
FRAGOP_MODE_GL_DMP (default)
FRAGOP_MODE_SHADOW_DMP
FRAGOP_MODE_GAS_ACC_DMP

6.2 Procedural Textures
This section explains the features of procedural textures. Procedural textures are one of the features
of reserved fragment shaders in DMPGL 2.0. Unlike conventional texture units, which get colors by
sampling texture images using texture coordinates, procedural textures calculate colors from texture
coordinates using a formal procedure. The formal procedure includes conversions to polar
coordinates and variations due to random numbers.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 96  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Figure 6-1 Graphics Pipeline for Procedural Textures

 Graphics Pipeline
G

eo
m

et
ry

 C
al

cu
la

tio
ns

R
as

te
riz

at
io

n

TEXTURE 0

TEXTURE 1

TEXTURE 2

TEXTURE 3

=PROCTEX

R
en

de
rin

g
Li

gh
t R

ef
le

ct
io

ns

B
le

nd
in

g,
 e

tc
.

Four textures are built into the pipeline. TEXTURE3 is dedicated to procedural textures. The other
texture units do not have procedural texture features. For details on the features of each texture unit,
see section 5.1 Texture Units.

6.2.1 How to Use Procedural Textures

Although all the reserved uniforms dmp_Texture[i] (where i is 0,1,2, or 3) are defined for
reserved fragment shaders, dmp_Texture[3] is the one used to configure procedural textures.

To enable procedural textures, call Uniform1i and set the reserved uniform
dmp_Texture[3].samplerType to TEXTURE_PROCEDURAL_DMP. Texture combiners (see section
5.1.14 Texture Coordinate Precision) access the texels of a procedural texture as TEXTURE3.

The procedural texture unit accepts the same input texture coordinates (u, v) as other texture units.
Afterwards, the texture coordinates are affected by random number generation and clamping, and are
input to mapping calculations. Mapping calculations apply mapping and F functions to convert input
coordinates into input values for the color table; the final texel color is obtained by accessing the color
table. The mapping calculations can calculate color and alpha values independently. Figure 6-2
shows the flow of calculations.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 97 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Figure 6-2 Procedural Textures

G1(u,v)

G2(u,v)

F(g)

RGBA(f)

Mapping

Calculations

f

Clamping

Clamping

u

v

Random-Number

Generation

Random

Numbers

Procedural textures comprise random number generation, clamping, and mapping calculations.

6.2.2 Creating and Assigning Lookup Tables

Procedural textures use lookup tables to specify the following functions.

• A function for random-number noise modulation (noise-modulation lookup table)
• The F function for mapping calculations (the F function lookup table)
• The RGBA value of the final texel (the color lookup table)

For details on data that must be set for each lookup table, see section 6.2.4 Random-Number
Generation and section 6.2.6 Mapping Calculations.

6.2.3 Random-Number Generation

Random-number generation gets the (u,v) texture coordinates from the rasterizer and adds random
numbers to them to get the new (u',v') coordinates. The noise function that generates random
numbers is defined as a black box.

Equation 6-1 Noise Function

𝑢′ = �|𝑢| + 𝑁𝑂𝐼𝑆𝐸 × 𝑠𝑐𝑎𝑙𝑒_𝑢 (𝑢 > 0)
|𝑢| − 𝑁𝑂𝐼𝑆𝐸 × 𝑠𝑐𝑎𝑙𝑒_𝑢 (𝑢 < 0)

�

𝑣′ = �|𝑣| + 𝑁𝑂𝐼𝑆𝐸 × 𝑠𝑐𝑎𝑙𝑒_𝑣 (𝑣 > 0)
|𝑣| − 𝑁𝑂𝐼𝑆𝐸 × 𝑠𝑐𝑎𝑙𝑒_𝑣 (𝑣 < 0)

�

𝑁𝑂𝐼𝑆𝐸 = 𝑛𝑜𝑖𝑠𝑒((|𝑢| + 𝑡𝑟𝑎𝑛𝑠_𝑢) × 𝑓𝑟𝑒𝑞_𝑢, (|𝑣| + 𝑡𝑟𝑎𝑛𝑠_𝑣) × 𝑓𝑟𝑒𝑞_𝑣)

To enable or disable random numbers, use Uniform1i and set the reserved uniform
dmp_Texture[3].ptNoiseEnable to TRUE or FALSE. Three variables control the types of random
numbers that will be generated. If you consider the random numbers as a wave, these three variables
correspond to the frequency, phase, and amplitude. Use the reserved uniforms
dmp_Texture[3].ptNoise{UV} to control these variables. A set of these variables corresponds to
a 3-value array with the frequency (freq_{uv}), phase (trans_{uv}), and amplitude (scale_{uv}) at
indices 0, 1, and 2, respectively. To control the noise, call Uniform3f and set values for these
reserved uniforms.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 98  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Table 6-2 Noise-Control Parameters

 k=0 k=1 k=2

dmp_Texture[3].ptNoiseU[k] The frequency of U The phase of U The amplitude of U

dmp_Texture[3].ptNoiseV[k] The frequency of V The phase of V The amplitude of V

Although the function that generates random numbers is a black box, as mentioned earlier, you can
change one characteristic of the random numbers it generates: their continuity (this feature is called
noise modulation). To control the noise modulation, register a noise modulation function in the noise
modulation lookup table.

The noise modulation lookup table is accessed via LUT_TEXTUREi_DMP. To set it, call Uniformi on
the reserved uniform dmp_Texture[3].ptSamplerNoiseMap and specify the appropriate lookup
table number for i . The array given to the noise modulation lookup table has 256 floating-point
entries; the first 128 must provide data for T and the last 128 must provide data for ∆T in Equation 6-2
(given 0 ≤ k < 128).

Equation 6-2 Noise Modulation

𝑇𝑘 = 𝑁 �
𝑘

128.0
�

∆𝑇𝑘 = 𝑁 �
𝑘 + 1
128.0

� − 𝑁 �
𝑘

128.0
�

The content of the specified lookup table is determined by the lookup table object bound to it and is
configured by calling TexImage1D with target set to LUT_TEXTUREi_DMP, level set to 0,
internalformat and format set to LUMINANCEF_DMP, type set to FLOAT, width set to 256,
and data set to the T array given by Equation 6-2. For details on setting the content of lookup table
objects, see section 5.1.7 Lookup Tables.

You can get the same random numbers for the noise-control parameters when the product of the
phase and frequency is some value X and when it is some value X+16, given that the frequency and
phase are positive numbers, the frequency and amplitude are set to fixed values, and only the phase
is changed. However, because of the accuracy of noise calculations, it may not be possible to get the
same random numbers when the product of the phase and frequency is X and when it is X+16 if a
large value is specified as the frequency. Furthermore, if the phase has been changed to a large
value, minor changes to the phase may not affect the resulting noise.

6.2.4 Clamping

During clamping, any u or v coordinate that does not fall within the range [0,1] is converted into a
value that does. This feature resembles the wrap mode that can be configured for conventional
texture objects. The clamping modes are: repeat mode, mirrored repeat mode, pulse mode, edge-
clamp mode, and zero-clamp mode. Before being clamped by any of these modes, the u and v
coordinates are shifted according to the method configured in the reserved uniform

DMPGL 2.0 Specifications

 2009-2011 Nintendo 99 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

dmp_Texture[3].ptShift{UV}. You can set EVEN_DMP, ODD_DMP, or NONE_DMP as the shift
method for either or both u and v. Table 6-3 shows how u and v are updated to u' and v' by the shift
operation.

Table 6-3 Shift Mode Definitions

Shift Mode Formula Relationship Between offset and
the Clamp Mode

EVEN_DMP
𝑢′ = �

⌊�𝑣⌋� + 1
2 � 𝑚𝑜𝑑 2 + 𝑜𝑓𝑓𝑠𝑒𝑡

𝑣′ = �
⌊�𝑢⌋� + 1

2 � 𝑚𝑜𝑑 2 + 𝑜𝑓𝑓𝑠𝑒𝑡

MIRRORED_REPEAT 1.0
SYMMETRICAL_REPEAT_DMP 0.5
PULSE_DMP 0.5
CLAMP_TO_EDGE 0.5
CLAMP_TO_ZERO_DMP 0.5

ODD_DMP
𝑢′ = �

⌊�𝑣⌋�

2 � 𝑚𝑜𝑑 2 + 𝑜𝑓𝑓𝑠𝑒𝑡

𝑣′ = �
⌊�𝑢⌋�

2 � 𝑚𝑜𝑑 2 + 𝑜𝑓𝑓𝑠𝑒𝑡
Identical to EVEN_DMP

NONE_DMP
𝑢′ = 𝑢
𝑣′ = 𝑣

None

After they are shifted, u and v are clamped according to the clamp mode setting. When u (or v) = t, u
(or v) is updated according to the clamp mode by t’ as shown in Table 6-4.

Table 6-4 Clamp Calculations for Each Mode

Clamp Mode Clamped Coordinate

SYMMETRICAL_REPEAT_DMP 𝑡′ = 𝑡 − ⌊�𝑡⌋�

MIRRORED_REPEAT 𝑡′ = � 𝑡 − ⌊�𝑡⌋�, (⌊�𝑡⌋� 𝑚𝑜𝑑 2) == 0
1.0 − (𝑡 − ⌊�𝑡⌋�), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

PULSE_DMP 𝑡′ = �1.0, 𝑡 > 0.5
0.0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

CLAMP_TO_EDGE 𝑡′ = �1.0, 𝑡 > 1.0
𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

CLAMP_TO_ZERO_DMP 𝑡′ = �0.0, 𝑡 > 1.0
𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

To set the clamp mode, call Uniform1i and specify SYMMETRICAL_REPEAT_DMP,
MIRRORED_REPEAT, PULSE_DMP, CLAMP_TO_EDGE, or CLAMP_TO_ZERO_DMP for the reserved
uniform dmp_Texture[3].ptClamp{UV}.

6.2.5 Mapping Calculations

The mapper takes the (u,v) coordinates output by the clamping calculations, applies various mapping
calculations based on the mapping functions G1, G2, Fr g b , and Fa , and then calculates the final texel
color by accessing the color lookup table. The mapping functions can take color and alpha values

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 100  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

independently, or can take both at once (shared mode). The order of these calculations is shown by
Figure 6-3 and Figure 6-4.

Figure 6-3 RGBA-Shared Mode for Mapping Calculations

u

v

G1(u,v)
Frgb(g1)

g1
Color(f1)
RGBA

Figure 6-4 Independent Alpha Mode for Mapping Calculations

u

v

G1(u,v)

G2(u,v)

g1

g2

Frgb(g1) Color(f1)
RGB

Fa(g2)
f2 α

f1

In RGBA-shared mode, the F function lookup table is accessed to convert the calculation results from
the specified G1 function. Next, the color lookup table is accessed to output the final texel color in
RGBA format. In independent alpha mode, G1 and G2 are applied to u and v, yielding g1 and g2.
Then g1 and g2 are respectively looked up in the F function lookup tables Fr g b and Fa to obtain f1
and f2. The final texel RGB color is obtained by looking up f1 in the color lookup table. The f2 value
itself is the final texel alpha value. Equation 6-3 and Equation 6-4 show the calculation process.

Equation 6-3 RGBA-Shared Mode for Mapping Calculations

𝑝𝑅𝐺𝐵𝐴 = 𝐶𝑜𝑙𝑜𝑟 �𝐹𝑅𝐺𝐵𝐴�𝐺1(𝑢, 𝑣)��

Equation 6-4 Independent Alpha Mode for Mapping Calculations

𝑝𝑅𝐺𝐵 = 𝐶𝑜𝑙𝑜𝑟 �𝐹𝑅𝐺𝐵�𝐺1(𝑢, 𝑣)��

𝑝𝐴 = 𝐹𝑎�𝐺2(𝑢, 𝑣)�

To select RGBA-shared mode or indpendent alpha mode, use Uniform1i and set the reserved
uniform dmp_Texture[3].ptAlphaSeparate to FALSE or TRUE, respectively. To set G1 and G2,
use Uniform1i and set the reserved uniforms dmp_Texture[3].ptRgbMap and
dmp_Texture[3].ptAlphaMap to the parameters given in Table 6-5. The color lookup table can
store more than one level of detail (LOD) and provides a filtering feature.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 101 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Table 6-5 G1 and G2 Modes

Parameter Selected Function

PROCTEX_U_DMP 𝑢

PROCTEX_V_DMP 𝑣

PROCTEX_U2_DMP 𝑢2

PROCTEX_V2_DMP 𝑣2

PROCTEX_ADD_DMP
1
2 (𝑢 + 𝑣)

PROCTEX_ADD2_DMP
1
2 (𝑢2 + 𝑣2)

PROCTEX_ADDSQRT2_DMP �1
2 (𝑢2 + 𝑣2)

PROCTEX_MIN_DMP 𝑚𝑖𝑛 (𝑢, 𝑣)

PROCTEX_MAX_DMP 𝑚𝑎𝑥 (𝑢, 𝑣)

PROCTEX_RMAX_DMP
1
2 �

1
2

(𝑢 + 𝑣) + �1
2

(𝑢2 + 𝑣2)�

6.2.6 Lookup Tables for Mapping Calculations

Mapping calculations require an F function lookup table to implement F r g b and F a and a color lookup
table to implement Color. They are all implemented as lookup tables using LUT_TEXTUREi_DMP.

6.2.6.1 F Function Lookup Tables

To set the F r g b and F a function lookup tables, call Uniformi on the reserved uniforms
dmp_Texture[3].ptSamplerRgbMap and dmp_Texture[3].ptSamplerAlphaMap with the
appropriate lookup table numbers specified. Arrays given to the lookup tables have 256 floating-point
entries; the first 128 must be values for T and the last 128 must be values for ∆T in the following
equation (given 0 ≤ k < 128).

Equation 6-5 F Function Lookup Table Arrays

𝑇𝑘 = 𝐹 �
𝑘

128.0
�

∆𝑇𝑘 = 𝐹 �
𝑘 + 1
128.0

� − 𝐹 �
𝑘

128.0
�

The content of the specified lookup table is determined by the lookup table object bound to it and is
configured by calling TexImage1D with target set to LUT_TEXTUREi_DMP, level set to 0,
internalformat and format set to LUMINANCEF_DMP, type set to FLOAT, width set to 256,

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 102  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

and data set to the T array given by Equation 6-5. For details on setting the content of lookup table
objects, see section 5.1.7 Lookup Tables.

6.2.6.2 Color Lookup Tables

There are four color lookup tables, one for each of the R, G, B, and A channels. These lookup tables
are accessed via LUT_TEXTUREi_DMP. To set them, call Uniformi on the reserved uniform
dmp_Texture[3].ptSampler{RGBA} with the appropriate lookup table number specified. The
content of the specified lookup table is determined by the lookup table object bound to it.

The lookup tables have different content depending on whether the LOD feature is used.

When LOD is not used, the array comprises T values (indicating the color component values) and
∆T values (indicating the difference between color component values). The array has a maximum
length of 512 elements. The first 256 elements configure T and the last 256 elements configure ∆T .

Equation 6-6 Color Lookup Table Arrays

𝑇𝑘 = 𝐶 �
𝑘

256.0
�

∆𝑇𝑘 = 𝐶 �
𝑘 + 1
256.0

� − 𝐶 �
𝑘

256.0
�

To set the content of a color lookup table, call TexImage1D with target set to
LUT_TEXTUREi_DMP; level set to 0; internalformat and format set to LUMINANCEF_DMP;
and type set to FLOAT. For width, specify the number of elements until the last valid ∆T index in
the array given by data. The maximum value of width is 512. When configuring the content of the R
channel, set data to a floating-point array of R components with the required number of data entries.
The first 256 elements of the specified array set the channel color values and the last elements set
the differences in color value.

The color lookup tables are used as subarrays when LOD is not in use. To specify the subarray to use,
set its first element with dmp_Texture[3].ptTexOffset and its length with
dmp_Texture[3].ptTexWidth. The subarray uses T values given by the
dmp_Texture[3].ptTexWidth elements starting at index dmp_Texture[3].ptTexOffset
(counted from the beginning of the array) and the ∆T values given by the
dmp_Texture[3].ptTexWidth elements starting at index dmp_Texture[3].ptTexOffset+256.
The value of dmp_Texture[3].ptTexWidth can be no greater than 128 and must be a power of 2.

To specify these characteristics of the subarray, call Uniform1i to set the reserved uniforms
dmp_Texture[3].ptTexOffset and dmp_Texture[3].ptTexWidth each to an integer.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 103 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Figure 6-5 Color Lookup Table Settings

255

Color 1

ptTexWidth0

Color2

511
ptTexWidth

Color 1 Color2

ptTexOffset
width

T ΔT

Specify the G, B, and A channels in the same way as the R channel.

Even when LOD is in use, the first 256 elements in the array represent the T values and the last 256
elements represent the ∆T values. The T and ∆T values must store all the LOD data, without any
gaps. Data at the minimum LOD (level 0) and maximum LOD (level 6) must have widths of 128 and 2,
respectively. When LOD is in use, dmp_Texture[3].prTexOffset must be 0 and
dmp_Texture[3].prTexWidth must be 128.

Figure 6-6 Color Lookup Table Settings (When LOD Is in Use)

255

Level 0 Level 1 ・・・・・・・・

width (fixed at 512)

2ptTexWidth (fixed at 128)

ptTexOffset (fixed at 0)
Level 6

Level 0 Level 1 ・・・・・・・・

511

Level 6

2

T ∆T

For details on setting the content of lookup table objects, see section 5.1.7 Lookup Tables. Table 6-6
shows the color lookup tables and corresponding uniforms.

Table 6-6 Color Lookup Table Assignments

Reserved Uniform Content

dmp_Texture[3].ptSamplerR Color lookup table number for R components

dmp_Texture[3].ptSamplerG Color lookup table number for G components

dmp_Texture[3].ptSamplerB Color lookup table number for B components

dmp_Texture[3].ptSamplerA Color lookup table number for A components

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 104  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

You can apply filters when accessing color lookup tables. Apply the filters in the same way as with
ordinary 2D textures. To set the filters, call Uniform1i on the reserved uniform
dmp_Texture[3].ptMinFilter and assign the parameters shown below.

Table 6-7 Texture MinFilter Settings

Parameter Application

NEAREST
Nearest point in the U and V directions.
No LOD.

LINEAR
Linear interpolation in the U and V directions.
No LOD.

NEAREST_MIPMAP_NEAREST
Nearest point in the U and V directions.
Nearest point in the LOD direction.

NEAREST_MIPMAP_LINEAR
Nearest point in the U and V directions.
Linear interpolation in the LOD direction.

LINEAR_MIPMAP_NEAREST
Linear interpolation in the U and V directions.
Nearest point in the LOD direction.

LINEAR_MIPMAP_LINEAR
Linear interpolation in the U and V directions.
Linear interpolation in the LOD direction.

A LOD bias applies when accessing a color lookup table. The LOD bias is configured by calling
Uniform1f and assigning a number in the range [0.0,6.0] to dmp_Texture[3].ptTexBias. To
disable the bias, call Uniform1f and set the same reserved uniform to 0.0.

6.2.7 List of Reserved Uniforms

The following table shows the settings for reserved uniforms that are used by procedural textures.

Table 6-8 Reserved Uniform Settings for Procedural Textures

Uniform Type Values

dmp_Texture[3].ptRgbMap int

• PROCTEX_U_DMP (default)
• PROCTEX_V_DMP
• PROCTEX_U2_DMP
• PROCTEX_V2_DMP
• PROCTEX_ADD_DMP
• PROCTEX_ADD2_DMP
• PROCTEX_ADDSQRT2_DMP
• PROCTEX_MIN_DMP
• PROCTEX_MAX_DMP
• PROCTEX_RMAX_DMP

dmp_Texture[3].ptAlphaMap int Identical to dmp_Texture[3].ptRgbMap

dmp_Texture[3].ptAlphaSeparate bool
• TRUE
• FALSE (default)

DMPGL 2.0 Specifications

 2009-2011 Nintendo 105 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Uniform Type Values

dmp_Texture[3].ptClampU int

• SYMMETRICAL_REPEAT_DMP
• MIRRORED_REPEAT
• PULSE_DMP
• CLAMP_TO_EDGE (default)
• CLAMP_TO_ZERO_DMP

dmp_Texture[3].ptClampV int Identical to dmp_Texture[3].ptClampU

dmp_Texture[3].ptShiftU int

• EVEN_DMP
• ODD_DMP
• NONE_DMP (default)

dmp_Texture[3].ptShiftV int Identical to dmp_Texture[3].ptShiftU

dmp_Texture[3].ptMinFilter int

• NEAREST
• LINEAR (default)
• NEAREST_MIPMAP_NEAREST
• NEAREST_MIPMAP_LINEAR
• LINEAR_MIPMAP_NEAREST
• LINEAR_MIPMAP_LINEAR

dmp_Texture[3].ptTexWidth int
[0,128]
0 by default

dmp_Texture[3].ptTexOffset int
[0,128]
0 by default

dmp_Texture[3].ptTexBias float
0.0 or greater
0.5 by default

dmp_Texture[3].ptNoiseEnable bool
• TRUE
• FALSE (default)

dmp_Texture[3].ptNoiseU vec3
Unspecified range
(0.0, 0.0, 0.0) by default

dmp_Texture[3].ptNoiseV vec3
Unspecified range
(0.0, 0.0, 0.0) by default

dmp_Texture[3].ptSamplerRgbMap int
[0,31]
Undefined by default

dmp_Texture[3].ptSamplerAlphaMap int
[0,31]
Undefined by default

dmp_Texture[3].ptSamplerNoiseMap int
[0,31]
Undefined by default

dmp_Texture[3].ptSamplerR int
[0,31]

Undefined by default

dmp_Texture[3].ptSamplerG int
[0,31]

Undefined by default

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 106  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Uniform Type Values

dmp_Texture[3].ptSamplerB int
[0,31]
Undefined by default

dmp_Texture[3].ptSamplerA int
[0,31]
Undefined by default

6.3 DMP Fragment Lighting
DMP fragment lighting is a feature that calculates fragment colors separately for each fragment. This
fragment lighting calculates the primary and secondary colors. Fragment lighting includes
perturbation of normal vectors referenced from textures ("bump mapping"), brightness adjustments
due to shadows (the shadow feature), attenuation due to spotlights, and attenuation due to the
distance between fragments and lights.

DMP fragment lighting calculations use multiple functions and combination methods. Fragment
lighting uses functions that calculate the dot product of two vectors specified as the source; look up
that dot product in a lookup table; and output the value yielded by the table. Fragment lighting can
combine the values output by the functions via a bitwise AND or a bitwise OR operation. Fragment
lighting outputs these AND or OR combined values as primary and secondary colors.

DMPGL 2.0 allows you to select from preset combinations of source vectors and lookup tables for
each of the various functions as well as choosing between the preset combination methods. Arbitrary
combinations are not allowed.

Section 6.3.1 Eye Coordinate System describes the coordinate system for input vectors. Section
6.3.2 Primary and Secondary Colors explains primary and secondary colors. Section 6.3.3 Lookup
Tables (LUTs) explains possible combinations of lookup tables and source values. Section 6.3.5
Shadow Attenuation explains shadow attenuation and section 6.3.6 Bump Mapping explains bump
mapping. Geometric factors and fresnel factors are also available to reproduce special surface
materials. See section 6.3.4 Geometry Factors for more information on geometric factors and section
6.3.7 Fresnel Factors for more information on fresnel factors. Section 6.3.10 Texture Combiner Input
explains the appropriate texture combiner settings that are required to use fragment lighting.

To use DMP fragment lighting, set the reserved uniform dmp_FragmentLighting.enabled to
TRUE. You must also compute valid quaternion attributes in the vertex shader and configure vertex
shader output. Note that for lighting that takes tangent vectors into account, you must calculate
quaternions that include the tangent component.

Various reserved uniforms are set to appropriate values as part of DMP fragment lighting. Note that
the names of functions used to set reserved uniform values have different endings according to the
uniform values that they set. For example, you would use Uniform4fv to set a reserved uniform with
a constant type of vec4. The function name ending to use follows the description of uniform variables
in section 2.10.4 of the OpenGL ES 2.0 specifications. For details on the reserved uniform types and
their initial values, see section 6.3.11 List of Reserved Uniforms.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 107 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

6.3.1 Eye Coordinate System

DMP fragment lighting operations are based on the eye coordinate system (also called eyespace), so
the following several vectors are expected to be configured in eye coordinates. The vectors that you
use do not necessarily have to be in the eye coordinate system, but they must all be in the same
coordinate system. In many cases, vertex processing is carried out in the eye coordinate system and
thus expects that reserved uniforms are specified as vectors in the eye coordinate system.

6.3.2 Primary and Secondary Colors

DMP fragment lighting generates two colors for each fragment. The first is the primary color cf p r i ,
which indicates the diffuse, ambient, and emissive colors. The second is the secondary color cf s e c ,
which indicates the specular color.

The primary color cf p r i is calculated by the following equation.

Equation 6-7 Primary Color

𝑐𝑓𝑝𝑟𝑖 = ��(𝑑𝑐𝑙𝑖 × 𝑑𝑐𝑚 × 𝐿𝑓𝑖 ∙ 𝑁𝑓 × 𝑆𝑑𝑤𝐴𝑡𝑡 Pr 𝑖𝑖 + 𝑎𝑐𝑚 × 𝑎𝑐𝑙𝑖) × 𝑆𝑝𝑜𝑡𝑖 × 𝐷𝑖𝑠𝑡𝐴𝑡𝑡𝑖� + 𝑒𝑐𝑚 + 𝑎𝑐𝑚 × 𝑎𝑐𝑠

Here, Lf i is the light vector and Nf is the normal vector. e c m , a c m , d c m , a c s , a c l i , d c l i , and Lf i are
each set by the reserved uniforms in Table 6-9.

Table 6-9 Reserved Uniforms Related to Primary Color Settings (i Is an Integer from 0 to 7)

Parameter Reserved Uniform

e c m dmp_FragmentMaterial.emission

a c m dmp_FragmentMaterial.ambient

d c m dmp_FragmentMaterial.diffuse

a c s dmp_FragmentLighting.ambient

a c l i dmp_FragmentLightSource[i].ambient

d c l i dmp_FragmentLightSource[i].diffuse

Lf i dmp_FragmentLightSource[i].position

The 𝑒𝑐𝑚 + 𝑎𝑐𝑚 × 𝑎𝑐𝑠 term will be 0 if light source 0 is disabled (in other words, if
dmp_FragmentLightSource[0].enabled is set to FALSE).

Lf i is specified by dmp_FragmentLightSource[i].position (where i is an integer between 0
and 7). The specified vectors must be defined in eye coordinates. Normalized vectors do not need to
be specified here, but Lf i is normalized within the equations. In the same way as vertex lighting, the
fourth component of the specified vector determines whether a light source is parallel or a point.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 108  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

SdwAttPri i is the shadow attenuation term. When the reserved uniforms
dmp_LightEnv.shadowPrimary and dmp_FragmentLightSource[i].shadowed (i is an
integer between 0 and 7) are set to TRUE, the brightness values reference the shadow map. When
either of these reserved uniforms is set to FALSE, the brightness is (1.0, 1.0, 1.0).

When the reserved uniform dmp_FragmentLightSource[i].twoSideDiffuse (i is an integer
between 0 and 7) is set to FALSE, negative dot products are clamped to 0. The operations described
above are only run on the R, G, and B components.

When the reserved uniform dmp_LightEnv.invertShadow is TRUE, 1.0 - SdwAttPri i is applied
instead of SdwAttPri i .

DistAtt i is the attenuation caused by the distance between a fragment and a light. This value either
is referenced from a lookup table or is 1.0 (indicating that there is no attenuation contributed by the
light) when TRUE or FALSE, respectively, are set in the reserved uniform
dmp_FragmentLightSource[i].distanceAttenuationEnabled (i is an integer between 0
and 7). The distance attenuation term is disabled when LIGHT_ENV_LAYER_CONFIG7_DMP is set in
the dmp_LightEnv.config reserved uniform.

The secondary color cf s e c is calculated by the following equation.

Equation 6-8 Secondary Color

𝑐𝑓𝑠𝑒𝑐 = ��(𝑠0𝑐𝑚 × 𝑠0𝑐𝑙𝑖 × 𝐷0 × 𝐺𝐹0𝑖 × 𝑠1𝑐𝑙𝑖 × 𝑅 × 𝐷1 × 𝐺𝐹1𝑖) × 𝑓𝑖 × 𝑆𝑑𝑤𝐴𝑡𝑡𝑆𝑒𝑐𝑖 × 𝑆𝑝𝑜𝑡𝑖 × 𝐷𝑖𝑠𝑡𝐴𝑡𝑡𝑖�

s0 c m , s0 c l i , and s1 c l i are each set by the reserved uniforms in Table 6-10.

Table 6-10 Reserved Uniforms Related to Secondary Color Settings (i Is an Integer, 0–7)

Parameter Reserved Uniform

s0 c m dmp_FragmentMaterial.specular0

s0 c l i dmp_FragmentLightSource[i].specular0

s1 c l i dmp_FragmentLightSource[i].specular1

R is the reflection factor (color). D0 and D1 are distribution factors (real numbers). GF0 i and GF1 i
are geometry factors (real numbers). These factors are either constants or are obtained from the
lookup table, depending on the reserved uniform settings. SdwAttSec i is the attenuation caused by
shadows.

When the reserved uniforms dmp_LightEnv.shadowSecondary and
dmp_FragmentLightSource[i].shadowed (where i is an integer between 0 and 7) are set to
TRUE, the brightness values reference the shadow map. When either of these reserved uniforms is
set to FALSE, the brightness is (1.0, 1.0, 1.0).

DMPGL 2.0 Specifications

 2009-2011 Nintendo 109 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

When the reserved uniform dmp_LightEnv.invertShadow is TRUE, 1.0 - SdwAttSec i is applied
instead of SdwAttSec i . The operations described above are only run on the R, G, and B
components.

When the reserved uniform dmp_LightEnv.clampHighlights is TRUE and 𝐿𝑓𝑖 ∙ 𝑁𝑓, is negative,
then 𝑓𝑖 is 0.0. In other words, that light has no specularity. If 𝐿𝑓𝑖 ∙ 𝑁𝑓 is positive or
dmp_LightEnv.clampHighlights is FALSE, 𝑓𝑖f is 1.0.

Spot i and DistAtt i are the same as the terms used in the equation for the primary color.

With DMP fragment lighting, you can set different lighting parameters for each light. The DMPGL 2.0
implementation has a maximum of eight lights. To enable or disable each light, set the reserved
uniform dmp_FragmentLightSource[i].enabled (i is an integer between 0 and 7) to TRUE or
FALSE. If a light is disabled, its corresponding item is removed from the lighting equation. Even if all
of the lights are disabled, setting the reserved uniform dmp_FragmentLighting.enabled to TRUE
enables DMP fragment lighting.

6.3.3 Lookup Tables (LUTs)

Lookup tables are used for each reflection component—red (RR), green (RG), and blue (RB)—
distribution 0 (D0), distribution 1 (D1), spotlight attenuation (SP), and fresnel factors (FR). The DMPGL
2.0 implementation allows 23 lookup tables to be accessed at once.

Table 6-11 shows which lookup tables are used for the individual items in the lighting equation. These
are decided by the setting for the reserved uniform dmp_LightEnv.config. All of the lights use the
same lookup tables.

Table 6-11 Configuration Provided by DMP Fragment Lighting

Configuration Type
Lookup Table Assignments

Rr Rg Rb D0 D1 Fr Spot

LIGHT_ENV_LAYER_CONFIG0_DMP RR RR RR D0 N/A N/A SP

LIGHT_ENV_LAYER_CONFIG1_DMP RR RR RR N/A N/A FR SP

LIGHT_ENV_LAYER_CONFIG2_DMP RR RR RR D0 D1 N/A N/A

LIGHT_ENV_LAYER_CONFIG3_DMP N/A N/A N/A D0 D1 FR N/A

LIGHT_ENV_LAYER_CONFIG4_DMP RR RG RB D0 D1 N/A SP

LIGHT_ENV_LAYER_CONFIG5_DMP RR RG RB D0 N/A FR SP

LIGHT_ENV_LAYER_CONFIG6_DMP RR RR RR D0 D1 FR SP

LIGHT_ENV_LAYER_CONFIG7_DMP RR RG RB D0 D1 FR SP

Entries marked as "N/A" indicate either the real number 1.0 or the color (1.0, 1.0, 1.0). When
the reserved uniform dmp_LightEnv.lutEnabledRefl is FALSE, R is overwritten by the value set
for the reserved uniform dmp_FragmentMaterial.specular1 and the lookup table is not used.
By default, dmp_LightEnv.lutEnabledRefl is FALSE. Lookup tables RR, RG, RB, D0, D1, and
FR are set by the reserved uniforms dmp_FragmentMaterial.sampler{RR,RG,RB,D0,D1,FR}.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 110  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

A different SP lookup table is assigned for each light. A different distance attenuation lookup table is
always assigned to each light regardless of the configuration type. SP and distance attenuation are
configured by the reserved uniforms dmp_FragmentLightSource[i].sampler{SP,DA} (i is an
integer between 0 and 7).

Use TexImage1D to specify lookup tables.

Code 6-1 TexImage1D
void TexImage1D(enum target, int level,

 int internalformat, sizei width, int border,

 enum format, enum type, void *data);

Each of the arguments follows the lookup table specifications in section 5.1.7 Lookup Tables, but the
lookup table instance used by DMP fragment lighting is an array of 512 floating-point numbers. The
first 256 elements are the sampling values for the lookup table and the next 256 elements are the
differences between the individual sampling values. Set width to 512, type to FLOAT, and data to
a pointer to a 512-element array of floating-point values.

There are two layout types for the lookup table. Different lookup table layouts can be used depending
on whether the input values fall in the range [0, 1.0] or the range [-1.0, 1.0]. The former
layout can be used when you access the lookup table using input values in the range [0, 1.0]. In
this case, the input value is multiplied by 256 and then clamped to 255; the integer part of the
resulting value is the table index. This index value is used as the address of a sampling value (one of
the first 256 elements set by TexImage1D) and a difference value (one of the next 256 elements) in
the lookup table. To get the output from the lookup table, multiply the input value by 256, take the
fractional part of the result and multiply it by the difference value, then add the sampling value.

The same calculation method is used for input values that fall in the range [-1.0, 1.0]. The one
difference is that the input value is multiplied by 128 and the integer part of that product is converted
into a two's complement number before being used as an index. This further subdivides the lookup
table into two parts. The first part is used for non-negative input values (sampling values for indices
from 0 to 0x7f) and the next part is used for negative input values (sampling values for indices from
0x80 to 0xff).

If you set the reserved uniforms dmp_LightEnv.absLutInput{RR,RG,RB,D0,D1,SP,FR} to
TRUE, then it will be treated as the layout for input values in the range [0, 1.0]; if it is set to
FALSE, then it will be treated as the layout for input values in the range [-1.0,1.0]. If
dmp_LightEnv.absLutInput{RR,RG,RB,D0,D1,SP,FR} is set to TRUE, and the input value is
negative, then the value clamped to 0 or the absolute value will be used as the input value. When the
reserved uniform dmp_FragmentLightSource[i].twoSideDiffuse (i is an integer between 0
and 7) has a value of FALSE, negative input values are clamped to 0; if it has a value of TRUE, then
the absolute value will be used.To establish a mapping between a lookup table and each of the terms
in the shading equations, set the reserved uniforms
dmp_FragmentMaterial.sampler{RR,RG,RB,D0,D1,FR} and
dmp_FragmentLightSource[i].sampler{SP,DA} (i is an integer between 0 and 7) equal to

DMPGL 2.0 Specifications

 2009-2011 Nintendo 111 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

lookup table numbers, thus binding lookup table object numbers to the corresponding lookup tables.
For details, see section 5.1.7 Lookup Tables.

You can select from the following preset combinations of source data required by the various
fragment shader functions. Set the values in the reserved uniforms
dmp_LightEnv.lutInput{RR,RG,RB,D0,D1,SP,FR}.

Table 6-12 Lookup Table Input Values

Input Value for
Lookup Table Access Meaning

LIGHT_ENV_NH_DMP Cosine of the angle between the normal vector and half-angle vector

LIGHT_ENV_VH_DMP Cosine of the angle between the view vector and half-angle vector

LIGHT_ENV_NV_DMP Cosine of the angle between the normal vector and view vector

LIGHT_ENV_LN_DMP Cosine of the angle between the light vector and the normal vector

LIGHT_ENV_SP_DMP Cosine of the angle between the inverse light vector and the spotlight direction
vector

LIGHT_ENV_CP_DMP Cosine of the angle between the reflection of the half-angle vector on the tangent
plane and the tangent vector

Table 6-12 shows which values can be specified. Note that LIGHT_ENV_CP_DMP here can only be
used when the reserved uniform dmp_LightEnv.config is set to
LIGHT_ENV_LAYER_CONFIG7_DMP. In addition, LIGHT_ENV_SP_DMP and LIGHT_ENV_CP_DMP
can only be used with the reserved uniforms dmp_LightEnv.lutInput{D0,D1,SP}. The values
that can be specified here are not used as input values to the distance attenuation lookup tables. For
details, see section 6.3.9 Distance Attenuation Term. When dmp_FragmentMaterial.samplerFR
uses a setting that is dependent on the light position (all input values other than LIGHT_ENV_NV_DMP
are dependent on the light position), the light vector of the highest-numbered light among those
currently enabled is used to access the lookup table.

The reserved uniforms dmp_LightEnv.lutScale{RR,RG,RB,D0,D1,SP,FR} each specify a
scaling value to apply to the output values of their respective lookup tables. You can currently set the
following six values: 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0.

Instead of using output values from a lookup table, you can also set the reserved uniforms
dmp_LightEnv.lutEnabledD0 and dmp_LightEnv.lutEnabledD1 to FALSE to set D0 and D1
in Equation 6-8 to 1.0.

6.3.4 Geometry Factors

The reserved uniforms dmp_FragmentLightSource[i].geomFactor0 and
dmp_FragmentLightSource[i].geomFactor1 control how the geometry factors GF0 i and
GF1 i in Equation 6-8 are generated. GF{0,1} i is 1.0 when
dmp_FragmentLightSource[i].geomFactor{0,1} are FALSE. GF{0,1} i is approximated by

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 112  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

𝑚𝑎𝑥 �0, 𝐿𝑓𝑖∙𝑁𝑓
(𝐿𝑓𝑖+𝑉𝑓)2� when dmp_FragmentLightSource[i].geomFactor{0,1} are TRUE. Actually,

GF{0,1} i approximates the geometry factors of the Cook-Torrance lighting model. Vf indicates the
view vector. Lf i , Vf , and Nf are all normalized in within the equation.

Note: The defined GF{0,1} i is approximated using a method unique to DMPGL 2.0 that accounts
for a hardware implementation of the geometry factors for the Cook-Torrance lighting model.
This method was modeled on a formula (15.6) on p. 732 of Principles of Digital Image
Synthesis by Andrew Glassner.

6.3.5 Shadow Attenuation Terms

Colors generated by lighting can be affected by shadow attenuation via the shadow attenuation terms
SdwAttPri i and SdwAttSec i . The values SdwAttPri i and SdwAttSec i are looked up from a
shadow map; the reserved uniform dmp_LightEnv.shadowSelector specifies their texture unit.

When the reserved uniforms dmp_FragmentLightSource[i].shadowed (i is an integer between
0 and 7) and dmp_LightEnv.shadowPrimary are TRUE, the value looked up from the texture unit
specified by dmp_LightEnv.shadowSelector is applied to SdwAttPri i . When these reserved
uniforms are FALSE, (1.0, 1.0, 1.0) is assigned to SdwAttPri i .

In the same way, when the reserved uniforms dmp_FragmentLightSource[i].shadowed (i is an
integer between 0 and 7) and dmp_LightEnv.shadowSecondary are TRUE, the value looked up
from the texture unit specified by dmp_LightEnv.shadowSelector is applied to SdwAttSec i .
When these reserved uniforms are FALSE, (1.0, 1.0, 1.0) is assigned to SdwAttSec i .

When the reserved uniform dmp_LightEnv.invertShadow is TRUE, the looked-up values are each
subtracted from (1.0, 1.0, 1.0) to generate the two shadow attenuation terms.

Although shadow format textures are only supported with texture unit 0, all texture units can be
specified in reserved uniform dmp_LightEnv.shadowSelector. If a texture unit configured with a
non-shadow-format texture is specified in dmp_LightEnv.shadowSelector, then the texture color
will be used directly as the shadow attenuation value.

6.3.6 Bump Mapping

DMP fragment lighting allows you to perturb normals and tangents that use a normal map. The
reserved uniform dmp_LightEnv.bumpSelector specifies the texture unit that contains
perturbation data for the normals and tangents. The reserved uniform dmp_LightEnv.bumpMode
specifies the perturbation method. When dmp_LightEnv.bumpMode is
LIGHT_ENV_BUMP_NOT_USED_BUMP, the normals and tangents are unaffected by perturbations.
When the setting is LIGHT_ENV_BUMP_AS_BUMP_DMP, only the normals are perturbed.

Perturbation vectors are stored with their x, y, and z components encoded in the R, G, and B
channels of texture samples (in other words, -1.0 is encoded as the minimum brightness component
and 1.0 is encoded as the maximum brightness component). When the setting is
LIGHT_ENV_BUMP_AS_TANG_DMP, only the tangents are perturbed. When the reserved uniform

DMPGL 2.0 Specifications

 2009-2011 Nintendo 113 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

dmp_LightEnv.bumpRenorm is TRUE, the z component of the perturbation vectors is recalculated
according to Equation 6-9 below, instead of using the B component of the texture samples. Here, (b x ,
b y , b z) indicates the bump-mapped vector.

Equation 6-9 Recalculating the Z Component of the Bump Map Perturbation Vectors

𝑏𝑧 = �1.0 − �𝑏𝑥
2 + 𝑏𝑦

2�

If)(0.1 22
yx bb +− in the formula above is negative, 0 will be substituted for zb .

6.3.7 Fresnel Factors

The equations described above are applied only to the R,G, and B components of the primary and
secondary colors; the alpha components are set to 1.0. However, it is possible for the alpha
components to be overwritten by the real numbers indicated by Fr in Table 6-11. These values were
originally intended to be used as approximations for the Fresnel factors, but they can also be used for
other purposes. These values are generated in the same way as distribution 0 and distribution 1 (D0
and D1).

The content of the Fr factors is set by the corresponding reserved uniform
dmp_FragmentMaterial.samplerFr. The alpha components of both the primary and secondary
color are overwritten by Fr when the reserved uniform dmp_LightEnv.fresnelSelector is
LIGHT_ENV_PRI_SEC_ALPHA_FRESNEL_DMP. The alpha component is overwritten only for the
secondary color with LIGHT_ENV_SEC_ALPHA_FRESNEL_DMP and only for the primary color with
LIGHT_ENV_PRI_ALPHA_FRESNEL_DMP. The alpha component for the primary and secondary
colors remains at 1.0 with LIGHT_ENV_NO_FRESNEL_DMP.

When the reserved uniform dmp_LightEnv.fresnelSelector is not
LIGHT_ENV_NO_FRESNEL_DMP and dmp_LightEnv.shadowAlpha is TRUE, the corresponding
alpha component can be attenuated by shadows (multiplied by shadow attenuation). It is also
possible to flip the shadow texture output (this is controlled by dmp_LightEnv.invertShadow).
When multiple lights are enabled, the light vector of the highest-numbered light among those currently
enabled is used to generate a dot product as the input value to the lookup table Fr.

6.3.8 Spotlight Attenuation Term

Lookup tables are also used to generate the spotlight attenuation term Spot in Equation 6-7 and
Equation 6-8. Set the spotlight direction with the reserved uniform
dmp_FragmentLightSource[i].spotDirection (i is an integer between 0 and 7). Just like a
light-source vector, the vector indicating the spotlight direction is assumed to be in eye coordinates.
Unlike a light-source vector, the vector specified for spotlight direction must already be normalized.

You can enable and disable spotlights individually by setting the reserved uniforms
dmp_FragmentLightSource[i].spotEnabled (i is an integer between 0 and 7) equal to TRUE

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 114  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

or FALSE. A separate lookup table is applied to each light using the lookup table number specified by
dmp_FragmentLightSource[i].samplerSP (i is an integer between 0 and 7). However, even
then the values set by dmp_LightEnv.absLutInputSP, dmp_LightEnv.lutInputSP, and
dmp_LightEnv.lutScaleSP are applied commonly to all lights.

6.3.9 Distance Attenuation Term

Lookup tables are also used to generate the distance attenuation term DistAtt i in Equation 6-7 and
Equation 6-8. You can enable and disable distance attenuation for individual lights by setting the
reserved uniforms dmp_FragmentLightSource[i].distanceAttenuationEnabled equal to
TRUE or FALSE. A separate lookup table is applied to each light using the lookup table number
specified by the reserved uniform dmp_FragmentLightSource[i].samplerDA (i is an integer
between 0 and 7).

The lookup tables’ data layout must be of the type that uses input values in the range [0, 1.0]. In
other words, the same sampling is applied as in other lookup tables when absolute values are used
for their input values.

The following equation is applied to yield the lookup tables’ input values.

Equation 6-10 Finding the Distance Attenuation Lookup Table Input Values

𝑆𝑐𝑎𝑙𝑒 × ��𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑙𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛�2 + 𝐵𝑖𝑎𝑠

f p o s i t i o n is the fragment position and l p o s i t i o n is the light position; both are assumed to be in eye
coordinates. Scale and Bias are set by the reserved uniforms
dmp_FragmentLightSource[i].distanceAttenuationScale and
dmp_FragmentLightSource[i].distanceAttenuationBias (i is an integer between 0 and 7),
respectively.

Distance attenuation does not account for parallel light sources. The value of l p o s i t i o n only has
meaning for point light sources.

The distance attenuation term is disabled when LIGHT_ENV_LAYER_CONFIG7_DMP is set in the
dmp_LightEnv.config reserved uniform.

6.3.10 Texture Combiner Input

The primary and secondary colors generated by DMP fragment lighting are used as a single input
source by the texture combiner. When the reserved uniform dmp_TexEnv[i].srcRgb or
dmp_TexEnv[i].srcAlpha (i is between 0 and 5) is set to FRAGMENT_PRIMARY_COLOR_DMP, the
primary color is defined as the texture combiner's input. When FRAGMENT_SECONDARY_COLOR_DMP
is specified, the secondary color is defined as the texture combiner's input.

A value of (0.0, 0.0, 0.0, 1.0) is output to both the primary and secondary colors when the
reserved uniform dmp_FragmentLighting.enabled is FALSE.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 115 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

6.3.11 List of Reserved Uniforms

Table 6-13 shows the settings (and default values) for reserved uniforms that are used by DMP
fragment lighting (where i is between 0 and 7). These reserved uniforms can be set for each light.

Table 6-13 Reserved Uniform Settings for Each Light

Uniform Type Value

dmp_FragmentLightSource[i].enabled bool
• TRUE
• FALSE (default)

dmp_FragmentLightSource[i].ambient vec4

Each value is in the range
[0.0, 1.0]
(0.0, 0.0, 0.0, 0.0)
by default

dmp_FragmentLightSource[i].diffuse vec4

Each value is in the range
[0.0, 1.0]
(0.0, 0.0, 0.0, 0.0)
by default
However, light 0 alone is
(1.0, 1.0, 1.0, 1.0)

dmp_FragmentLightSource[i].specular0 vec4

Each value is in the range
[0.0, 1.0]
(0.0, 0.0, 0.0, 0.0)
by default
However, light 0 alone is
(1.0, 1.0, 1.0, 1.0)

dmp_FragmentLightSource[i].specular1 vec4

Each value is in the range
[0.0, 1.0]
(0.0, 0.0, 0.0, 0.0)
by default

dmp_FragmentLightSource[i].position vec4
Unspecified range
(0.0, 0.0, 0.0, 0.1)
by default

dmp_FragmentLightSource[i].spotDirection vec3
Unspecified range
(0.0, 0.0, 0.0, -1.0)
by default

dmp_FragmentLightSource[i].shadowed bool
• TRUE
• FALSE (default)

dmp_FragmentLightSource[i].geomFactor0 bool
• TRUE
• FALSE (default)

dmp_FragmentLightSource[i].geomFactor1 bool
• TRUE
• FALSE (default)

dmp_FragmentLightSource[i].twoSideDiffuse bool
• TRUE
• FALSE (default)

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 116  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Uniform Type Value

dmp_FragmentLightSource[i].spotEnabled bool
• TRUE
• FALSE (default)

dmp_FragmentLightSource[i].distanceAttenuationEnabled bool
• TRUE
• FALSE (default)

dmp_FragmentLightSource[i].distanceAttenuationBias float
Unspecified range
0.0 by default

dmp_FragmentLightSource[i].distanceAttenuationScale float
Unspecified range
1.0 by default

dmp_FragmentLightSource[i].samplerSP int
[0,31]

Undefined by default

dmp_FragmentLightSource[i].samplerDA int
[0,31]

Undefined by default

Table 6-14 shows the reserved uniforms and values that can be set for materials using DMP fragment
lighting, as well as their default values.

Table 6-14 Reserved Uniform Settings for Materials

Uniform Type Value

dmp_FragmentMaterial.sampler{D0,D1,RR,RG,RB,FR} int
[0,31]
Undefined by default

dmp_FragmentMaterial.ambient vec4

Each value is in the range [0.0,
1.0]
(0.2, 0.2, 0.2, 1.0) by
default

dmp_FragmentMaterial.emission vec4

Each value is in the range [0.0,
1.0]
(0.0, 0.0, 0.0, 1.0) by
default

dmp_FragmentMaterial.diffuse vec4

Each value is in the range [0.0,
1.0]
(0.8, 0.8, 0.8, 1.0) by
default

dmp_FragmentMaterial.specular0 vec4

Each value is in the range [0.0,
1.0]
(0.0, 0.0, 0.0, 1.0) by
default

dmp_FragmentMaterial.specular1 vec4

Each value is in the range [0.0,
1.0]
(0.0, 0.0, 0.0, 1.0) by
default

DMPGL 2.0 Specifications

 2009-2011 Nintendo 117 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Table 6-15 shows the reserved uniforms and values that can be set in the light environment of DMP
fragment lighting, as well as their default values.

Table 6-15 Reserved Uniforms and Values That Can Be Set in the Light Environment

Uniform Type Value

dmp_FragmentLighting.enabled bool
• TRUE (default)
• FALSE

dmp_FragmentLighting.ambient vec4
Each value is in the range [0.0, 1.0]
(0.2, 0.2, 0.2, 1.0) by default

dmp_LightEnv.absLutInput{D0,D1,RR,
RG,RB,SP,FR} bool

• TRUE
• FALSE (default)

dmp_LightEnv.lutInput{D0,D1,SP} int

• LIGHT_ENV_NH_DMP (default)
• LIGHT_ENV_VH_DMP
• LIGHT_ENV_NV_DMP
• LIGHT_ENV_LN_DMP
• LIGHT_ENV_SP_DMP
• LIGHT_ENV_CP_DMP

dmp_LightEnv.lutInput{RR,RG,RB,FR} int

• LIGHT_ENV_NH_DMP (default)
• LIGHT_ENV_VH_DMP
• LIGHT_ENV_NV_DMP
• LIGHT_ENV_LN_DMP

dmp_LightEnv.lutScale{D0,D1,RR,RG,
RB,SP,FR}

float

• 0.25
• 0.5
• 1.0 (default)
• 2.0
• 4.0
• 8.0

dmp_LightEnv.shadowSelector int

• TEXTURE0 (default)
• TEXTURE1
• TEXTURE2
• TEXTURE3

dmp_LightEnv.bumpSelector int

• TEXTURE0 (default)
• TEXTURE1
• TEXTURE2
• TEXTURE3

dmp_LightEnv.bumpMode int

• LIGHT_ENV_BUMP_NOT_USED_DMP (default)
• LIGHT_ENV_BUMP_AS_BUMP_DMP
• LIGHT_ENV_BUMP_AS_TANG_DMP

dmp_LightEnv.bumpRenorm bool
• TRUE
• FALSE (default)

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 118  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Uniform Type Value

dmp_LightEnv.config int

• LIGHT_ENV_LAYER_CONFIG0_DMP (default)
• LIGHT_ENV_LAYER_CONFIG1_DMP
• LIGHT_ENV_LAYER_CONFIG2_DMP
• LIGHT_ENV_LAYER_CONFIG3_DMP
• LIGHT_ENV_LAYER_CONFIG4_DMP
• LIGHT_ENV_LAYER_CONFIG5_DMP
• LIGHT_ENV_LAYER_CONFIG6_DMP
• LIGHT_ENV_LAYER_CONFIG7_DMP

dmp_LightEnv.invertShadow bool
• TRUE
• FALSE (default)

dmp_LightEnv.shadowPrimary bool
• TRUE
• FALSE (default)

dmp_LightEnv.shadowSecondary bool
• TRUE
• FALSE (default)

dmp_LightEnv.shadowAlpha bool
• TRUE
• FALSE (default)

dmp_LightEnv.fresnelSelector int

• LIGHT_ENV_NO_FRESNEL_DMP (default)
• LIGHT_ENV_PRI_ALPHA_FRESNEL_DMP
• LIGHT_ENV_SEC_ALPHA_FRESNEL_DMP
• LIGHT_ENV_PRI_SEC_ALPHA_FRESNEL_DMP

dmp_LightEnv.clampHighlights bool
• TRUE (default)
• FALSE

dmp_LightEnv.lutEnabledD0 bool
• TRUE
• FALSE (default)

dmp_LightEnv.lutEnabledD1 bool
• TRUE
• FALSE (default)

dmp_LightEnv.lutEnabledRefl bool
• TRUE
• FALSE (default)

6.4 DMP Shadows
DMPGL 2.0 shadows are expected to be rendered by two passes: first, the shadow accumulation
pass creates a shadow buffer and then the reference pass accesses the shadow buffer to cast
shadows.

DMPGL 2.0 allows shadows that use shadow textures. To enable shadow texture filtering, set the
reserved uniform dmp_Texture[0].samplerMode to SHADOW_2D_DMP or SHADOW_CUBE_DMP.

Note that you must configure the vertex shader to calculate and output the R component of texture
coordinates when using DMP shadows.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 119 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

6.4.1 DMP Shadow Overview

The basic concept of shadow generation provided by DMPGL 2.0 is the same as the OpenGL 2-pass
shadow generation algorithm that uses depth textures.

In the first pass, the scene is rendered in the light source's coordinate system. Depth information is
stored in shadow textures, but these are not textures; they are the collected depth values
representing the scene as viewed from the light source. (These are also called shadow maps.)

In the second pass, objects are determined to either be shaded (occluded from) or hit by the light
source based on the depth values gathered in the first pass. Next, the scene is rendered. An object is
considered to be in shadow during the second pass if its distance from the light source's coordinates
is larger than the depth value stored in the buffer generated during the first pass.

6.4.2 Shadow Texture Units

In some cases, only some texture units support shadow texture processing. In DMPGL 2.0, only
texture unit 0 supports shadow texture processing. This is the reason for reserved uniform numbers
to be fixed at 0 for all reserved uniforms relating to texture units later in this document.

6.4.3 Shadow Reference Pass

DMPGL 2.0 can only handle shadow textures using SHADOW_DMP or SHADOW_NATIVE_DMP for the
texture format and UNSIGNED_INT for the type. Mipmapping of shadow textures is not supported. A
shadow texture includes both depth values and shadow intensity. The depth and shadow intensity
included in the shadow texture's texels are first compared to the R component of the texture
coordinates, then converted to yield the final shadow intensity.

The per-fragment depth value in light-source coordinates is calculated by Equation 6-11, which
linearly interpolates the R component of the texture coordinates in eye space.

Equation 6-11 Per-Fragment Depth Value

))((zlfrl biasrclampclampz −=

Here, bias z l is the actual offset (note the negative sign in front of the offset value!). Call Uniform1f
to set the reserved uniform dmp_Texture[0].shadowZBias to the offset value. r f r is the per-
fragment R component value from the texture coordinates. clamp clamps in the range [0.0, 1.0].

When Uniform1i has been called to set the reserved uniform
dmp_Texture[0].perspectiveShadow to FALSE and the reserved uniform
dmp_Texture[0].samplerMode to SHADOW_2D_DMP, the texture coordinates s and t can be used
directly to access shadow textures. Otherwise, Equation 6-12 is used to calculate the shadow texture
position for each fragment.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 120  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Equation 6-12 Per-Fragment Shadow Texture Position

𝑠 =
𝑠𝑓𝑟

𝑟𝑓𝑟

𝑡 =
𝑡𝑓𝑟

𝑟𝑓𝑟

Here, s f r and t f r are the texture coordinates interpolated for each fragment. Note, however, that the
texture coordinates s,t,r for each vertex must be multiplied by the w buffer's scaling factor. This is
because the depth values rendered from the light source's position are assumed to be generated by
linear interpolation in eye space.

If perspective projection is used when rendering to shadow textures (that is, if
dmp_Texture[0].perspectiveShadow is set to TRUE), the bias z l parameter is determined by
Equation 6-13 below.

Equation 6-13 Bias Parameter

𝑏𝑖𝑎𝑠𝑧𝑙 = 𝑎𝑙𝑝ℎ𝑎 ×
𝑛

𝑓 − 𝑛
+ 𝑏𝑒𝑡𝑎

Here, n and f are the distances to the near and far projection clipping planes specified when
rendering shadow textures. alpha is in the vicinity of 1.0 and beta is in the vicinity of 0.0. The w
buffer's scaling factor is assumed to be 1.0/𝑓. Setting alpha to 1.0 or greater and beta to 0.0 or
greater is effective in controlling self-shadow aliasing when determining whether something is in
shadow.

When calculating the texture coordinates might generate positions outside of the range from 0.0 to
1.0, the border color and texture wrapping mode can be configured to control the shadow texture's
sampling results. When the texture wrapping mode is set to CLAMP_TO_BORDER for the s and t
components of the texture coordinates, setting the shadow border color to (1.0, 1.0, 1.0, 1.0) or (0.0,
0.0, 0.0, 0.0) guarantees that the shadow texture's sampling results generate that color for fragment
texture coordinates outside of the range from 0.0 to 1.0. Sampling results are undefined by the
implementation if the wrapping mode is set to a value other than CLAMP_TO_BORDER. Sampling
results are also undefined when the border color is set to a value other than (1.0, 1.0, 1.0, 1.0) or (0.0,
0.0, 0.0, 0.0).

The final shadow intensity is obtained by comparing z l to the depth value for the corresponding texel
in the shadow texture. If the shadow texture's depth value is greater, the final shadow intensity is 0.0;
if z l is greater, the original shadow intensity of the texel in the shadow texture is retained as the final
shadow intensity. The texture unit outputs this value for each of the RGBA components.

6.4.4 Cube-Map Shadow Filtering

When rendering, you can use shadow textures together with cube mapping if both these two
conditions have been met.

1. The target of TexImage2D was set to TEXTURE_CUBE_MAP_POSITIVE_{X,Y,Z} or

DMPGL 2.0 Specifications

 2009-2011 Nintendo 121 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

TEXTURE_CUBE_MAP_NEGATIVE_{X,Y,Z} when the texture(s) bound to the texture unit were
generated.

2. For the sampling mode during filtering, Uniform1i was called with the reserved uniform
dmp_Texture[0].samplerMode set to SHADOW_CUBE_MAP.

If these conditions are met, the texture coordinate s, t, or r that has the largest absolute value is used
for the depth comparison with the shadow texel depth value. The shadow texel position is calculated
from the remaining two texture coordinates, and you can then use cube mapping to implement an
omnidirectional shadow map. The shadow texel calculations follow section 3.7.5 of the OpenGL ES
2.0 specifications. The texture-wrapping mode is set equal to CLAMP_TO_EDGE for the s and t
components of the texture coordinates with cube-map shadow filtering.

6.4.5 Shadow Accumulation Pass

Call Uniform1i with FRAGOP_MODE_SHADOW_DMP specified for the reserved uniform
dmp_FragOperation.mode to replace all of the functionality described in Chapter 4 Per-Fragment
Operations and the Framebuffer in the OpenGL ES 2.0 specifications with processing that
accumulates shadow information in a shadow buffer.

The shadow buffer is implemented by attaching the shadow texture to the COLOR_ATTACHMENT0
attachment point of the current framebuffer. In that situation, the texture or render buffers attached to
the DEPTH_ATTACHMENT and STENCIL_ATTACHMENT attachment points are ignored.

Shadow information is accumulated into the shadow buffer in the light source's coordinate system.
The accumulated information consists of the depth (distance) from the light source and the shadow
intensity (expressed as the g-component of color). Both the shadow depth information and intensity
information are values in the range of [0.0, 1.0].

The color with a g-component of 0.0 corresponds to an opaque, hard shadow. Any color with a g-
component not 0.0 corresponds to a translucent shadow, and with 1.0 corresponds to a complete lack
of shadows. The r-, b-, and a-components of color do not affect rendering results. You must set the w
buffer's scale factor with the reserved uniform dmp_FragOperation.wScale because the depth
values must be generated using linear interpolation in eye space. Call Uniform1i to set the
reserved uniform dmp_FragOperation.wScale to any scale factor. For details, see section 6.9 w
Buffer. The initial value is 0.0.

When rendering opaque hard shadows of color with a g-component of 0.0, only shadow depth
information is updated, and shadow intensity information is not updated. The depth for an opaque
hard shadow fragment is compared against the depth of the corresponding pixels in the shadow
buffer using the LESS comparison function (passing if the values are lower), and if the shadow
fragment passes, the shadow depth information in the shadow buffer is updated for new fragments.

When rendering translucent shadows for a color that does not have a g-component of 0.0, only
shadow intensity information is updated and shadow depth information is not updated. The depth for
a translucent shadow fragment is compared against the depth of the corresponding pixels in the

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 122  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

shadow buffer using the LESS comparison function. If the fragment passes, the shadow intensity
information in the shadow buffer is updated for new fragments.

The shadow buffer is cleared with the color (1.0, 1.0, 1.0, 1.0) before the accumulation process starts.
This initializes (clears) both the depth values and shadow intensity. Be aware that the clear value is
enabled for all r-, g-, b-, and a-components.

Several rendering passes are sometimes required to accumulate the necessary shadow information.
The accumulation process must accumulate information for opaque, hard shadows first before
translucent shadows. Results are not guaranteed if the order is reversed or information is
accumulated alternating between opaque and translucent shadows.

6.4.6 Attenuation Factors

It is also possible to use silhouette rendering to create soft shadow regions for which the shadow
intensity changes in stages until it vanishes completely. Opaque, hard shadows must be rendered
before this silhouette rendering.

To set the silhouette color, call Uniform4fv on the reserved uniform dmp_Silhouette.color with
the color specified. You must set the g-component to 1.0. To produce incremental changes in the
shadow intensity around a silhouette, configure the remaining settings to be the same as the
rendering pass for opaque, hard shadows such that the silhouette edge uses the color g-component
of 0.0. This allows you to approximate a partial shadow region, which interpolates the shadow
intensity from 0.0 to 1.0 along a rectangle cut widthwise.

While accumulating the soft-shadow regions generated by silhouette rendering, you can add
modulation based on the relative distance to the occluding object before saving the shadow intensity
to the shadow buffer (this is applied to the fragments that passed the depth test, and only the depth
test, using an implicit "LESS" function). The shadow intensity is modulated by the attenuation factor
calculated according to the following equation.

Equation 6-14 Shadow Intensity Attenuation Factor

1

𝑏𝑖𝑎𝑠 + 𝑠𝑐𝑎𝑙𝑒 ×
1 − 𝑧𝑓𝑟𝑎𝑔

𝑧𝑟𝑒𝑐

Here, z f r a g is the fragment's depth value and z r e c is the depth value of the surface on which the light
falls (saved in advance to the shadow buffer). bias and scale allow you to control the "hardness" to
apply to the penumbra (the region of half shadow); the harder the penumbra is, the more narrow it is.
Using Equation 6-14 allows you to decrease the width of the penumbra in proportion to its proximity to
the occluding object (the object casting it), and thus approximate the characteristics of a real shadow.

You can adjust bias and scale by setting values for the reserved uniforms
dmp_FragOperation.penumbraBias and dmp_FragOperation.penumbraScale.

If no receiver is rendered in the shadow buffer, the shadow intensity attenuation effect is not applied
correctly.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 123 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

6.4.7 Shadow Artifacts

The following parameters are used to control shadow artifacts. Values set by the reserved uniform
dmp_Texture[0].shadowZScale control the negative offset value calculated from z l before the
depth values stored in the shadow texel are compared. Call Uniform1f to set the reserved uniform
dmp_Texture[0].shadowZScale to any value. This offset is calculated from the derivatives of the
texture coordinates in screen space by the following equation.

Equation 6-15 Offset

𝑚𝑎𝑥 �𝑎𝑏𝑠 �
𝑑𝑟

𝑤𝑖𝑑𝑡ℎ × 𝑑 �𝑠
𝑟�

� , 𝑎𝑏𝑠 �
𝑑𝑟

ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑑 �𝑡
𝑟�

��

Here, width and height indicate the width and height of the shadow texture.

The scale factor specified by dmp_Texture[0].shadowZScale is multiplied by the offset value.
The reserved uniform dmp_Texture[0].shadowZScale does not have a default value and must
be set. The per-fragment offset value increases along with the scale factor, causing the shadow to be
further separated from the object casting it. This can suppress artifacts due to self-shadow aliasing,
but it unfortunately separates the shadow from the object casting it. The scale factor uses a value
multiplied by the inverse of the shadow texture size.

6.4.8 Shadow Texture Format

The shadow depth information and strength information are stored in the shadow texture, and both
have values in the range [0.0, 1.0] but the accuracy is different. To get the content of a shadow
texture, call ReadPixels with RGBA specified as the format and UNSIGNED_BYTE specified as the
type. The depth information and shadow intensity included in the obtained shadow texture are
formatted differently on the actual hardware environment versus the PICA on Desktop environment.

The actual hardware environment uses 8 bits for the shadow intensity and 24 bits for the depth value.
The R component represents the shadow intensity as a value between 0x00 and 0xff. A value of
0xff indicates the absence of a soft shadow region and any other value indicates the presence of a
soft shadow region. In other words, the shadow intensity value [0.0, 1.0] corresponds to [0x00, 0xff].
The G, B, and A components together represent the depth value, holding the depth value's lower 8
bits, middle 8 bits, and upper 8 bits, respectively. The depth value is a value between 0x000000 and
0xffffff and is scaled by the near and far values. Note that this scaling is uniform when the w
buffer is enabled in the shadow accumulation path. The shadow depth value [0.0, 1.0] corresponds to
[0x0, 0xffffff].

PICA on Desktop uses 8 bits for the shadow intensity and 16 bits for the depth value. The R
component represents the shadow intensity; the B and A components together represent the depth
value, holding the depth value's lower 8 bits and upper 8 bits, respectively. Despite this difference in
format, the shadow intensity and depth value have the same meaning as they do in the actual
hardware environment. The shadow depth value [0.0, 1.0] corresponds to [0x0, 0xffff].

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 124  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

An unshadowed region produced by the shadow accumulation path has a shadow intensity of 0xff
and a depth value of either 0xffffff on the actual hardware or 0xffff on PICA on Desktop. A
region with only hard shadows has a shadow intensity of 0xff and any depth value other than
0xffffff (on the actual hardware) or 0xffff (on PICA on Desktop). A region with both hard and
soft shadows has any shadow intensity other than 0xff and any depth value other than either
0xffffff (actual hardware) or 0xffff (PICA on Desktop).

6.4.9 List of Reserved Uniforms

Table 6-16 shows the settings (and default values) for reserved uniforms that are used by DMP
shadows. Because only texture unit 0 allows shadow filtering in DMPGL 2.0, the i in
dmp_Texture[i] is only set to 0.

Table 6-16 Reserved Uniform Settings for DMP Shadows

Name Type Value

dmp_Texture[0].samplerType int

• FALSE (default)
• TEXTURE_2D
• TEXTURE_CUBE_MAP
• TEXTURE_SHADOW_2D_DMP
• TEXTURE_SHADOW_CUBE_DMP
• TEXTURE_PROJECTION_DMP

dmp_Texture[0].perspectiveShadow bool
• TRUE (default)
• FALSE

dmp_Texture[0].shadowZScale float
A value larger than 0.0
Undefined by default

dmp_Texture[0].shadowZBias float
Arbitrary value
0.0 by default

dmp_FragOperation.mode int

• FRAGOP_MODE_GL_DMP (default)
• FRAGOP_MODE_GAS_ACC_DMP
• FRAGOP_MODE_SHADOW_DMP

dmp_FragOperation.penumbraScale float
Arbitrary value
0.0 by default

dmp_FragOperation.penumbraBias float
Arbitrary value
1.0 by default

dmp_FragOperation.wScale float
Arbitrary value
0.0 by default

6.5 Fog
Fog adjusts fragment colors according to their depth values and is nearly identical to the feature in
OpenGL ES 1.1. This feature was removed from OpenGL ES 2.0 but can be used with DMPGL 2.0.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 125 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

The required parameters were set by Fog{if} in OpenGL ES 1.1 but are set by reserved uniforms in
DMPGL 2.0.

The relationship between the depth and color values was specified by choosing between LINEAR,
EXP, and EXP2 in OpenGL ES 1.1, but is set by lookup tables in DMPGL 2.0.

The fog feature has two modes, fog and gas, and is also used by the gas feature. For details on the
gas mode, see section 6.6 Gas.

6.5.1 Enabling Fog

To use the fog feature, enable either fog mode or gas mode by calling Uniform1i with the reserved
uniform dmp_Fog.mode set to FOG or GAS_DMP. To disable the fog feature, set dmp_Fog.mode to
FALSE.

6.5.2 Setting Lookup Table Content

Lookup tables set the relationship between depth values and fog. Lookup tables also implement
LINEAR, EXP, and EXP2, which are defined in OpenGL ES 1.1.

These lookup tables are accessed via LUT_TEXTUREi_DMP. To set them, call Uniformi on the
reserved uniform dmp_Fog.sampler with the appropriate lookup table number specified. The arrays
given to these lookup tables have 256 floating-point entries; the first 128 must provide data for T and
the last 128 must provide data for ∆T in Equation 6-16 (given 0 ≤ k ≤ 127).

Equation 6-16 Lookup Table Array

𝑇𝑘 = 𝑁 �
𝑘

128.0
�

∆𝑇𝑘 = 𝑁 �
𝑘 + 1
128.0

� − 𝑁 �
𝑘

128.0
�

The content of the specified lookup table is determined by the lookup table object bound to it and is
configured by calling TexImage1D with target set to LUT_TEXTUREi_DMP, level set to 0,
internalformat and format set to LUMINANCEF_DMP, type set to FLOAT, width set to 256,
and data set to the T array given by Equation 6-16. For details on setting the content of lookup table
objects, see section 5.1.7 Lookup Tables.

6.5.3 Lookup Table Input Values

The z value in window coordinates is used as input to the lookup table. This differs from OpenGL ES
1.1, which uses the Z value in eye coordinates.

6.5.4 Specifying the Fog Color

To set the fog color, call Uniform3fv on the reserved uniform dmp_Fog.color with the color
specified.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 126  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

6.5.5 Fog Calculations

Fog calculations update the fragment color Cr to Cr' .

Equation 6-17 Fog Fragment Color

𝐶𝑟′ = 𝑓 × 𝐶𝑟 + (1 − 𝑓) × 𝐶𝑓

Here, Cf is the fog color and f is the output value from the lookup table.

6.5.6 Fog Z-Flipping

DMPGL 2.0 provides a z-flip mode that uses 1-z instead of z (where z is the depth value) to access
the fog lookup tables. To enable or disable the z-flip mode, call Uniform1i on the reserved uniform
dmp_Fog.zFlip and set it to TRUE or FALSE.

6.5.7 List of Reserved Uniforms

The following table shows the values set for reserved uniforms that are used by fog.

Table 6-17 Reserved Uniform Settings for Fog

Uniform Type Value

dmp_Fog.mode int

• FALSE (default)
• FOG
• GAS_DMP

dmp_Fog.color vec3
Each value is in the range [0.0, 1.0]
(0, 0, 0) by default

dmp_Fog.zFlip bool
• TRUE
• FALSE (default)

dmp_Fog.sampler int
[0,31]
Undefined by default

Note: The lookup table specifications used by the fog feature in DMPGL 2.0 are easily
misunderstood by people familiar with OpenGL. In OpenGL, the fog feature affects the z
coordinate in eye space, but in DMPGL 2.0 it affects the depth value following the adjustment
of the depth values by a perspective projection. As a result, changing the near or far clipping
planes alters the fog effect. Also, using the same lookup table produces a different effect
depending on whether the w buffer (see section 6.9 w Buffer) or normal depth buffer is used.

6.6 Gas
This section explains the gas feature. DMPGL 2.0 provides the gas feature to render gaseous objects.
Gaseous objects have density and depth and are rendered pixel-by-pixel based on their
foreground/background relationship with polygon models. Gaseous objects are rendered in multiple
passes, including one that renders density and one that performs shading.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 127 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

The density-rendering pass renders the density values of a gaseous object. Density rendering
accounts for intersections with the depth values stored in the depth buffer. This pass generates gas
textures (see section 6.6.1 Gas Textures) and runs other operations.

The shading pass shades gaseous objects based on the density values rendered by the density-
rendering pass. This pass usually accesses gas textures.

6.6.1 Gas Textures

DMPGL 2.0 provides a special texture format for gases. Textures in this special format are called gas
textures. To use gas textures, call TexImage2D with target set to TEXTURE_2D;
internalformat and format set to GAS_DMP or GAS_NATIVE_DMP; and type set to
UNSIGNED_SHORT. The gas texture's content is rendered by the density pass; each texel is a 32-bit
value that comprises D1 and D2. D2 is a density value that accounts for intersections with the depth
values stored in the depth buffer and D1 is a density value that does not account for these
intersections. Gas textures always use point sampling, regardless of the TEXTURE_MIN_FILTER or
TEXTURE_MAG_FILTER setting configured by TexParameter. Mipmapping of gas textures is not
supported.

6.6.2 Rendering Density Values

DMPGL 2.0 provides features that render the density values of gaseous objects to the color buffer.
The density information rendered here is used by the shading pass and is therefore usually rendered
on gas textures.

6.6.2.1 Switching the Per-Fragment Operations

To render density values, you must switch the per-fragment operations into density-rendering mode.
Call Uniform1i on the reserved uniform for per-fragment operations, dmp_FragOperation.mode,
with value set to FRAGOP_MODE_GAS_ACC_DMP to switch per-fragment operations into density-
rendering mode.

6.6.2.2 Density-Rendering Mode

In density-rendering mode, the alpha test (and subsequent processes) is replaced by density
rendering. Density rendering stores 32-bit values that comprise two different values, D1 and D2 , into
the color buffer. These values have the same format as gas textures. Density rendering additively
blends D1 and D2 . In additive blending, the following equation is applied to D1 to yield D1'

Equation 6-18 Additive Blending of D1

𝐷1′ = 𝐷1 + 𝐷𝑓

Here, Df uses the R component of the input fragment color.

A different set of equations, shown below, is applied to D2 to yield D2' .

Equation 6-19 Additive Blending of D2

𝐷𝑍 = (𝑍𝑏 − 𝑍𝑓 < 0.0) ? 0.0 ∶ (𝑍𝑏 − 𝑍𝑓) × 𝐸𝑍

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 128  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

𝐴𝑇𝑇 = (𝐷𝑍 > 1.0)? 1.0 ∶ 𝐷𝑍

𝐷2′ = 𝐷2 + 𝐷𝑓 × 𝐴𝑇𝑇

EZ here is set by a call to Uniform1f on the reserved uniform dmp_Gas.deltaZ with value set to
a floating-point value. Zb is the depth value stored in the depth buffer and Zf is the fragment's depth
value. If the depth test is run in GREATER or GEQUAL mode, additive blending of D 2 uses the
following equations.

Equation 6-20 Additive Blending of D2 with GREATER or GEQUAL Depth Tests

𝐷𝑍 = (𝑍𝑏 − 𝑍𝑓 < 0.0) ? 0.0 ∶ (𝑍𝑏 − 𝑍𝑓) × 𝐸𝑍

𝐴𝑇𝑇 = (𝐷𝑍 > 1.0)? 1.0 ∶ 𝐷𝑍

𝐷2′ = 𝐷2 + 𝐷𝑓 × (1.0 − 𝐴𝑇𝑇)

If the depth test is run in ALWAYS mode, additive blending of D2 uses the following equation.

Equation 6-21 Additive Blending of D2 with ALWAYS Depth Tests

𝐷2′ = 𝐷2 + 𝐷𝑓If the depth test is run in NEVER mode, there is no additive blending of D2 .

6.6.3 Shading

DMPGL 2.0 provides a feature to shade gaseous objects based on gas texture information.

6.6.3.1 Switching the Fog Mode

To shade gases, configure fog to use the gas mode. Call Uniform1i on the reserved uniform for fog,
dmp_Fog.mode, with value set to GAS_DMP and the fog mode will be set to gas mode.The fog
lookup table and shading lookup table are used when fog is configured to use gas mode. For
information on setting the fog lookup table, see section 6.5 Fog. The fog output (Gr , Gg , Gb , Ga) is
used for gas shading. Gr ,Gg , and Gb are output from the shading lookup table and Ga is output
from the fog lookup table.

6.6.3.2 Fog Input

When fog is configured to use gas mode, the output color from the next-to-last texture combiner (for
example, dmp_TexEnv[1] when there are three texture combiners) is taken as the fog input color
(r ,g ,b ,a). Only the R component of the input color is used for shading. Also, the third argument of
dmp_TexEnv[last].srcRgb and the third argument of dmp_TexEnv[last].srcAlpha, both
from the final texture combiner, are also given as fog input ("last" would be 5 when there are six
texture combiners). The latter two input values are taken and used as gas texture format values
(density values D1 and D2) when fog is in gas mode.

6.6.3.3 Density Values Used for Shading

Shading uses d1 and d2 , which are calculated based on the density values D1 and D2 given as
fog input. d1 is yielded by the following equation.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 129 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Equation 6-22 Density Value d1

𝑑1 = 𝑑𝑘 × 𝐼𝑁𝑉𝐸𝑅𝑇𝐸𝐷_𝐴𝐶𝐶_𝑀𝐴𝑋1

To select between D1 or D2 for dk , use Uniform1i on the reserved uniform
dmp_Gas.shadingDensitySrc with value set to GAS_PLAIN_DENSITY or
GAS_DEPTH_DENSITY, respectively. If Uniform1i has been used to set the reserved uniform
dmp_Gas.autoAcc to TRUE, INVERTED_ACC_MAX1 is the inverse of the maximum D1 value
obtained by additive blending during density rendering. When dmp_Gas.autoAcc has been set to
FALSE, INVERTED_ACC_MAX1 is the floating-point value that Uniform1f has set for the
reserved uniform dmp_Gas.accMax.

d2 , on the other hand, is yielded by the following equation.

Equation 6-23 Density Value d2

𝑑2 = 𝐷2 × 𝐺𝐴𝑆_𝐴𝑇𝑇

GAS_ATT here is set by a call to Uniform1f on the reserved uniform dmp_Gas.attenuation
with value set to a floating-point value.

6.6.3.4 Shading Lookup Tables

The shading lookup table is used when fog is operating in gas mode. The shading lookup table
comprises eight RGB colors and eight difference colors (together, RGB i and RGB_DIF i , where i =
0,1,…,7). If Shading_FUNC(x) is defined as the shading color given by the lookup table, the RGB
colors and difference colors must be yielded by the following equation.

Equation 6-24 Shading Lookup Table Elements

𝑅𝐺𝐵𝑖 = 𝑆ℎ𝑎𝑑𝑖𝑛𝑔_𝐹𝑈𝑁𝐶 �
𝑖
8

�

𝑅𝐺𝐵_𝐷𝐼𝐹𝑖 = 𝑆ℎ𝑎𝑑𝑖𝑛𝑔_𝐹𝑈𝑁𝐶 �
𝑖 + 1

8
� − 𝑆ℎ𝑎𝑑𝑖𝑛𝑔_𝐹𝑈𝑁𝐶 �

𝑖
8

�

There are three lookup tables, one for each of the R, G, and B channels. These lookup tables are
accessed via LUT_TEXTUREi_DMP. To set them, call Uniform1i on the reserved uniform
dmp_Gas.samplerT{RGB} with the appropriate lookup table number specified. The content of the
specified lookup table is determined by the lookup table object bound to it and is configured by calling
TexImage1D with target set to LUT_TEXTUREi_DMP, level set to 0, internalformat and
format set to LUMINANCEF_DMP, type set to FLOAT, and width set to 16. To set the content of the
R channel, specify data to be a floating-point array that comprises the R component of eight colors
and eight difference values. The G and B channels are set in the same way. For details on setting the
content of lookup table objects, see section 5.1.7 Lookup Tables.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 130  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

6.6.3.5 Input to the Shading Lookup Tables

Using Uniform1i, set the reserved uniform dmp_Gas.colorLutInput to GAS_DENSITY_DMP or
GAS_LIGHT_FACTOR_DMP to configure the shading lookup table's input value to be either d1 or the
shading intensity I I . The shading intensity I I is defined by the following equation.

Equation 6-25 Shading Intensity

𝐼𝐼 = 𝐼𝐺 + 𝐼𝑆

Here, IG is called the planar shading intensity and IS is called the view shading intensity. The planar
shading intensity defines planar shading and is calculated by the following equations.

Equation 6-26 Planar Shading Intensity

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = (1.0 − 𝑙𝑖𝑔ℎ𝑡𝐴𝑡𝑡 × 𝑑1)

𝑖𝑔 = 𝑟 × 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛

𝐼𝐺 = (1.0 − 𝑖𝑔) × 𝑙𝑖𝑔ℎ𝑡𝑀𝑖𝑛 + 𝑖𝑔 × 𝑙𝑖𝑔ℎ𝑡𝑀𝑎𝑥

Here, l ightMin (the minimum intensity), l i ghtMax (the maximum intensity), and l ightAtt (the
attenuation for density) are three floating-point numbers between 0.0 and 1.0 that control planar
shading and are set by using Uniform3fv on the reserved uniform dmp_Gas.lightXY. r is the
input R component for fog, as described in section 6.6.3.2 Fog Input. The view shading intensity IS ,
on the other hand, defines view shading and is calculated by the following equation.

Equation 6-27 View Shading Intensity

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = (1.0 − 𝑠𝑐𝑎𝑡𝑡𝐴𝑡𝑡 × 𝑑1)

𝑖𝑠 = 𝐿𝑍 × 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛

𝐼𝑆 = (1.0 − 𝑖𝑠) × 𝑠𝑐𝑎𝑡𝑡𝑀𝑖𝑛 + 𝑖𝑠 × 𝑠𝑐𝑎𝑡𝑡𝑀𝑎𝑥

Here, scattMin (the minimum intensity), scattMax (the maximum intensity), s cattAtt (the
attenuation for density), and LZ (the light direction in relation to the Z axis in the eye coordinate
system) are four floating-point numbers between 0.0 and 1.0 that control view shading and are set by
using Uniform4fv on the reserved uniform dmp_Gas.lightZ.

6.6.3.6 RGB Shading Values

The RGB shading values 𝐺𝑅𝐺𝐵 = (𝐺𝑟, 𝐺𝑔, 𝐺𝑏) are output from the shading lookup table.

Equation 6-28 RGB Shading Values

𝐺𝑅𝐺𝐵 = 𝑆ℎ𝑎𝑑𝑖𝑛𝑔_𝐿𝑈𝑇(𝑑1)

OR

𝐺𝑅𝐺𝐵 = 𝑆ℎ𝑎𝑑𝑖𝑛𝑔_𝐿𝑈𝑇(𝐼𝐼)

DMPGL 2.0 Specifications

 2009-2011 Nintendo 131 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

6.6.3.7 Alpha Shading Value

The alpha shading value Ga is output from the fog lookup table. Ga is shown by the following
equation that uses d2 .

Equation 6-29 Alpha Shading Value

𝐺𝑎 = 𝐹𝑜𝑔_𝐿𝑈𝑇(𝑑2)

6.6.4 List of Reserved Uniforms

The following table shows the values set for reserved uniforms that are used for gas.

Table 6-18 Reserved Uniform Settings for Gas

Uniform Type Value

dmp_Gas.deltaZ float
Unrestricted range
10.0 by default

dmp_Gas.shadingDensitySrc int
• GAS_PLAIN_DENSITY_DMP (default)
• GAS_DEPTH_DENSITY_DMP

dmp_Gas.autoAcc bool
• TRUE (default)
• FALSE

dmp_Gas.accMax float
Greater than or equal to 0.0
1.0 by default

dmp_Gas.colorLutInput int
• GAS_DENSITY_DMP
• GAS_LIGHT_FACTOR_DMP (default)

dmp_Gas.lightXY vec3
Each value is in the range [0.0, 1.0]
(0.0, 0.0, 0.0) by default

dmp_Gas.lightZ vec4
Each value is in the range [0.0, 1.0]
(0.0, 0.0, 0.0, 0.0) by default

dmp_Gas.samplerT{RGB} int
[0,31]
Undefined by default

dmp_Gas.attenuation float
Greater than or equal to 0.0
1.0 by default

6.7 Alpha Tests
This section describes the alpha-test feature. DMPGL 2.0 provides features corresponding to the
alpha tests defined in the OpenGL ES 1.1 specifications. You can use alpha tests to discard any
fragment that does not pass a comparison of its alpha component with a configured reference value.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 132  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

6.7.1 Enabling and Disabling Alpha Tests

To enable or disable alpha tests, call Uniform1i on the reserved uniform
dmp_FragOperation.enableAlphaTest with value set to TRUE or FALSE. When alpha tests
are disabled, the pipeline behaves as if all fragments always pass the alpha test. Alpha tests are
disabled by default.

6.7.2 Setting Reference Values Used by Alpha Tests

To set the reference value with which to compare the fragment's alpha component during an alpha
test, call Uniform1f on the reserved uniform dmp_FragOperation.alphaRefValue with value
set to a floating-point number. The default value is 0.0. This value is clamped between 0 and 1 before
it is used.

6.7.3 Controlling Alpha Test Comparisons

To set the comparison method used by alpha tests, call Uniform1i on the reserved uniform
dmp_FragOperation.alphaTestFunc with value set to one of the values given by Table 6-19.

Table 6-19 Alpha Test Comparison Methods

Value Meaning

NEVER The fragment never passes.

ALWAYS The fragment always passes.

LESS The fragment passes if its alpha value is smaller than the reference value.

LEQUAL The fragment passes if its alpha value is less than or equal to the reference value.

EQUAL The fragment passes if its alpha value is equal to the reference value.

GEQUAL The fragment passes if its alpha value is greater than or equal to the reference value

GREATER The fragment passes if its alpha value is greater than the reference value.

NOTEQUAL The fragment passes if its alpha value is not equal to the reference value.

The default setting is ALWAYS.

6.7.4 List of Reserved Uniforms

The following table shows the values set for reserved uniforms that are used by alpha tests.

Table 6-20 Reserved Uniform Settings for Alpha Tests

Uniform Type Value

dmp_FragOperation.enableAlphaTest bool
• TRUE
• FALSE (default)

dmp_FragOperation.alphaRefValue float
[0.0, 1.0]

0.0 by default

DMPGL 2.0 Specifications

 2009-2011 Nintendo 133 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Uniform Type Value

dmp_FragOperation.alphaTestFunc int

• NEVER
• ALWAYS (default)
• LESS
• LEQUAL
• EQUAL
• GEQUAL
• GREATER
• NOTEQUAL

6.8 Clipping
This section describes clipping features. DMPGL 2.0 provides features that are nearly identical to
clipping as defined in the OpenGL ES 1.1 specifications. Clipping involves clipping primitives to a
clipping volume. The clipping volume is the intersection of the viewing volume, which is a closed
region, and all half-spaces defined by additional arbitrary clipping planes.

6.8.1 Clipping Volumes

The clipping volume is defined to be the intersection of the viewing volume and all half-spaces
created by additional clipping planes. The following sections define the details of the viewing volume
and half-spaces created by any additional clipping planes.

6.8.1.1 Definition of the Viewing Volume

The viewing volume is defined by Equation 6-30 in clip coordinates. This equation differs from the
definition in the OpenGL ES 1.1 specifications. (See section 2.15 Coordinate Systems.)

Equation 6-30 Viewing Volume

−𝑤𝑐 ≤ 𝑥𝑐 ≤ 𝑤𝑐

−𝑤𝑐 ≤ 𝑦𝑐 ≤ 𝑤𝑐

−𝑤𝑐 ≤ 𝑧𝑐 ≤ 0

6.8.1.2 Definition of a Clipping Plane

A clipping plane is defined by four coefficients, shown below.

Equation 6-31 Clipping Plane Coefficients

(𝑝1 𝑝2 𝑝3 𝑝4)

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 134  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

The half-space created by the clipping planes is defined as the set of all points that satisfy the
following equation.

Equation 6-32 Clipping Plane Half-Space

(𝑝1 𝑝2 𝑝3 𝑝4) �

𝑥𝑐
𝑦𝑐
𝑧𝑐
𝑤𝑐

� ≥ 0

To set these four coefficients, call Uniform4f on the reserved uniform
dmp_FragOperation.clippingPlane with v0, v1, v2, and v3 each set to a floating-point value.
The default value for all of these coefficients is 0.0. To enable or disable clipping planes, call
Uniform1i on the reserved uniform dmp_FragOperation.enableClippingPlane with value
set to TRUE or FALSE. Clipping planes are disabled by default.

6.8.2 List of Reserved Uniforms

The following table shows the values set for reserved uniforms that are used for clipping.

Table 6-21 Reserved Uniform Settings for Clipping

Uniform Type Value

dmp_FragOperation.clippingPlane vec4
Unrestricted range
(0.0, 0.0, 0.0, 0.0) by default

dmp_FragOperation.enableClippingPlane bool
• TRUE
• FALSE (default)

6.9 w Buffer
This section explains w buffer features. DMPGL 2.0 provides a feature to calculate depth values (the
z values in window coordinates) without a perspective transformation.

6.9.1 Depth Values When the w Buffer Is Enabled

The following equation shows a depth value z w when the w buffer is enabled.

Equation 6-33 w Buffer Depth Values

𝑧𝑤 = −𝑠𝑐_𝑤 × 𝑧𝑐

Here z c is the z value in clip coordinates. sc_w is the floating-point number set by calling
Uniform1f on the reserved uniform dmp_FragOperation.wScale. The value of sc_w must be
set so as to keep z w within the range from 0.0 to 1.0.

6.9.2 Enabling and Disabling the w Buffer

The w buffer is disabled when the reserved uniform dmp_FragOperation.wScale is set to 0.0 and
enabled when the uniform is set to a nonzero value. It is disabled by default.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 135 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

6.9.3 The w Buffer and the Depth Range

When the w buffer is enabled, the depth range configured by DepthRange is not used.

6.9.4 The w Buffer and Polygon Offset

You can use z-value offsets through PolygonOffset, regardless of the w buffer settings. When the
w buffer is enabled, however, the value used as the offset is the product of 𝑊𝑐 (the w value in clip
coordinates) and the value specified as units to PolygonOffset.

6.9.5 List of Reserved Uniforms

The following table shows the values set for reserved uniforms that are used by the w buffer.

Table 6-22 Reserved Uniform Settings for the w Buffer

Uniform Type Value

dmp_FragOperation.wScale float
Unspecified range
0.0 by default

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 136  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

7 Miscellaneous
DMPGL 2.0 is defined as an interface that resembles OpenGL ES 2.0, but there are several
differences. This chapter summarizes these differences. All differences related to textures are
described in Chapter 5 Rasterization. All other differences are described in this chapter.

7.1 Logical Operations
OpenGL ES 1.1 can perform logical operations on images between a source and destination image.
These features were removed from the OpenGL ES 2.0 specifications but are usable with DMPGL 2.0.
To enable or disable logical operations on images, call Enable or Disable with the cap argument
set to COLOR_LOGIC_OP. To set the logical operation, call LogicOp with the op argument set to the
operator. This specification is identical to OpenGL ES 1.1.

Code 7-1 LogicOp
void LogicOp(enum op);

The following table shows the operators that you can specify as the op argument. In the table, s
indicates the source and d indicates the destination.

Table 7-1 Logical Operators for Images

Argument Value Operation

CLEAR 0

AND 𝑠 ∧ 𝑑

AND_REVERSE 𝑠 ∧ ¬𝑑

COPY 𝑠

AND_INVERTED ¬𝑠 ∧ 𝑑

NOOP 𝑑

XOR 𝑠 𝑥𝑜𝑟 𝑑

OR 𝑠 ∨ 𝑑

NOR ¬(𝑠 ∨ 𝑑)

EQUIV ¬(𝑠 𝑥𝑜𝑟 𝑑)

INVERT ¬𝑑

OR_REVERSE 𝑠 ∨ ¬𝑑

COPY_INVERTED ¬𝑠

OR_INVERTED ¬𝑠 ∨ 𝑑

NAND ¬(𝑠 ∧ 𝑑)

SET 𝑎𝑙𝑙 1

To get the current setting, call GetIntegerv with the pname argument set to LOGIC_OP_MODE.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 137 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

7.2 Flush and Finish
DMPGL 2.0 does not distinguish between Flush and Finish. They have the same implementation.

Code 7-2 Flush and Finish
void Flush(void);

void Finish(void);

7.3 Enable and Disable
The specifications for Enable and Disable are almost identical to OpenGL ES 2.0. In DMPGL 2.0,
you cannot specify TEXTURE_2D or TEXTURE_CUBE_MAP to the Enable or Disable function. For
details, see section 5.1.1 Enabling Texture Units.

7.4 DrawElements and DrawArrays
DrawArrays and DrawElements are used to render primitives. However, in DMPGL 2.0 the usable
argument range differs from OpenGL 2.0.

Code 7-3 DrawElements and DrawArrays
void DrawArrays(enum mode, int first, sizei count);

void DrawElements(enum mode, sizei count, enum type, void *indices);

The mode argument specifies the mode for rendering primitives. You cannot specify POINTS,
LINE_STRIP, LINE_LOOP, or LINES to the mode argument in DMPGL 2.0. Points and lines use the
reserved geometry shader with the new GEOMETRY_PRIMITIVE_DMP specified. For details, see
section 3.3 Geometry Shaders. TRIANGLES, TRIANGLE_STRIP, and TRIANGLE_FAN can be used in
the same way as the OpenGL ES 2.0 specifications. You also specify GEOMETRY_PRIMITIVE_DMP
when using the following new features that do not exist in the OpenGL ES 2.0 specifications:
silhouettes, subdivision patches, and particle systems. For details on silhouettes, subdivision patches,
and particle systems, see Chapter 4 Primitives.

7.5 LineWidth
LineWidth exists in OpenGL ES 2.0 but not in DMPGL 2.0.

7.6 PixelStorei
PixelStorei exists in OpenGL ES 2.0 but not in DMPGL 2.0.

7.7 SampleCoverage
SampleCoverage exists in OpenGL ES 2.0 but not in DMPGL 2.0.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 138  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

7.8 ReadPixels
Use ReadPixels to read the content of the framebuffer.

Code 7-4 ReadPixels
void ReadPixels(int x, int y, sizei width, sizei height,

 enum format, enum type, void *data);

You can configure the DMPGL 2.0 render buffer to use one of two block modes. Ordinarily the mode
used is block-8 mode, but block-32 mode is used with early depth tests. For further details on the
block modes, see section 5.5.3 Block Mode for Early Depth Tests.

The block mode in effect when when objects are rendered must be the same as the block mode in
effect when ReadPixels is used. The behavior of ReadPixels is not guaranteed when these block
modes differ.

By specifying DEPTH_COMPONENT for format, it is possible to read out the contents of the depth
buffer. When doing so, specify either UNSIGNED_INT, UNSIGNED_INT_24_DMP, UNSIGNED_SHORT,
or UNSIGNED_BYTE for type to get depth values in (respectively) 32 bits, 24 bits, 16 bits, or 8 bits
per pixel. Each pixel's depth value is obtained with the lowest-level bits first. For example, if type is
UNSIGNED_INT_24_DMP, a single pixel's value is obtained in three bytes, in this order: lower 8 bits,
middle 8 bits, upper 8 bits. If the actually-rendered depth values have a different bit width than the
type setting, this function gets values that have been converted to the width of type.

When STENCIL_INDEX is specified for format, the stencil buffer content can be read. In such cases,
UNSIGNED_BYTE must be specified for type, and the current depth buffer must be in
DEPTH24_STENCIL8_EXT format. The stencil value for each pixel is read into each byte of data,
with each byte corresponding to one pixel.

When DEPTH24_STENCIL8_EXT is specified for format, the depth buffer and stencil buffer content
can be read in a combined format with 24 bits for the depth value and 8 bits for the stencil value. In
such cases, UNSIGNED_INT must be specified for type, and the current depth buffer must be in
DEPTH24_STENCIL8_EXT format. One pixel is obtained as a four-byte value, in order as the least
signficant 8 bits, middle 8 bits, and most significant 8 bits of the depth value, and then 8 bits for the
stencil value.

An INVALID_ENUM error is generated when an invalid combination is specified for the format and
type arugments.

In all other respects, this feature operates in the same way as it does in OpenGL ES 1.1 and 2.0.

7.9 Framebuffer Objects
DMPGL 2.0 handles framebuffer objects in compliance with section 4.4 Framebuffer Objects in the
OpenGL ES 2.0 specifications, but does not support all of the OpenGL ES 2.0 specifications. There
are also some DMP-specific extended specifications. In addition, the PICA on Desktop environment

DMPGL 2.0 Specifications

 2009-2011 Nintendo 139 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

differs from the actual hardware environment. This section explains all of the differences in these
specifications.

The DMPGL 2.0 implementation allows you to use the following image formats for the render buffer,
in addition to those mentioned in section 4.4.5 of the OpenGL ES 2.0 specifications.

• RGBA8_OES
• DEPTH_COMPONENT24_OES
• DEPTH24_STENCIL8_EXT

The STENCIL_INDEX8 format in the OpenGL ES 2.0 specifications is not supported by DMPGL 2.0.

Table 7-2 Image Formats for the Render Buffer

Sized Internal Format Renderable Type R bits G bits B bits A bits D bits S bits

DEPTH_COMPONENT16 depth-renderable 16

DEPTH_COMPONENT24_OES depth-renderable 24

RGBA4 color-renderable 4 4 4 4

RGB5_A1 color-renderable 5 5 5 1

RGB565 color-renderable 5 6 5

RGBA8_OES color-renderable 8 8 8 8

DEPTH24_STENCIL8_EXT depth and
stencil-renderable 24 8

DEPTH24_STENCIL8_EXT is a 32-bit format that combines the 8-bit stencil buffer with the 24-bit
depth buffer defined by the EXT_packed_depth_stencil extension.

You must set the attach argument to DEPTH_STENCIL_ATTACHMENT when using
FramebufferRenderbuffer to attach a render buffer in the DEPTH24_STENCIL8_EXT format to
the framebuffer.

You can use CopyTexImage2D or CopyTexSubImage2D to transfer the content of the render buffer
that is attached to the color attachment point into a texture, but the same restrictions as in section
5.1.4 Copying From the Framebuffer apply. In other words, the internal format of the attached render
buffer must be same as the internal format of the texture to which data is transferred. DMPGL 2.0
does not convert between formats when transferring data.

7.9.1 Specifications Particular to the PICA on Desktop Environment

After DMPGL initialization, the default render buffers are attached to the default framebuffer. These
default render buffers cannot be attached to a non-default framebuffer. A non-default render buffer
also cannot be attached to the default framebuffer.

When using PICA on Desktop on some host PC environments, you might not be able to properly
attach render buffers in the DEPTH24_STENCIL8_EXT format to the framebuffer via
FramebufferRenderbuffer with the attach argument set to DEPTH_STENCIL_ATTACHMENT. In

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 140  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

this case, you must explicitly attach the render buffers to both DEPTH_ATTACHMENT and
STENCIL_ATTACHMENT instead.

Depth tests always pass if the bound framebuffer does not have a depth buffer attached and depth
tests are enabled. Similarly, stencil tests always pass if the bound framebuffer does not have a stencil
buffer attached and stencil tests are enabled. If a depth buffer is not attached during gas density
rendering, however, the depth buffer attached to the default framebuffer is used.

7.9.2 Specifications Particular to the Actual Hardware Environment

When the system API has initialized DMPGL, there are no render buffers are attached to the default
framebuffer. The application must create and attach each of the render buffers.

In this environment, if the bound framebuffer does not have a depth buffer attached and depth tests
are enabled, the previously enabled depth buffer is used. Similarly, if the bound framebuffer does not
have a stencil buffer attached and stencil tests are enabled, the previously enabled stencil buffer is
used. Behavior is undefined if a depth buffer or stencil buffer has never been enabled, as is the case
immediately following DMPGL initialization. The same type of behavior applies when gas density
rendering has been enabled.

A texture may also be attached as a depth buffer. See section 7.33 Depth Information Textures for
details.

7.10 Uniform{1234}{if}(v)
DMPGL 2.0 error-checks reserved uniforms to see whether their configured values conform to the
specifications. When a reserved uniform is set to a value that is outside of the range allowed by the
specifications, an INVALID_VALUE error is generated. DMPGL 2.0 does not error-check the uniforms
for the vertex shader and geometry shader.

7.11 GenerateMipmap
The DMPGL 2.0 implementation does not include calls to GenerateMipmap.

7.12 VertexAttribPointer
The DMPGL 2.0 implementation of this function does not allow FIXED or UNSIGNED_SHORT to be
used for type. If type is FLOAT or SHORT and pointer is not 4-byte aligned or 2-byte aligned,
respectively, an INVALID_VALUE error is generated. normalize cannot be set to TRUE.

7.13 Clear
The DMPGL 2.0 implementation does not apply scissoring or buffer write mask settings when clearing
a buffer with Clear. Also note that in the actual hardware environment, if you clear the stencil buffer
you must also clear the depth buffer. In other words, if you specify STENCIL_BUFFER_BIT to the
mask argument, you must specify DEPTH_BUFFER_BIT as well.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 141 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

7.14 BlendFuncSeparate
The standard OpenGL ES specifications do not allow dstRGB or dstAlpha to be set to
SRC_ALPHA_SATURATE, but DMPGL 2.0 allows this setting, although only with the drivers for the
actual hardware. You cannot specify this setting in the PICA on Desktop (POD) environment.

7.15 Viewport
The DMPGL 2.0 implementation of this function does not support negative values for the x or y
arguments. An INVALID_VALUE error is generated if a negative value is set.

7.16 Dithering
DMPGL 2.0 does not support any of the dithering-related specifications in standard OpenGL ES.

7.17 BufferData
The DMPGL 2.0 implementation of this function only supports STATIC_DRAW for usage.

7.18 Vertex Buffers
When vertex data is rendered using a buffer object with BindBuffer or BufferData, some
hardware restrictions apply to the arrangement of the vertex data set by VertexAttribPointer. If
there is a conflict with these restrictions, an INVALID_OPERATION error is generated when
DrawArrays or DrawElements is called. The vertex attributes and vertex indices used by a single
draw operation cannot mix vertex data that uses buffer objects with vertex data that does not use
buffer objects. An INVALID_OPERATION error is generated if they are mixed together. The following
sections explain the restrictions on vertex data arrangement.

7.18.1 Restriction 1

Each vertex attribute must be aligned to a data length equal to the size of its own type. The following
vertex data structure is explained as an example.

Code 7-5 Sample Vertex Data Structure (Padding for Alignment)
struct tagVertex

{

 GLbyte color[3];

 GLbyte padding1[1]; // The next attribute is 2-byte aligned

 GLshort position[3];

 GLbyte padding2[2]; // The next attribute is 4-byte aligned

 GLfloat normal[3];

};

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 142  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

In Code 7-5, position must be 2-byte aligned and normal must be 4-byte aligned. padding1 and
padding2 are normally unnecessary because the compiler automatically adds padding.

7.18.2 Restriction 2

The stride of each vertex attribute must be a multiple of the size of the largest attribute type included
in the same vertex attribute structure. The following vertex data structure is explained as an example.

Code 7-6 Sample Vertex Data Structure (Padding for Stride)
struct tagVertex

{

 GLfloat position[3];

 GLbyte color[3];

 GLbyte padding[1];

} vertexArray[VERTEX_COUNT];

In Code 7-6, sizeof(vertexArray[0]) must be a multiple of 4 bytes, the size of the largest type
GLfloat. The padding is normally unnecessary because the compiler automatically adds padding.

7.18.3 Restriction 3

If you add more padding at the end of a vertex attribute than the minimum required amount satisfying
conditions 1 and 2, the next vertex attribute must be placed not at the nearest 4-byte boundary
following the end of the first vertex attribute but at one of the 4-byte boundaries following that.

The following vertex data structure is explained as an example.

Code 7-7 Sample Vertex Data Structure (Not Enough Extra Padding)
struct tagVertex

{

 GLshort position[3];

 GLshort extraPadding;

 GLshort color[4];

};

In Code 7-7, extraPadding is unnecessary because restrictions 1 and 2 are satisfied even without
it. In this case, restriction 3 is not satisfied because color is placed at the closest 4-byte boundary to
the end of position (in other words, closest to position[2]). If this is rewritten as Code 7-8, it is
acceptable because color is placed at the next 4-byte boundary after the one that is closest to the
end of position.

Code 7-8 Sample Vertex Data Structure (Enough Extra Padding)
struct tagVertex

{

 GLshort position[3];

 GLshort extraPadding1;

DMPGL 2.0 Specifications

 2009-2011 Nintendo 143 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

 GLshort extraPadding2[2];

 GLshort color[4];

};

7.19 Getting the State
The OpenGL ES 2.0 specifications include functions to get the state, such as GetBooleanv,
GetFloatv, GetIntegerv, and IsEnabled, but DMPGL 2.0 does not have support for getting all
the states that can be obtained in OpenGl ES 2.0. The following states are not supported by DMPGL
2.0.

Table 7-3 Unsupported States

pname Description

LINE_WIDTH Unsupported

SAMPLE_ALPHA_TO_COVERAGE Unsupported

SAMPLE_COVERAGE Unsupported

SAMPLE_COVERAGE_VALUE Unsupported

SAMPLE_COVERAGE_INVERT Unsupported

STENCIL_BACK_FUNC Unsupported

STENCIL_BACK_VALUE_MASK Unsupported

STENCIL_BACK_REF Unsupported

STENCIL_BACK_FAIL Unsupported

STENCIL_BACK_PASS_DEPTH_FAIL Unsupported

STENCIL_BACK_PASS_DEPTH_PASS Unsupported

UNPACK_ALIGNMENT Unsupported

PACK_ALIGNMENT Unsupported

GENERATE_MIPMAP_HINT Unsupported

ALIASED_POINT_SIZE_RANGE Unsupported

ALIASED_LINE_WIDTH_RANGE Unsupported

SAMPLE_BUFFERS Unsupported

SAMPLES Unsupported

MAX_VERTEX_UNIFORM_VECTORS

Unsupported
For 4-element floating-point uniforms: 96
For Boolean uniforms: 15
For integer uniforms: 4

MAX_VARYING_VECTORS Unsupported

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 144  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

pname Description

MAX_VERTEX_TEXTURE_IMAGE_UNITS Unsupported

MAX_TEXTURE_IMAGE_UNITS Unsupported

MAX_FRAGMENT_UNIFORM_VECTORS Unsupported

7.20 Hint
Hint exists in OpenGL ES 2.0 but not in DMPGL 2.0.

7.21 CreateShader and CreateProgram
Shader objects generated by CreateShader and program objects generated by CreateProgram
share a namespace in OpenGL ES 2.0 but use different namespaces in DMPGL 2.0. Also, in DMPGL
2.0 program objects have a 13-bit namespace, so no more than 8191 names can be generated and
exist at a single time. Although no more than 8191 program objects can exist at the same time,
program objects can be created again after the DeleteProgram function is used to delete some
program objects.

7.22 StencilFuncSeparate
StencilFuncSeparate exists in OpenGL ES 2.0 but not in DMPGL 2.0.

7.23 StencilMaskSeparate
StencilMaskSeparate exists in OpenGL ES 2.0 but not in DMPGL 2.0.

7.24 StencilOpSeparate
StencilOpSeparate exists in OpenGL ES 2.0 but not in DMPGL 2.0.

7.25 UniformMatrix
Although you cannot set transpose to GL_TRUE in OpenGL ES 2.0, you can do so in DMPGL 2.0.
DMPGL 2.0 handles a vertex shader uniform as a BOOL, INT_VEC3, FLOAT, FLOAT_VEC2,
FLOAT_VEC3, or FLOAT_VEC4 value, or as an array of such values. UniformMatrix2fv,
UniformMatrix3fv, and UniformMatrix4fv are respectively used to set FLOAT_VEC2 array
data with two or more elements, FLOAT_VEC3 array data with three or more elements, and
FLOAT_VEC4 array data with four or more elements. These types of array data can also be set by
Uniform{234}f(v), so the following two function calls result in the same values.

• Uniform4fv(location, 4, value);
• UniformMatrix4fv(location, 1, GL_TRUE, value);

DMPGL 2.0 Specifications

 2009-2011 Nintendo 145 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

7.26 Location of Uniforms
The location obtained by GetUniformLocation is used to access that uniform's value with
Uniform and GetUniform. By adding an offset value to location, you can specify the elements to
access in a uniform that is an array. For example, you can increment location by 1 to access the
second element in an array uniform.

The location value is originally determined when LinkProgram is called, and the location value
differs for each program object. The Uniform function generates an error if the location is associated
with a program object that is not set as the current program. The GetUniform function generates an
error if the location is associated with a program object other than program. In DMPGL 2.0, there is
only one case where Uniform and GetUniform do not generate these errors: for reserved fragment
shader uniforms whose location value has been specified as 0xfff80000 using a bitwise OR.

7.27 PolygonOffset
DMPGL 2.0 does not support factor. It does support units, but since the vertex coordinate z value
after vertex processing is implemented as a 24-bit floating-point number, the effect specified by
units may not be fully realized depending on the polygon z value. If the z value is close to 1.0, the
units value only has an effect if it is a multiple of 128. Consequently, you can be sure the units
value will be effective if it is specified as a multiple of 128.

7.28 LinkProgram
In DMPGL 2.0, LinkProgram fails if more than 2048 uniforms for vertex shader objects and
geometry shader objects are linked to a program object.

7.29 Functions to Set or Get Multiple Uniforms at Once
DMPGL 2.0 supports setting or getting multiple uniforms at once.

Code 7-9 UniformsDMP
void UniformsDMP(uint n, int* locations, sizei* counts, const uint* value);

This function sets multiple uniform values for the current program. n specifies the number of uniforms
to set. locations specifies a pointer to an array holding the locations of the n uniforms. counts
specifies a pointer to an array holding the number of elements in each of the n uniforms. This
argument correlates to the count argument of the Uniform{1234}fv functions. In each element of
counts, specify the number of elements in the array to set (for array-type uniforms), or for non-array
uniforms, specify 1. value specifies a pointer to an array holding the values to which the uniforms
will be set. Each uniform might have a different number of data values, so the array indices for value
might not match those for locations and counts. With this function, you can set uniforms that
have a mix of float and int data types. When specifying a float uniform, the corresponding
value element holds the float data as 32 bits. This function performs no error checking. Specifying
invalid values for any of the arguments will cause unstable operation.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 146  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

The following function can be used to get multiple uniform vales that have been previously set.

Code 7-10 GetUniformsDMP
void GetUniformsDMP(

 uint program, uint n, int* locations, sizei* counts, uint* params);

program specifies the program object for the uniforms to get. n specifies the number of uniforms to
get. locations specifies a pointer to an array holding the locations of the n uniforms. counts
specifies a pointer to an array holding the number of elements in each of the n uniforms. In each
element of counts, specify the number of elements in the array to set (for array-type uniforms), or for
non-array uniforms, specify 1. params specifies a pointer to an array that will hold the values
obtained from the uniforms. Each uniform might have a different number of data values, so the array
indices for params might not match those for locations and counts. With this function, you can
get uniforms that have a mix of float and int data types. When getting a float uniform, the
corresponding params element holds the float data as 32 bits. This function performs no error
checking. Specifying invalid values for any of the arguments will cause unstable operation.

7.30 DepthRange
In DMPGL 2.0, the relationship between window coordinate depth values Zw and normalized device
coordinate depth values Zd is expressed by the following equation. This equation differs from the
equation used in the OpenGL ES 1.1 specifications. (See section 2.15 Coordinate Systems.)

Equation 7-1 Relationship Between Zw and Zd

ZdnearfarnearZw ×−−=)(

When the reserved uniform variable dmp_FragOperation.wScale is set to some value other than
0.0, the depth values indicated by the near and far arguments to DepthRange are ignored. (See
section 6.9 w Buffer.)

7.31 GetError
Use GetError to get the DMPGL error codes. In the actual hardware environment, the DMP-specific
error ERROR_COMMANDBUFFER_FULL_DMP is generated when the 3D command buffer overflows or
when it is unspecified. An ERROR_COMMANDREQUEST_FULL_DMP error is generated when the
command request overflows or is not specified.

The DMPGL API may call the system API internally, in which case errors specific to the system API
may be generated.

For details on command list objects, 3D command buffers, and command requests, see the DMPGL
2.0 System API Specifications.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 147 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

7.32 Obtaining Object Addresses
In the actual hardware environment, it is possible to obtain the address of the data regions allocated
for texture objects, vertex buffer objects, and render buffer objects.

• To get the address of a texture, bind the texture object and then call GetTexParameteriv with the
pname argument set to TEXTURE_DATA_ADDR_DMP.

• To get the address of a vertex buffer, bind the vertex buffer object and then call
GetBufferParameteriv with the pname argument set to BUFFER_DATA_ADDR_DMP.

• To get the address of a render buffer, call GetRenderbufferParameteriv with the pname
argument set to RENDERBUFFER_DATA_ADDR_DMP.

In the PICA on Desktop environment, calling these functions with these arguments will generate an
error. All addresses are obtained from a region that PICA accesses directly. The addresses in the
"copy region" generated by the DMPGL driver will not be obtained.

7.33 Depth Information Textures
The DMPGL environment provides a feature to use a texture storing a depth value. Texture data can
also be created based on data from reading the rendered depth buffer using the ReadPixels
function, but this section describes a different method.

7.33.1 Rendering Depth Information to Textures

With DMPGL, a texture can be attached to a framebuffer’s depth attachment point. In other words,
depth information can be rendered to a texture. Only textures in certain formats can be attached to a
depth attachment point. The format of the depth information depends on the format of the texture to
attach. The table below gives the texture formats, correlating depth buffer formats, and the depth
information stored in each texture component.

Table 7-4 Texture Formats and the Corresponding Depth Buffer Formats

Texture Format Texture Type Depth Buffer Format Description of Each
Component

RGBA
RGBA_NATIVE_DMP

UNSIGNED_BYTE DEPTH24_STENCIL8_EXT R: 8-bit stencil value
G: 24-bit depth value, bits
[23:16]
B: 24-bit depth value, bits
[15:8]
A: 24-bit depth value, bits [7:0]

RGB
RGB_NATIVE_DMP

UNSIGNED_BYTE DEPTH_COMPONENT24_OES R: 24-bit depth value, bits
[23:16]
G: 24-bit depth value, bits
[15:8]
B: 24-bit depth value, bits [7:0]

HILO8_DMP
HILO8_DMP_NATIVE_DMP

UNSIGNED_BYTE DEPTH_COMPONENT16 R: 16-bit depth value, bits
[15:8]
G: 16-bit depth value, bits [7:0]

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 148  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

The textures of the formats listed above can be attached by calling the FramebufferTexture2D
function, specifying DEPTH_ATTACHMENT for the attachment argument. The texture format RGBA
values are used in a format that includes stencil values, so FramebufferTexture2D can also be
called specifying DEPTH_STENCIL_ATTACHMENT for attachment, but the effect is the same.

7.33.2 Copying to a Texture from a Depth Buffer

With DMPGL, you can use the current depth buffer by copying it to a texture. Call the
CopyTexImage2D or CopyTexSubImage2D functions with the depth stencil copy feature enabled to
copy a depth buffer to a texture. Call Enable specifying DEPTH_STENCIL_COPY_DMP to enable the
depth stencil copy feature, and call Disable specifying DEPTH_STENCIL_COPY_DMP to disable the
feature. Calling IsEnabled specifying DEPTH_STENCIL_COPY_DMP will return TRUE if the depth
stencil copy feature is enabled, and FALSE if disabled.

The format of the texture being copied to is determined by the format of the current depth buffer.
Format conversion at time of copying is not supported. The correlation between the format of the
current depth buffer and the format of the texture being copied to is the same as shown in Table 7-4.
For instance, if the format of the current depth buffer is DEPTH24_STENCIL8_EXT, then the
internalformat argument to the CopyTexImage2D function must be either RGBA or
RGBA_NATIVE_DMP. (Both RGBA and RGBA_NATIVE_DMP have the same effect.) When the texture
format specified for internalformat does not correspond to the current depth buffer format, the
call to CopyTexImage2D will generate an INVALID_ENUM error. When CopyTexSubImage2D is
called on a texture object that has a texture format that does not correspond to the current depth
buffer format, the function call will generate an INVALID_OPERATION error.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 149 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Appendix A DMPGL 2.0 Functions
The following functions exist in OpenGL ES 2.0 but not in DMPGL 2.0.

• CompileShader
• CompressedTexSubImage2D
• GenerateMipmap
• GetProgramInfoLog
• GetShaderInfoLog
• GetShaderPrecisionFormat
• GetShaderSource
• Hint
• LineWidth
• PixelStorei
• ReleaseShaderCompiler
• SampleCoverage
• ShaderSource
• StencilFuncSeparate
• StencilMaskSeparate
• StencilOpSeparate
• TexSubImage2D

The following table gives a list of functions that are supported in DMPGL 2.0, but with limited features.

Table A-1 Feature-Limited Functions

Function Name Implementation

BufferData Only STATIC_DRAW is supported for usage.

Clear Scissoring is not applied.

CopyTexImage2D x and y must be multiples of 8. width and height must be powers of 2.

CopyTexSubImage2D x, y, width, and height must be multiples of 8.

CreateProgram See section 7.21 CreateShader and CreateProgram. This uses a 13-bit
namespace.

DrawArrays POINT, LINES, LINE_STRIP, and LINE_LOOP cannot be specified.

DrawElements POINT, LINES, LINE_STRIP, and LINE_LOOP cannot be specified.

PolygonOffset factor is not supported.

RenderbufferStorage STENCIL_INDEX8 cannot be used in the actual hardware environment but
DEPTH_COMPONENT24_STENCIL_INDEX8_DMP is supported.

ShaderBinary See Chapter 3 DMP Shaders.

TexImage2D width and height must be powers of 2.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 150  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Function Name Implementation

VertexAttribPointer
normalize cannot be used.
FIXED and UNSIGNED_SHORT cannot be used for type.

Viewport x and y must be 0 or greater.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 151 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Appendix B Uniform State Tables
This appendix lists uniform constants that are reserved by program objects in DMPGL 2.0. Uniform
Name is the name specified to the GetUniformLocation function. Type is the type of the
corresponding uniform and conforms to the descriptions in the GL ES Shading Language Version 1.0
specifications. Values & Initial Value indicates the values that can be specified for the corresponding
uniform as well as the default values.

Table B-1 Texture Environment State Uniforms (i = 0, 1, 2)

Uniform Name Type Values & Initial Value Description

dmp_TexEnv[i]
.combineRgb

int

• REPLACE (default)
• MODULATE
• ADD
• ADD_SIGNED
• INTERPOLATE
• SUBTRACT
• DOT3_RGB
• DOT3_RGBA
• ADD_MULT_DMP
• MULT_ADD_DMP

Texture combiner functions for
colors

dmp_TexEnv[i]
.combineAlpha int

• REPLACE (default)
• MODULATE
• ADD
• ADD_SIGNED
• INTERPOLATE
• SUBTRACT
• DOT3_RGBA
• ADD_MULT_DMP
• MULT_ADD_DMP

Texture combiner functions for
alpha values

dmp_TexEnv[0]
.srcRgb

ivec3

• TEXTURE0
• TEXTURE1
• TEXTURE2
• TEXTURE3
• CONSTANT (default)
• PRIMARY_COLOR
• FRAGMENT_PRIMARY_COLOR_DMP
• FRAGMENT_SECONDARY_COLOR_DMP

Color input to texture combiner 0

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 152  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Uniform Name Type Values & Initial Value Description

dmp_TexEnv[i]
.srcRgb

(i is nonzero)
ivec3

• TEXTURE0
• TEXTURE1
• TEXTURE2
• TEXTURE3
• CONSTANT
• PRIMARY_COLOR
• PREVIOUS (default)
• PREVIOUS_BUFFER_DMP
• FRAGMENT_PRIMARY_COLOR_DMP
• FRAGMENT_SECONDARY_COLOR_DMP

Color input to the texture
combiners (i is nonzero).
There must be at least one input of
PREVIOUS or CONSTANT.

dmp_TexEnv[0]
.srcAlpha ivec3

• TEXTURE0
• TEXTURE1
• TEXTURE2
• TEXTURE3
• CONSTANT (default)
• PRIMARY_COLOR
• FRAGMENT_PRIMARY_COLOR_DMP
• FRAGMENT_SECONDARY_COLOR_DMP

Alpha input to texture combiner 0

dmp_TexEnv[i]
.srcAlpha

(i is nonzero)
ivec3

• TEXTURE0
• TEXTURE1
• TEXTURE2
• TEXTURE3
• CONSTANT
• PRIMARY_COLOR
• PREVIOUS (default)
• PREVIOUS_BUFFER_DMP
• FRAGMENT_PRIMARY_COLOR_DMP
• FRAGMENT_SECONDARY_COLOR_DMP

Alpha input to the texture
combiners (i is nonzero)
There must be at least one input of
PREVIOUS or CONSTANT.

dmp_TexEnv[i]
.operandRgb

ivec3

• SRC_COLOR (default)
• ONE_MINUS_SRC_COLOR
• SRC_ALPHA
• ONE_MINUS_SRC_ALPHA
• SRC_R_DMP
• ONE_MINUS_SRC_R_DMP
• SRC_G_DMP
• ONE_MINUS_SRC_G_DMP
• SRC_B_DMP
• ONE_MINUS_SRC_B_DMP

Color operands for the texture
combiners.

DMPGL 2.0 Specifications

 2009-2011 Nintendo 153 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Uniform Name Type Values & Initial Value Description

dmp_TexEnv[i]
.operandAlpha

ivec3

• SRC_ALPHA (default)
• ONE_MINUS_SRC_ALPHA
• SRC_R_DMP
• ONE_MINUS_SRC_R_DMP
• SRC_G_DMP
• ONE_MINUS_SRC_G_DMP
• SRC_B_DMP
• ONE_MINUS_SRC_B_DMP

Alpha operands for the texture
combiners.

dmp_TexEnv[i]
.bufferInput
(i = 1,2,3,4)

ivec2
• PREVIOUS
• PREVIOUS_BUFFER_DMP (default) Combiner buffer input.

dmp_TexEnv[i]
.scaleRgb float

• 1.0 (default)
• 2.0
• 4.0

Scaling factor for the output colors
from the texture combiners.

dmp_TexEnv[i]
.scaleAlpha

float

• 1.0 (default)
• 2.0
• 4.0

Scaling factors for the output alpha
from the texture combiners.

dmp_TexEnv[i]
.constRgba vec4

Each component is in the range [0.0,1.0]
Default: (0,0,0,0)

The CONSTANT input values to the
texture combiners.

dmp_TexEnv[0]
.bufferColor

vec4
Each component is in the range [0.0,1.0]
Default: (0,0,0,0)

Combiner buffer color.

Table B-2 Fragment Lighting State Uniforms (i = 0, 1, 2, 3, 4, 5, 6, 7)

Uniform Name Type Values & Initial Value Description

dmp_FragmentLighting
.enabled

bool
• TRUE
• FALSE (default)

Enables or disables
fragment lighting

dmp_FragmentLighting
.ambient vec4

Each component is in the range [0.0,1.0]
(0.2, 0.2, 0.2, 1.0) by default

Global ambient
components

dmp_FragmentMaterial
.sampler{D0,D1,RR,RG,RB,FR} int

[0,31]
Undefined by default

Lookup table numbers
for the various factors
in the lighting equation

dmp_FragmentMaterial
.emission vec4

Each component is in the range [0.0,1.0]
(0.0, 0.0, 0.0, 1.0) by default

The material emission
components

dmp_FragmentMaterial
.ambient vec4

Each component is in the range [0.0,1.0]
(0.2, 0.2, 0.2, 1.0) by default

The material ambient
components

dmp_FragmentMaterial
.diffuse vec4

Each component is in the range [0.0,1.0]
(0.8, 0.8, 0.8, 1.0) by default

The material diffuse
components

dmp_FragmentMaterial
.specular0 vec4

Each component is in the range [0.0,1.0]
(0.0, 0.0, 0.0, 1.0) by default

The first specular
components of a
material

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 154  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Uniform Name Type Values & Initial Value Description

dmp_FragmentMaterial
.specular1 vec4

Each component is in the range [0.0,1.0]
(0.0, 0.0, 0.0, 1.0) by default

The second specular
components of a
material

dmp_FragmentLightSource[i]
.enabled bool

• TRUE
• FALSE (default)

Enables or disables
the light at index i

dmp_FragmentLightSource[i]
.ambient vec4

Each component is in the range [0.0,1.0]
(0.0, 0.0, 0.0, 0.0) by default

Ambient components
of the light at index i

dmp_FragmentLightSource[i]
.diffuse

vec4

Each component is in the range [0.0,1.0]
(0.0, 0.0, 0.0, 0.0) by default
However, only light 0 is (1.0, 1.0, 1.0,
1.0)

Diffuse components of
the light at index i

dmp_FragmentLightSource[i]
.specular0 vec4

Each component is in the range [0.0,1.0]
(0.0, 0.0, 0.0, 0.0) by default
However, only light 0 is (1.0, 1.0, 1.0,
1.0)

First specular
components of the
light at index i

dmp_FragmentLightSource[i]
.specular1

vec4
Each component is in the range [0.0,1.0]
(0.0, 0.0, 0.0, 0.0) by default

Second specular
components of the
light at index i

dmp_FragmentLightSource[i]
.position vec4

Unspecified range
(0.0, 0.0, 1.0, 0.0) by default

The light direction
vector or light position
vector of the light at
index i

dmp_FragmentLightSource[i]
.spotDirection

vec3
Unspecified range
(0.0, 0.0, -1.0) by default

Spotlight direction
vector of the light at
index i

dmp_FragmentLightSource[i]
.shadowed bool

• TRUE
• FALSE (default)

Enables or disables
shadows for the light
at index i

dmp_FragmentLightSource[i]
.geomFactor0

bool
• TRUE
• FALSE (default)

Enables or disables
the first geometry
factor for the light at
index i

dmp_FragmentLightSource[i]
.geomFactor1 bool

• TRUE
• FALSE (default)

Enables or disables
the second geometry
factor for the light at
index i

dmp_FragmentLightSource[i]
.twoSideDiffuse bool

• TRUE
• FALSE (default)

Enables or disables
two-sided diffuse
lighting
If input value to lookup
table is negative, also
clamps value to 0 or
uses absolute value

dmp_FragmentLightSource[i]
.spotEnabled bool

• TRUE
• FALSE (default)

Enables or disables
spotlights

DMPGL 2.0 Specifications

 2009-2011 Nintendo 155 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Uniform Name Type Values & Initial Value Description

dmp_FragmentLightSource[i]
.distanceAttenuationEnabled

bool
• TRUE
• FALSE (default)

Enables or disables
distance attenuation

dmp_FragmentLightSource[i]
.distanceAttenuationBias float

Unspecified range
0.0 by default

Bias on input values
for distance
attenuation lookup
tables

dmp_FragmentLightSource[i]
.distanceAttenuationScale float

Unspecified range
1.0 by default

Scaling factor on input
values for distance
attenuation lookup
tables

dmp_FragmentLightSource[i]
.samplerSP int

[0,31]
Undefined by default

Spotlight lookup table
number

dmp_FragmentLightSource[i]
.samplerDA int

[0,31]
Undefined by default

Distance attenuation
lookup table number

dmp_LightEnv
.absLutInput{D0,D1,RR,RG,RB
,SP,FR}

bool
• TRUE
• FALSE (default)

Layouts of lookup
tables for the various
factors are [0, 1.0]/[-
1.0, 1.0]

dmp_LightEnv
.lutInput{D0,D1,SP} int

• LIGHT_ENV_NH_DMP (default)
• LIGHT_ENV_VH_DMP
• LIGHT_ENV_NV_DMP
• LIGHT_ENV_LN_DMP
• LIGHT_ENV_SP_DMP
• LIGHT_ENV_CP_DMP

Lookup table input
values for the various
factors

dmp_LightEnv
.lutInput{RR,RG,RB,FR}

int

• LIGHT_ENV_NH_DMP (default)
• LIGHT_ENV_VH_DMP
• LIGHT_ENV_NV_DMP
• LIGHT_ENV_LN_DMP

Lookup table input
values for the various
factors

dmp_LightEnv
.lutScale{D0,D1,RR,RG,RB,SP
,FR}

float

• 0.25
• 0.50
• 1.0 (default)
• 2.0
• 4.0
• 8.0

Scaling factor on the
lookup table output
values for the various
factors

dmp_LightEnv
.shadowSelector

int
TEXTURE{0,1,2,3}

TEXTURE0 by default
Texture unit to use for
shadows

dmp_LightEnv
.bumpSelector int

TEXTURE{0,1,2,3}

TEXTURE0 by default
Texture unit to use for
bump mapping

dmp_LightEnv
.bumpMode

int

• LIGHT_ENV_BUMP_NOT_USED_DMP
(default)

• LIGHT_ENV_BUMP_AS_BUMP_DMP
• LIGHT_ENV_BUMP_AS_TANG_DMP

Perturbation mode for
normals or tangents

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 156  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Uniform Name Type Values & Initial Value Description

dmp_LightEnv
.bumpRenorm bool

• TRUE
• FALSE (default)

Enables or disables
recalculation of a
normal vector's third
component

dmp_LightEnv
.config

int

• LIGHT_ENV_LAYER_CONFIG0_DMP
(default)

• LIGHT_ENV_LAYER_CONFIG1_DMP
• LIGHT_ENV_LAYER_CONFIG2_DMP
• LIGHT_ENV_LAYER_CONFIG3_DMP
• LIGHT_ENV_LAYER_CONFIG4_DMP
• LIGHT_ENV_LAYER_CONFIG5_DMP
• LIGHT_ENV_LAYER_CONFIG6_DMP
• LIGHT_ENV_LAYER_CONFIG7_DMP

Per-factor
configuration

dmp_LightEnv
.invertShadow

bool
• TRUE
• FALSE (default)

Enables or disables
inversion (flipping) of
the shadow
attenuation item

dmp_LightEnv
.shadowPrimary

bool
• TRUE
• FALSE (default)

Enables or disables
shadow contribution to
the primary color

dmp_LightEnv
.shadowSecondary

bool
• TRUE
• FALSE (default)

Enables or disables
shadow contribution to
the secondary color

dmp_LightEnv
.shadowAlpha bool

• TRUE
• FALSE (default)

Enables or disables
shadow contribution to
the alpha value

dmp_LightEnv
.fresnelSelector

int

• LIGHT_ENV_NO_FRESNEL_DMP
(default)

• LIGHT_ENV_PRI_ALPHA_FRESNEL_
DMP

• LIGHT_ENV_SEC_ALPHA_FRESNEL_
DMP

• LIGHT_ENV_PRI_SEC_ALPHA_FRES
NEL_DMP

Fresnel factor output
mode

dmp_LightEnv
.clampHighlights bool

• TRUE (default)
• FALSE

Enables or disables
clamping on the
specular color

dmp_LightEnv
.lutEnabledD0

bool
• TRUE
• FALSE (default)

Enables or disables
the application of
lookup table output on
the first distribution

dmp_LightEnv
.lutEnabledD1

bool
• TRUE
• FALSE (default)

Enables or disables
the application of
lookup table output on
the second distribution

DMPGL 2.0 Specifications

 2009-2011 Nintendo 157 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Uniform Name Type Values & Initial Value Description

dmp_LightEnv
.lutEnabledRefl bool

• TRUE
• FALSE (default)

Enables or disables
the application of
lookup table output on
the reflection factor

Table B-3 Texture State Uniforms

Uniform Name Type Values & Initial Value Description

dmp_Texture[0]
.perspectiveShadow

bool
• TRUE (default)
• FALSE

Enables or disables perspective
projections with texture coordinate
generation for shadow texture access

dmp_Texture[0]
.shadowZScale

float
A value larger than 0.0
Undefined by default

Scaling factor on the evaluated
derivatives of the depth values in the
screen space of the light source's
coordinate system

dmp_Texture[0]
.shadowZBias

float
Unspecified range
0.0 by default

The bias value to subtract from the
distance to the light source

dmp_Texture[0]
.samplerType int

• FALSE (default)
• TEXTURE_2D
• TEXTURE_CUBE_MAP
• TEXTURE_SHADOW_2D_DMP
• TEXTURE_SHADOW_CUBE_DMP
• TEXTURE_PROJECTION_DMP

Sampling mode for texture unit 0

dmp_Texture[{1,2}]
.samplerType int

• FALSE (default)
• TEXTURE_2D

Sampling mode for texture units 1 and
2

dmp_Texture[3]
.samplerType int

• FALSE (default)
• TEXTURE_PROCEDURAL_DMP

Sampling mode for texture unit 3

dmp_Texture[2]
.texcoord int

• TEXTURE1
• TEXTURE2 (default)

Selects the input coordinates to texture
unit 2

dmp_Texture[3]
.texcoord int

• TEXTURE0 (default)
• TEXTURE1
• TEXTURE2

Selects the input coordinates to texture
unit 3

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 158  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Table B-4 Procedural Texture State Uniforms

Uniform Name Type Values & Initial Value Description

dmp_Texture[3]
.ptRgbMap int

• PROCTEX_U_DMP (default)
• PROCTEX_V_DMP
• PROCTEX_U2_DMP
• PROCTEX_V2_DMP
• PROCTEX_ADD_DMP
• PROCTEX_ADD2_DMP
• PROCTEX_ADDSQRT2_DMP
• PROCTEX_MIN_DMP
• PROCTEX_MAX_DMP
• PROCTEX_RMAX_DMP

Selects the function used for procedural
calculations

dmp_Texture[3]
.ptAlphaMap

int

• PROCTEX_U_DMP (default)
• PROCTEX_V_DMP
• PROCTEX_U2_DMP
• PROCTEX_V2_DMP
• PROCTEX_ADD_DMP
• PROCTEX_ADD2_DMP
• PROCTEX_ADDSQRT2_DMP
• PROCTEX_MIN_DMP
• PROCTEX_MAX_DMP
• PROCTEX_RMAX_DMP

Selects the function used for procedural
calculations

dmp_Texture[3]
.ptAlphaSeparate bool

• TRUE
• FALSE (default)

Selects between shared-coordinate
mode and separate-coordinate mode

dmp_Texture[3]
.ptClampU

int

• SYMMETRICAL_REPEAT_DMP
• MIRRORED_REPEAT
• PULSE_DMP
• CLAMP_TO_EDGE (default)
• CLAMP_TO_ZERO_DMP

Clamping method

dmp_Texture[3]
.ptClampV int

• SYMMETRICAL_REPEAT_DMP
• MIRRORED_REPEAT
• PULSE_DMP
• CLAMP_TO_EDGE (default)
• CLAMP_TO_ZERO_DMP

Clamping method

dmp_Texture[3]
.ptShiftU int

• EVEN_DMP
• ODD_DMP
• NONE_DMP (default)

Coordinate shift method

dmp_Texture[3]
.ptShiftV

int

• EVEN_DMP
• ODD_DMP
• NONE_DMP (default)

Coordinate shift method

DMPGL 2.0 Specifications

 2009-2011 Nintendo 159 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Uniform Name Type Values & Initial Value Description

dmp_Texture[3]
.ptMinFilter

int

• NEAREST
• LINEAR (default)
• NEAREST_MIPMAP_NEAREST
• NEAREST_MIPMAP_LINEAR
• LINEAR_MIPMAP_NEAREST
• LINEAR_MIPMAP_LINEAR

MinFilter method

dmp_Texture[3]
.ptTexWidth

int
[0,128]
0 by default

Lookup table width

dmp_Texture[3]
.ptTexOffset

int
[0,128]
0 by default

Color lookup table offset

dmp_Texture[3]
.ptTexBias

float
0.0 or greater
0.5 by default

LOD bias

dmp_Texture[3]
.ptNoiseEnable bool

• TRUE
• FALSE (default) Enables or disables noise

dmp_Texture[3]
.ptNoiseU

vec3
Unspecified range
(0.0, 0.0, 0.0) by default

The frequency, amplitude, and phase of
noise

dmp_Texture[3]
.ptNoiseV vec3

Unspecified range
(0.0, 0.0, 0.0) by default

The frequency, amplitude, and phase of
noise

dmp_Texture[3]
.ptSamplerRgbMap int

[0,31]
Undefined by default

Lookup table number for the color
function lookup table used by
procedural calculations

dmp_Texture[3]
.ptSamplerAlphaMap

int
[0,31]
Undefined by default

Lookup table number for the alpha
function lookup table used by
procedural calculations

dmp_Texture[3]
.ptSamplerNoiseMap

int
[0,31]
Undefined by default

Lookup table number for noise
modulation

dmp_Texture[3]
.ptSamplerR

int
[0,31]
Undefined by default

R component lookup table number

dmp_Texture[3]
.ptSamplerG int

[0,31]
Undefined by default

G component lookup table number

dmp_Texture[3]
.ptSamplerB int

[0,31]
Undefined by default

B component lookup table number

dmp_Texture[3]
.ptSamplerA int

[0,31]
Undefined by default

A component lookup table number

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 160  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Table B-5 Gas State Uniforms

Uniform Name Type Values & Initial Value Description

dmp_Gas
.lightXY vec3

Each component is in the range [0.0,
1.0]
(0.0, 0.0, 0.0) by default

Attenuation for the minimum
intensity, maximum intensity, and
density, all controlling planar
shading

dmp_Gas
.lightZ

vec4
Each component is in the range [0.0,
1.0]
(0.0, 0.0, 0.0, 0.0) by default

Attenuation for the minimum
intensity, maximum intensity, and
density, all controlling view
shading; also, the light direction
along the z axis in eye
coordinates

dmp_Gas
.deltaZ

float
Unrestricted range
10.0 by default

Scaling factor given to the
calculated distance in the view-
vector direction while rendering
the accumulation pass

dmp_Gas
.autoAcc

bool
• TRUE (default)
• FALSE

Enables or disables automatic
calculation of the maximum
density in the additive blending
results

dmp_Gas
.accMax

float
0.0 or greater
1.0 by default

Inverse of the density when the
maximum density is given in the
additive blending results

dmp_Gas
.shadingDensitySrc

int
• GAS_PLAIN_DENSITY_DMP (default)
• GAS_DEPTH_DENSITY_DMP

Selects the density used for
shading

dmp_Gas
.colorLutInput int

• GAS_DENSITY_DMP
• GAS_LIGHT_FACTOR_DMP (default)

Selects either the density or
shading intensity for input to the
shading lookup table

dmp_Gas
.samplerT{R,G,B} int

[0,31]
Undefined by default

Shading lookup tables

dmp_Gas
.attenuation float

0.0 or greater
1.0 by default

Density attenuation coefficients
for fog table input values

Table B-6 Fog State Uniforms

Uniform Name Type Values & Initial Value Description

dmp_Fog.mode int

• FALSE (default)
• FOG
• GAS_DMP

Fog mode

dmp_Fog.color vec3
Each component is in the range [0.0,
1.0]
(0, 0, 0) by default

Fog color

dmp_Fog.zFlip bool
• TRUE
• FALSE (default)

Enables or disables inversion
(flipping) of fog input values

DMPGL 2.0 Specifications

 2009-2011 Nintendo 161 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Uniform Name Type Values & Initial Value Description

dmp_Fog.sampler int
[0,31]
Undefined by default

Fog lookup table number

Table B-7 Per-Fragment Operations State Uniforms

Uniform Name Type Values & Initial Value Description

dmp_FragOperation
.enableClippingPlane bool

• TRUE
• FALSE (default)

Enables or disables clipping by a
clipping plane

dmp_FragOperation
.clippingPlane

vec4
Unrestricted range
(0.0, 0.0, 0.0, 0.0) by default

Clipping plane

dmp_FragOperation
.enableAlphaTest bool

• TRUE
• FALSE (default) Enables or disables alpha tests

dmp_FragOperation
.alphaRefValue

float
[0.0, 1.0]
0.0 by default

Alpha test reference value

dmp_FragOperation
.alphaTestFunc int

• NEVER
• ALWAYS (default)
• LESS
• LEQUAL
• EQUAL
• GEQUAL
• GREATER
• NOTEQUAL

Alpha test comparison function

dmp_FragOperation
.mode int

• FRAGOP_MODE_GL_DMP (default)
• FRAGOP_MODE_SHADOW_DMP
• FRAGOP_MODE_GAS_ACC_DMP

Per-fragment operations mode

dmp_FragOperation
.wScale

float
Unspecified range
0.0 by default

This enables or disables the W
buffer and is the scaling factor
applied to depth values

dmp_FragOperation
.penumbraScale float

Unspecified range
0.0 by default

Scaling factor applied when
calculating the "hardness" of a
penumbra

dmp_FragOperation
.penumbraBias float

Unspecified range
1.0 by default

Bias applied when calculating the
"hardness" of a penumbra

Table B-8 Point State Uniforms

Uniform Name Type Value & Initial Value Description

dmp_Point
.viewport vec2

Unspecified range
Undefined by default

Specifies the viewport
(1 / viewport.width,
1 / viewport.height)

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 162  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Uniform Name Type Value & Initial Value Description

dmp_Point
.distanceAttenuation bool

• TRUE
• FALSE
Undefined by default

Enables or disables DMP-specific
distance attenuation

Table B-9 Line State Uniforms

Uniform Name Type Value & Initial Value Description

dmp_Line.width vec4
Unspecified range
Undefined by default

Specifies the line width
(viewport width / line width,
viewport height / line width,
viewport width×viewport height,
2.f / line width)

Table B-10 Silhouette State Uniforms

Uniform Name Type Values & Initial Value Description

dmp_Silhouette
.width vec2

Each component is 0.0 or greater
Undefined by default

The separate scaling factors
for the x and y components of
normal vectors used during
silhouette rectangle
generation

dmp_Silhouette
.scaleByW bool

• TRUE
• FALSE
Undefined by default

Enables or disables
multiplication of the vertex's w
component with the x and y
components of the normal
vector during silhouette
rectangle generation

dmp_Silhouette
.color

vec4
Each component is in the range
[0.0, 1.0]
Undefined by default

Silhouette color

dmp_Silhouette
.frontFaceCCW

bool

• TRUE
• FALSE
Undefined by default

Front-facing setting

dmp_Silhouette
.acceptEmptyTriangles

bool

• TRUE
• FALSE
Undefined by default

Enables or disables silhouette
edge generation on open
edges

dmp_Silhouette
.openEdgeColor

vec4
Each component is in the range
[0.0, 1.0]
Undefined by default

The silhouette color of an
open edge

dmp_Silhouette
.openEdgeWidth

vec4
Unspecified range
Undefined by default

Width of the silhouette
rectangle on an open edge
(viewport width / silhouette
width, viewport height /
silhouette width, viewport
width×viewport height, 2.f /
silhouette width)

DMPGL 2.0 Specifications

 2009-2011 Nintendo 163 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

Uniform Name Type Values & Initial Value Description

dmp_Silhouette
.openEdgeDepthBias float

Unspecified range
Undefined by default

Bias applied to the depth
values of the silhouette
rectangle on an open edge

dmp_Silhouette
.openEdgeWidthScaleByW bool

• TRUE
• FALSE
Undefined by default

Enables or disables
multiplication of the vertex's w
component with the width of a
silhouette rectangle on an
open edge

dmp_Silhouette
.openEdgeDepthBiasScaleByW bool

• TRUE
• FALSE
Undefined by default

Enables or disables
multiplication of the vertex's w
component with the depth
value bias of a silhouette
rectangle on an open edge

Table B-11 Subdivision State Uniforms

Uniform Name Type Values & Initial Value Description

dmp_Subdivision
.level float

• 0
• 1
• 2
Undefined by default

Subdivision level

dmp_Subdivision
.fragmentLightingEnabled bool

• TRUE
• FALSE
Undefined by default

Whether to use the quaternion vertex
attribute

Table B-12 Particle System State Uniforms

Uniform Name Type Values & Initial Value Description

dmp_PartSys
.color

mat4
Each component is in the range [0.0,
1.0]
Undefined by default

Colors of the four control
points

dmp_PartSys
.aspect mat4

The particle size is 1.0 or greater
The alpha color is in the range [0.0,
1.0]
No range is specified for anything else
Undefined by default

The following values for the
four control points: (particle
size, texture coordinate
rotation angle, texture
coordinate scaling factor,
alpha color)

dmp_PartSys
.time

float
Unspecified range
Undefined by default

The current particle system
time

dmp_PartSys
.speed

float
A value larger than 0.0
Undefined by default

Particle movement speed

dmp_PartSys
.countMax

float
0.0 or greater
Undefined by default

One less than the generated
particle count

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 164  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

Uniform Name Type Values & Initial Value Description

dmp_PartSys
.randSeed vec4

Unspecified range
Undefined by default

The seed for randomizing the
current time and the x,y,z
coordinates of the control
points

dmp_PartSys
.randomCore vec4

Unspecified range
Undefined by default

(𝑎, 𝑏, 𝑚, 1/𝑚) in the random-
number function
𝑋𝑁+1 = (𝑎𝑋𝑁 + 𝑏)𝑚𝑜𝑑 𝑚

dmp_PartSys
.distanceAttenuation vec3

Each component is 0.0 or greater
Undefined by default

The distance attenuation
coefficients a, b, c for particles

dmp_PartSys
.viewport vec2

Unspecified range
Undefined by default

Specifies the viewport
(1 / viewport width, 1 /
viewport height)

dmp_PartSys
.pointSize

vec2
Each component is 0.0 or greater
Undefined by default

Specifies the maximum and
minimum particle size
(maximum size, minimum
size)

DMPGL 2.0 Specifications

 2009-2011 Nintendo 165 CTR-06-0005-001-C
CONFIDENTIAL Released: April 26, 2011

DMP and PICA are registered trademarks of Digital Media Professionals Inc.

All other company and product names in this document are the trademarks or registered trademarks of their respective companies.

 DMPGL 2.0 Specifications

CTR-06-0005-001-C 166  2009-2011 Nintendo
Released: April 26, 2011 CONFIDENTIAL

© 2009-2011 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

	1 DMPGL 2.0 Overview
	1.1 About This Document
	1.2 Structure of This Document
	1.3 Single-Thread Model
	1.4 Programmable Vertex Processing and Fixed Fragment Processing
	1.5 Creating Programmable Geometry
	1.6 Examples and Notations
	1.6.1 Showing Variables, Constants, Functions, and Reserved Uniforms
	1.6.2 Notation of Sets

	2 DMPGL 2.0 Pipeline
	2.1 Overview Figure for the DMPGL 2.0 Pipeline
	2.2 Vertex Input
	2.3 Vertex Processing
	2.4 Vertex Cache
	2.5 Geometry Creation
	2.6 Triangle Setup
	2.6.1 Triangle Construction
	2.6.2 Culling
	2.6.3 Clipping
	2.6.4 Window Coordinate Conversion

	2.7 Rasterization
	2.8 Texel Generation
	2.8.1 Texture-Coordinate Generation
	2.8.2 Address and LOD Generation
	2.8.3 Obtaining Texels
	2.8.4 Filtering

	2.9 Procedural Textures
	2.10 Fragment Lighting
	2.10.1 Vector Generation
	2.10.2 Dot Product Generation
	2.10.3 LUT Access
	2.10.4 Color Generation

	2.11 Texture Combiners
	2.12 Fog
	2.13 Per-Fragment Operations
	2.14 Framebuffer Operations
	2.14.1 Read Pixels
	2.14.2 Copy Pixels
	2.14.3 Render Textures
	2.14.4 Clear the Framebuffer

	2.15 Coordinate Systems

	3 DMP Shaders
	3.1 Reserved Uniforms
	3.2 Vertex Shaders
	3.3 Geometry Shaders
	3.4 Fragment Shaders

	4 Primitives
	4.1 Points
	4.1.1 How to Use Points
	4.1.2 Point Size
	4.1.3 Point Sprites
	4.1.4 Point Rendering Method
	4.1.5 Point Clipping
	4.1.6 Multisample Rendering
	4.1.7 List of Reserved Uniforms

	4.2 Lines
	4.2.1 How to Use Lines
	4.2.2 Line Width
	4.2.3 Line Rendering Method
	4.2.4 Multisample Rendering
	4.2.5 List of Reserved Uniforms

	4.3 Silhouettes
	4.3.1 How to Use Silhouettes
	4.3.2 Silhouette Primitives
	4.3.3 Method for Creating Silhouette Edges
	4.3.4 Vertex Shaders When Silhouettes Are in Use
	4.3.5 Silhouette Colors
	4.3.6 Front-Facing Settings
	4.3.7 Creating Silhouette Edges on Open Edges
	4.3.8 Specifying Multiple Strip Arrays
	4.3.9 List of Reserved Uniforms

	4.4 Subdivisions
	4.4.1 Catmull-ClarkSubdivision
	4.4.1.1 How to Use Catmull-Clark Subdivision
	4.4.1.2 Definition of Catmull-Clark Subdivision Patches
	4.4.1.3 Vertex Indices for Catmull-Clark Subdivision Patches

	4.4.2 Loop Subdivision
	4.4.2.1 How to Use Loop Subdivision
	4.4.2.2 Definition of a Loop Subdivision Patch
	4.4.2.3 Vertex Indices of a Loop Subdivision Patch

	4.4.3 How to Process Subdivisions
	4.4.4 List of Reserved Uniforms

	4.5 Particle Systems
	4.5.1 How to Use Particle Systems
	4.5.2 Input of Control Points
	4.5.3 Particle Colors
	4.5.4 Particle Size
	4.5.5 Generated Particle Count
	4.5.6 Particle Running Time
	4.5.7 Generating Random Values
	4.5.8 Texture Settings
	4.5.8.1 Usable Texture Units
	4.5.8.2 Texture Coordinates

	4.5.9 List of Reserved Uniforms
	4.5.10 Reserved Geometry Shaders

	4.6 Vertex State Collections
	4.6.1 Creating Vertex State Collections
	4.6.2 Binding Vertex State Collections
	4.6.3 Deleting Vertex State Collections

	5 Rasterization
	5.1 Texture Units
	5.1.1 Enabling Texture Units
	5.1.2 Specifying Texture Units
	5.1.3 Texture Image Specifications
	5.1.4 Copying From the Framebuffer
	5.1.5 Partial Texture Images
	5.1.6 Compressed Textures
	5.1.7 Lookup Tables
	5.1.7.1 Lookup Table Numbers
	5.1.7.2 Lookup Table Objects
	5.1.7.3 Setting the Content of a Lookup Table Object
	5.1.7.4 Partially Setting the Content of a Lookup Table Object
	5.1.7.5 Using Lookup Table Objects
	5.1.7.6 Getting Bound Lookup Table Objects

	5.1.8 Creating Textures
	5.1.9 Binding Textures
	5.1.10 Texture Parameters
	5.1.11 Input of Coordinates to Texture Units
	5.1.12 Loading Texture Mipmap Data
	5.1.13 Automatically Generating Texture Mipmap Data
	5.1.14 Texture Coordinate Precision
	5.1.15 Acquiring Texture Level Parameters

	5.2 Texture Combiners
	5.2.1 Overview
	5.2.2 Combiner Buffers
	5.2.3 Other Combiner Features
	5.2.4 List of Reserved Uniforms

	5.3 Texture Collections
	5.3.1 Creating Texture Collections
	5.3.2 Binding Texture Collections
	5.3.3 Deleting Texture Collections

	5.4 Native PICA Format
	5.4.1 Byte Order
	5.4.1.1 Byte Order for Uncompressed Textures
	5.4.1.2 Byte Order for Compressed Textures

	5.4.2 V-Flipping
	5.4.3 Addressing
	5.4.3.1 Addressing for Uncompressed Textures
	5.4.3.2 Addressing for Compressed Textures

	5.5 Early Depth Tests
	5.5.1 Overview
	5.5.2 Clear Value for the Early Depth Buffer
	5.5.3 Block Mode for Early Depth Tests
	5.5.4 Enabling and Disabling Early Depth Tests
	5.5.5 Setting the Comparison Function for Early Depth Tests
	5.5.6 Clearing the Early Depth Buffer
	5.5.7 Changing to and Recovering from Block-32 Mode

	6 Reserved Fragment Shaders
	6.1 Fragment Operations
	6.1.1 Switching Fragment Operations
	6.1.2 List of Reserved Uniforms

	6.2 Procedural Textures
	6.2.1 How to Use Procedural Textures
	6.2.2 Creating and Assigning Lookup Tables
	6.2.3 Random-Number Generation
	6.2.4 Clamping
	6.2.5 Mapping Calculations
	6.2.6 Lookup Tables for Mapping Calculations
	6.2.6.1 F Function Lookup Tables
	6.2.6.2 Color Lookup Tables

	6.2.7 List of Reserved Uniforms

	6.3 DMP Fragment Lighting
	6.3.1 Eye Coordinate System
	6.3.2 Primary and Secondary Colors
	6.3.3 Lookup Tables (LUTs)
	6.3.4 Geometry Factors
	6.3.5 Shadow Attenuation Terms
	6.3.6 Bump Mapping
	6.3.7 Fresnel Factors
	6.3.8 Spotlight Attenuation Term
	6.3.9 Distance Attenuation Term
	6.3.10 Texture Combiner Input
	6.3.11 List of Reserved Uniforms

	6.4 DMP Shadows
	6.4.1 DMP Shadow Overview
	6.4.2 Shadow Texture Units
	6.4.3 Shadow Reference Pass
	6.4.4 Cube-Map Shadow Filtering
	6.4.5 Shadow Accumulation Pass
	6.4.6 Attenuation Factors
	6.4.7 Shadow Artifacts
	6.4.8 Shadow Texture Format
	6.4.9 List of Reserved Uniforms

	6.5 Fog
	6.5.1 Enabling Fog
	6.5.2 Setting Lookup Table Content
	6.5.3 Lookup Table Input Values
	6.5.4 Specifying the Fog Color
	6.5.5 Fog Calculations
	6.5.6 Fog Z-Flipping
	6.5.7 List of Reserved Uniforms

	6.6 Gas
	6.6.1 Gas Textures
	6.6.2 Rendering Density Values
	6.6.2.1 Switching the Per-Fragment Operations
	6.6.2.2 Density-Rendering Mode

	6.6.3 Shading
	6.6.3.1 Switching the Fog Mode
	6.6.3.2 Fog Input
	6.6.3.3 Density Values Used for Shading
	6.6.3.4 Shading Lookup Tables
	6.6.3.5 Input to the Shading Lookup Tables
	6.6.3.6 RGB Shading Values
	6.6.3.7 Alpha Shading Value

	6.6.4 List of Reserved Uniforms

	6.7 Alpha Tests
	6.7.1 Enabling and Disabling Alpha Tests
	6.7.2 Setting Reference Values Used by Alpha Tests
	6.7.3 Controlling Alpha Test Comparisons
	6.7.4 List of Reserved Uniforms

	6.8 Clipping
	6.8.1 Clipping Volumes
	6.8.1.1 Definition of the Viewing Volume
	6.8.1.2 Definition of a Clipping Plane

	6.8.2 List of Reserved Uniforms

	6.9 w Buffer
	6.9.1 Depth Values When the w Buffer Is Enabled
	6.9.2 Enabling and Disabling the w Buffer
	6.9.3 The w Buffer and the Depth Range
	6.9.4 The w Buffer and Polygon Offset
	6.9.5 List of Reserved Uniforms

	7 Miscellaneous
	7.1 Logical Operations
	7.2 Flush and Finish
	7.3 Enable and Disable
	7.4 DrawElements and DrawArrays
	7.5 LineWidth
	7.6 PixelStorei
	7.7 SampleCoverage
	7.8 ReadPixels
	7.9 Framebuffer Objects
	7.9.1 Specifications Particular to the PICA on Desktop Environment
	7.9.2 Specifications Particular to the Actual Hardware Environment

	7.10 Uniform{1234}{if}(v)
	7.11 GenerateMipmap
	7.12 VertexAttribPointer
	7.13 Clear
	7.14 BlendFuncSeparate
	7.15 Viewport
	7.16 Dithering
	7.17 BufferData
	7.18 Vertex Buffers
	7.18.1 Restriction 1
	7.18.2 Restriction 2
	7.18.3 Restriction 3

	7.19 Getting the State
	7.20 Hint
	7.21 CreateShader and CreateProgram
	7.22 StencilFuncSeparate
	7.23 StencilMaskSeparate
	7.24 StencilOpSeparate
	7.25 UniformMatrix
	7.26 Location of Uniforms
	7.27 PolygonOffset
	7.28 LinkProgram
	7.29 Functions to Set or Get Multiple Uniforms at Once
	7.30 DepthRange
	7.31 GetError
	7.32 Obtaining Object Addresses
	7.33 Depth Information Textures
	7.33.1 Rendering Depth Information to Textures
	7.33.2 Copying to a Texture from a Depth Buffer
	Appendix A DMPGL 2.0 Functions
	Appendix B Uniform State Tables

