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1 About This Document 
This document is a programming guide that explains basic programming using the DMPGL 2.0 API. 
The content of this document is aimed at people with knowledge about basic C programming and 3D 
graphics. For an overview of the DMPGL 2.0 pipeline and detailed specifications, see the DMPGL 2.0 
Specifications. 

1.1 Examples and Notation 
This document abbreviates the glGetUniformLocation("uniform_name") syntax as 
LOC(“uniform_name”). 
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2 Vertex Shaders 
This chapter describes how to program vertex shaders. 

2.1 Overview 
Vertex shaders are a feature for taking vertex attribute data provided by the application and 
processing it in certain ways, such as transforming its coordinate system or shading it. Shader 
programs are written in an assembly language whose specifications are proprietary to DMPGL2.0 
(this language will be referred to as "shader assembly language" or "shader assembly code" 
throughout the rest of the documentation). The programs are assembled and linked, and the binary 
file that is generated is loaded by the application and then used. 

2.2 Loading Shaders 
Shaders are loaded using glShaderBinary. For the third argument (binaryformat), specify 
GL_PLATFORM_BINARY_DMP. For the fourth argument (binary), specify a pointer to the data for a 
linked shader binary file. For the first argument (count), specify the number of shader objects within 
the linked shader assembly code that contain the main label. For the second argument (shader), 
specify a pointer to an array that stores the shader objects that were generated by glCreateShader. 
This binds the shader assembly code to the various shader objects, in the order that was specified to 
the linker. The link order for the shader assembly code can also be verified using the map files that 
the linker generates. See the Map Files chapter of the Vertex Shader Reference Manual for more 
details. 

2.3 Attaching Shaders 
To actually render images using the loaded shader objects, you must use glAttachShader to 
attach the shader objects to the program object that was generated using glCreateProgram, then 
link the program object using glLinkProgram. Use glUseProgram to apply successfully linked 
program objects to the vertex processing pipeline. The glUseProgram function also allows you to 
switch between multiple linked program objects. When you attach a different shader object to a 
program object, you must then relink it using glLinkProgram. 

2.4 Inputting Vertex Data 
The indices, names, and input registers of each vertex attribute are bound together into vertex data, 
which is then fed to a vertex shader as input. The application binds the vertex attribute index and the 
input data name by calling glBindAttribLocation, specifying the vertex attribute index as the 
second argument (index), and specifying the input data name (name) as the third argument. The 
shader assembly code then binds the input data name and the input registers by defining #pragma 
bind_symbol with the input data name as the first argument and the input registers as the second 
and third arguments. When specifying the input data name in shader assembly code, specify the 
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same input data name specified by the application, then follow it with the components of the vertex 
attribute. 

The application uses either glVertexAttrib{1234}{f}v or glVertexAttribPointer to enter 
data for bound vertex attribute numbers. The data can then be read from the input registers by the 
shader assembly code. 

Code 2-1: Shader Assembly Code Sample 
#pragma bind_symbol(AttribPosition.xyzw, v0, v0) 

This binds the data name "AttribPosition" to the xyzw components of input register v0. 

Code 2-2: Application Code Sample 
glBindAttribLocation(program, 0, ”AttribPosition”); 

glEnableVertexAttribArray(0); 

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, pointer); 

This binds vertex attribute index 0 to the data that has the name AttribPosition and inputs the 
four vertex attribute components. 

Vertex attribute indices and input register numbers are not related in any way, and do not have 
to be the same. 

2.5 Outputting Vertex Data 
To output data from vertex shaders after vertex processing and make the data available to 
subsequent pipeline stages, write the data to the output registers that have been mapped to the 
output vertex attributes. In your shader assembly code, define #pragma output_map, specifying an 
output vertex attribute name as the first argument, and specifying an output register for the second 
argument. 

Code 2-3: Shader Assembly Code Sample 
#pragma output_map(position, o0) 

 

mov  o0, v0 

This maps output register o0 to vertex coordinates. By writing data to o0, the data will be output as 
vertex coordinates to subsequent stages of the pipeline. 

Vertex shaders finish processing and output their data when data has been written to all the output 
registers that were mapped using #pragma output_map. (An end instruction must be issued 
immediately as soon as all of the registers have been written to.) The output data can be overwritten 
as long as this is done before data is written to all the output registers. With DMPGL 2.0, only 
reserved shaders can be used as the fragment shader, so the attributes that can be output from 
vertex shaders are predetermined. 
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2.6 Configuring Uniforms 
The application can set the various registers used in shader assembly code. The registers set from 
the application are all bound to names by #pragma bind_symbol, and the application recognizes 
these names as uniform names. Uniforms are set to values that are shared by all vertex operations 
that are run using a single call to glDrawElements or glDrawArrays. Due to the specifications of 
the assembler, only the following three types of uniforms can be set. 

• Floating-point registers set by glUniform{1234}{f}{v} 
• Boolean registers set by glUniform1i 
• Integer registers set by glUniform3iv 

2.6.1 Floating-Point Constant Registers 

Floating-point constant registers store constants that are required for calculations; for example, 
constant transformation matrices such as the modelview or projection matrix, or the light-source 
colors and coordinates used in vertex lighting. These registers are set using 
glUniform{1234}{f}{v}. Their values are undefined if the application doesn't set them. Floating-
point constant registers whose values are defined by the def instruction in shader assembly code 
cannot be bound to names by #pragma bind_symbol, so their values cannot be set from the 
application. 

Code 2-4: Shader Assembly Code Sample 
#pragma bind_symbol(ModelViewMatrix, c0, c3) 

 

m4x4  r0, v0, c0 

This binds the registers from c0 through c3 (each register having four components) to the name 
ModelViewMatrix. The example above illustrates how to calculate a modelview transformation, if 
vertex coordinates have been loaded into input register v0. 

Code 2-5: Application Code Sample 
GLfloat  modelview[16]; 

 

modelview[0] = 1.f; modelview[1] = 0.f; ... 

 

glUniformMatrix4fv(LOC(”ModelViewMatrix”), 1, GL_FALSE, modelview); 

This configures the content of ModelViewMatrix. 

2.6.2 Boolean Registers 

Boolean registers are used for branch instructions. The values of Boolean registers are set using 
glUniform1i. Their values are undefined if the application doesn't set them. Boolean registers 
whose values are defined by the defb instruction in shader assembly code cannot be bound to 
names by #pragma bind_symbol, so their values cannot be set from the application. 
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Code 2-6: Shader Assembly Code Sample 
#pragma bind_symbol(LightingEnable, b0, b0) 

 

ifb b0 

// Lighting calculation 

... 

endif 

This binds b0 to the name LightingEnable. The example above illustrates how to use the b0 
register as a switch to enable or disable lighting. 

Code 2-7: Application Code Sample 
glUniform1i(LOC(“LightingEnable”), GL_TRUE); 

This sets LightingEnable to GL_TRUE. 

2.6.3 Integer Registers 

Integer registers are used for loop instructions. These registers are set using glUniform3iv. Three 
values are set: (1) the number of iterations minus one, (2) the initial value of the loop counter register, 
and (3) the amount by which to increase or decrease the loop counter register for each iteration. 
Integer register values are undefined if the application doesn't set them. Integer registers whose 
values are defined by the defi instruction in shader assembly code cannot be bound to names by 
#pragma bind_symbol, so their values cannot be set from the application. 

Code 2-8: Shader Assembly Code Sample 
#pragma bind_symbol(LightSourceCount, i0, i0) 

#define LIGHT0_AMBIENT  c0 

#define LIGHT0_SPECULAR  c1 

#define LIGHT0_DIFFUSE  c2 

#define LIGHT1_AMBIENT  c3 

#define LIGHT1_SPECULAR  c4 

... 

 

loop i0 

// Calculation for each light source 

mov  r0, c0[aL]  // get ambient 

mov  r1, c0[aL + 1] // get specular 

mov  r2, c0[aL + 2] // get diffuse 

... 

endloop 

This binds i0 to the name LightSourceCount. The example above illustrates how to use a loop 
instruction to perform an operation once for every light source. 
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Code 2-9: Application Code Sample 
int loop_setting[3]; 

loop_setting[0] = LIGHT_SOURCE_COUNT – 1; 

loop_setting[1] = 0;    // Set the initial value of the loop counter register to 0 

loop_setting[2] = 3;    // Set the step size of the loop counter register to +3 

glUniform3iv(LOC(“LightSourceCount”), 1, loop_setting); 

In the shader assembly code sample, three settings for each light source are stored in registers, 
starting from register c0. A loop instruction then performs operations on each light source. The 
application sets the loop counter register to make sure the registers that hold the settings for each 
light source are accessed properly. 

2.7 Precautions When Using Shader Programs 

2.7.1 The Z-Component of the Output Vertex Coordinates 

While standard OpenGL ES implementations clip the z-component of the clip coordinates output from 
the vertex shaders to the range [-wc, wc], DMPGL 2.0 clips the z-component to the range [0, -wc]. 
(Note that the sign is inverted.) This means that if your application uses a projection matrix that is 
compatible with OpenGL ES, you must convert from the range [-wc, wc], to [0, -wc] during projection 
transformation. There are two possible ways of doing this required operation. 

Method #1: Change the projection matrix from the application. 

This method makes the following changes to the projection matrix before loading it into a uniform. 
GLfloat projection[16]; 

projection[2] = (projection[2] + projection[3]) × (-0.5f); 

projection[6] = (projection[6] + projection[7]) × (-0.5f); 

projection[10] = (projection[10] + projection[11]) × (-0.5f); 

projection[14] = (projection[14] + projection[15]) × (-0.5f); 

 

Method #2: Change the projection transformation operation using shader assembly code. 

This method uses shader assembly code to perform the following projection transformation. 
#pragma output_map(position, o0) 

#pragma bind_symbol(attrib_position, v0) 

#pragma bind_symbol(modelview, c0, c3) 

#pragma bind_symbol(projection, c4, c7) 

def c8, -0.5, -0.5, -0.5, -0.5 

 

// Modelview transformation 

dp4 r0.x, v0, c0 

dp4 r0.y, v0, c1 

dp4 r0.z, v0, c2 
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dp4 r0.w, v0, c3 

// Projection transformation 

dp4 o0.x, r0, c4 

dp4 o0.y, r0, c5 

mov r1, c6   // Use （c7 + c8）×(-0.5f) as the  

add r1, r1, c7  // third row of the projection matrix 

mul r1, r1, c8  // 

dp4 o0.z, r0, r1 

dp4 o0.w, r0, c7 

Between the two methods shown above, Method #1 involves more calculation on the application side, 
but reduces the load on the vertex shaders more than Method #2 does. 

2.7.2 Normalization of Vertex Attributes 

With PICA, there is no hardware support for the fourth argument to glVertexAttribPointer, 
which specifies whether to normalize values. This argument's setting is not applied, so normalization 
must be performed explicitly by the vertex shaders. 



  DMPGL 2.0 Programming Guide 

CTR-06-0004-001-D 26  2009-2011 Nintendo 
Released: May 13, 2011  CONFIDENTIAL 

3 Geometry Shaders 
This chapter describes how to program geometry shaders. 

3.1 Overview 
Geometry shaders operate on the vertex attribute data that is output by the vertex shaders. They 
process it on the per-primitive level, and can output an arbitrary number of vertices. It is not possible 
to use a user-defined shader program written in the shader assembly language as a geometry shader. 
It is only possible to link user-defined vertex shader assembler objects to the intermediate assembler 
objects (OBJ files) that are distributed in pre-assembled form. These pre-assembled intermediate 
assembler objects are known as "reserved geometry shaders." 

3.2 Loading Shaders 
Geometry shaders, like vertex shaders, are loaded using glShaderBinary. However, to load 
geometry shaders, the second argument (shader) of glShaderBinary must be passed a shader 
object that was generated by specifying GL_GEOMETRY_SHADER_DMP to glCreateShader. With 
DMPGL 2.0, it is not possible to use a geometry shader object all by itself. You must always load a 
binary that also links a vertex shader so that geometry shader objects are used together with vertex 
shader objects. 
GLuint shader[2]; 

shader[0] = glCreateShader(GL_VERTEX_SHADER); 

shader[1] = glCreateShader(GL_GEOMETRY_SHADER_DMP); 

glShaderBinary(2, shader, GL_PLATFORM_BINARY_DMP, binary, size); 

// The 'binary' argument must be linked to both vertex shader assembly code 

// and geometry shader assembly code. 

3.3 Attaching Shaders 
To actually render images using the loaded shader objects, you must use glAttachShader to 
attach the shader objects to the program objects that were generated using glCreateProgram, and 
then link the program objects using glLinkProgram. To attach a geometry shader, you must also 
simultaneously attach the shader objects of the vertex shaders you'll be using. Geometry shaders 
cannot operate on their own without at least one vertex shader. 

3.4 Inputting Vertex Data 
The data output from vertex shaders is the input data for geometry shaders. Each reserved geometry 
shader has fixed rules for input data, such as what vertex attributes it requires, what other vertex 
attributes are optional, and the input order of attributes. All of this data must be output correctly by the 
vertex shaders. Data is input to geometry shaders in order by register number, starting from the 
lowest-numbered register output by the vertex shaders. The vertex attributes to output are defined by 
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#pragma output_map, but if a vertex attribute is used only by the geometry shaders and not 
handled by subsequent stages of the rendering pipeline, its attribute name is defined only as 
generic. As an example, the settings for point shaders and line shaders are shown below. For other 
types of geometry shaders, see the relevant sections within this document. 

3.4.1 Point Shaders 

When using a point shader, output the vertex attribute data in the following order: (1) vertex 
coordinates (from the vertex shaders), (2) point size, (3) other attributes. The vertex shaders must 
define the following data and output the data to the corresponding output register. 
#pragma output_map(position, o0)    // Vertex coordinates 

#pragma output_map(generic, o1)     // Point size 

#pragma output_map(color, o2)       // Other attributes (vertex color, etc.) 

3.4.2 Line Shaders 

When using a line shader, output the vertex attribute data in the following order: (1) vertex 
coordinates (from the vertex shaders), (2) other attributes. The vertex shaders must define the 
following data and output the data to the corresponding output register. 
#pragma output_map(position, o0)    // Vertex coordinates 

#pragma output_map(color, o1)       // Other attributes (vertex color, etc.) 

3.5 Configuring Uniforms 
When using geometry shaders, all of the uniforms must be set. Refer to the specifications of each 
geometry shader and make sure all related uniforms are configured. 

3.6 Rendering Using Geometry Shaders 
When using geometry shaders, set the mode argument of the glDrawElements and 
glDrawArrays functions to GL_GEOMETRY_PRIMITIVE_DMP. 
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4 Silhouettes 
This chapter explains how to program silhouettes that use the silhouette shader functionality provided 
by DMPGL 2.0. 

4.1 Overview 
Silhouettes generate silhouette lines along the boundaries of objects. The diagram below shows an 
example of a silhouette, where the silhouette lines are the areas rendered in blue that run around the 
boundaries of the object. Silhouette line generation is done by the pipeline's geometry processor, but 
doing so requires that primitives called "Triangles with Neighborhoods" (abbreviated as TWN 
throughout the rest of this document) be put into the pipeline. 

Figure 4-1: Example of Rendering Silhouette Lines 

 

4.2 Triangles with Neighborhoods (TWNs) 
TWNs consist of a target triangle (which we call the center triangle) and the three adjacent triangles 
that share edges with that triangle. 
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Figure 4-2: Examples of TWNs (Triangles with Neighborhoods) 

 

If the triangle with vertices (1, 3, 2) is regarded as the center triangle, that triangle along with the 
triangles (0, 1, 2), (5, 3, 1), and (4, 2, 3) will form a single TWN made of four total triangles. If the 
triangle with vertices (5, 3, 1) is regarded as the center triangle, that triangle along with the triangles 
(7, 5, 1), (6, 3, 5), and (2, 1, 3) will form another TWN made of four total triangles. 

TWN primitives are used to detect the silhouettes of center triangles. By creating objects out of TWN 
primitives, silhouette lines can be rendered for those objects. 

4.3 TWN Primitive Indices 
TWNs can only be used with glDrawElements. Specify GL_GEOMETRY_PRIMITIVE_DMP for the 
mode argument. Rendering TWNs with glDrawArrays is not supported. In relation to TWNs, there 
are two types of reserved geometry shaders (DMP_silhouetteTriangle.obj and 
DMP_silhouetteStrip.obj), and the indices of each type are created in different ways. We 
assume that indices for both types are created based on the indices for GL_TRIANGLES and 
GL_TRIANGLE_STRIP that are used during normal triangle rendering. 

4.3.1 DMP_silhouetteTriangle Indices 

When using the DMP_silhouetteTriangle.obj reserved geometry shader, create indices using 
the method shown below. 
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Figure 4-3: Example for silhouetteTriangle 

 

1. Specify the first and second vertices of the center triangle in an order that ensures that the center 
triangle is front-facing, then specify the remaining vertex of the adjacent triangle that shares the 
edge formed by the first two vertices. 

2. Specify the third vertex of the center triangle, and then specify the remaining vertex of the adjacent 
triangle that shares the edge formed by the first and third vertices of the center triangle. 

3. Finally, specify the remaining vertex of the adjacent triangle that shares the edge formed by the 
second and third vertices of the center triangle. 

In the sample shown in the figure above, assuming glFrontFace is set to GL_CCW, the indices "3, 2, 
5, 1, 4, 0" form one TWN primitive. The indices "11, 7, 9, 13, 12, 6" indicate the next primitive, and the 
indices "11, 9, 10, 7, 13, 8" indicate the one after that. 

4.3.2 DMP_silhouetteStrip Indices 

When using the DMP_silhouetteStrip.obj reserved geometry shader, create indices using the 
method shown below. 

Figure 4-4: Example for silhouetteStrip 

 

1. Specify the first TWN primitive. 
 Specify the vertices of this first TWN primitive in the same order that was described for 

DMP_silhouetteTriangle.obj earlier. 
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2. Specify the (n+1)th TWN primitive. The center triangle of the (n+1)th primitive is the last of the 
adjacent triangles specified for the nth TWN primitive. The first, second, and third vertices of the 
center triangle in the (n+1)th TWN primitive are, respectively, the second and third vertices of the 
center triangle in the nth TWN primitive, followed by the very last vertex of the nth TWN primitive. 

 Specify the remaining vertex of the adjacent triangle that shares the edge formed by the 
first and third vertices of the center triangle in the (n+1)th TWN primitive. 

 Specify the remaining vertex of the adjacent triangle that shares the edge formed by the 
second and third vertices of the center triangle in the (n+1)th TWN primitive. 

3. Repeat step 2 as many times as necessary. 

4. There is a special method used to specify the final (Nth) TWN primitive when ending a strip. 
 Specify the remaining vertex of the adjacent triangle that shares the edge formed by the 

first and third vertices of the center triangle in the Nth TWN primitive. 
 Specify the third vertex of the center triangle in the Nth TWN primitive. 
 Specify the remaining vertex of the adjacent triangle that shares the edge formed by the 

second and third vertices of the center triangle in the Nth TWN primitive. 

5. To specify a new strip array, go back to step 1. At this point in the procedure, if the first center 
triangle faces the opposite direction from the glFrontFace setting, specify its first vertex twice in a 
row to indicate this. 

In the example shown in Figure 4-4, assuming that glFrontFace is set to GL_CCW, the TWN strip 
format is "1, 2, 0, 3, 4, 5, 6, 7, 8, 9, …". The first TWN primitive is defined by the "1, 2, 0, 3, 4, 5" portion, 
and the subsequent "6, 7" portion defines a new TWN primitive. This continues in "8, 9" and so on. To 
make the center triangle (3, 5, 7) the last one in the strip, specify (1, 2, 0, 3, 4, 5, 6, 7, 8, 7, 9). If you 
were to specify "1, 1, 2, 0, 3, 4, 5, 6, 7, 8, 7, 9", the center triangles would face in the opposite direction. 

4.4 Inputting Vertex Data 
Input vertex attribute data to the silhouette shader in the following order: (1) vertex coordinates (from 
the vertex shader), (2) vertex color, (3) normal vector. Define the following in vertex shader assembly 
code and output the data to the corresponding output registers. The x- and y-components of the 
normal vector must be output as normalized data. 
#pragma output_map(position, o0)    // Vertex coordinates 

#pragma output_map(color, o1)       // Vertex color 

#pragma output_map(generic, o2)     // Normal vector 

4.5 Open Edges 
If one of the edges of a center triangle doesn't share vertices with any other triangles, it is referred to as 
an "open edge." Adjacent triangles to open edges are specified as though they are folded over onto the 
center triangles. In the figure below, for example, if the 1-3 edge of the TWN whose center triangle is 
defined by vertices (1, 2, 3) is an open edge, the silhouette indices of that TWN are "1, 2, 0, 3, 2, 5." 
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Figure 4-5: Silhouette Indices of an Open Edge 

 

You can choose to either always render or never render silhouettes on open edges. This is set by 
calling Uniform1i and specifying TRUE or FALSE for the value argument of the 
dmp_Silhouette.acceptEmptyTriangles reserved uniform. If TRUE is specified, silhouette 
edges for this type of polygon will always be generated. If FALSE is specified, they will never be 
generated. Open-edge silhouettes are unlike regular silhouettes in that they don't use normal vectors 
and are rendered instead using the same method as line primitives. As a result, the appearance of 
open-edge silhouettes depends on the angles of the center triangle. You'll need to adjust the 
silhouette width and its bias along the Z-axis using the reserved uniforms 
dmp_Silhouette.openEdgeWidth and dmp_Silhouette.openEdgeDepthBias. 

4.6 Examples of Rendered Silhouette Lines 
The figures below are examples of rendering using silhouettes. 

Figure 4-6: Examples of Edges Rendered Using Silhouette Quads 

 

In Figure 4-6, the model on the left is a normal model rendered along with its silhouette lines. In the 
model on the right, only the silhouette lines are rendered. 
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Figure 4-7: Example of Soft Shadowing Using Silhouettes 

  

(The image on the left has silhouettes disabled; the image on the right has silhouettes enabled.) For 
details, see Chapter 14 DMP Shadows. 

Figure 4-8: Example of Edges Rendered Using Silhouette Quads 

 

In Figure 4-8, we've used the silhouette feature to add a black edge to a sphere that has already 
been toon-shaded using fragment lighting. 

4.7 Precautions When Rendering Silhouettes 
Silhouette lines are only generated when the center triangles are front-facing. Make sure the specified 
index order of your center triangles and your glFrontFace setting reflect your intended behavior. 
When using DMP_silhouetteTriangle.obj, silhouettes are not generated if the center triangle is 
degenerate. When using DMP_silhouetteStrip.obj, degenerate polygons are interpreted as the 
last item in the strip array. 

The vertex data used to render silhouettes requires the use of a vertex buffer. Call the 
glBindBuffer or glBufferData functions to use a vertex buffer. 
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4.8 Silhouette-Rendering Performance 
Performance differs between DMP_silhouetteTriangle.obj and DMP_silhouetteStrip.obj, 
even when rendering the same model. With DMP_silhouetteTriangle.obj, each TWN is specified 
with six vertices. With DMP_silhouetteStrip.obj, after the initial TWN is specified, only two vertices 
are required to specify each additional TWN. You can expect that DMP_silhouetteStrip.obj will give 
you twice or better the performance of DMP_silhouetteTriangle.obj. 
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5 Subdivision 
This chapter explains how to program polygon subdivision using DMPGL 2.0's subdivision shader 
functionality. 

5.1 Overview 
Subdivision refers to a technique for subdividing surfaces into groups of vertices called subdivision 
patches (shown in the figures below) to make the surface appear smoother. 

Figure 5-1: Example of Catmull-Clark Subdivision 
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Figure 5-2: Example of Loop Subdivision 

 

In DMPGL 2.0, subdivision patches are made from the vertices in the triangles or quadrilaterals to be 
subdivided, as well as from the vertices around their perimeter. 
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Figure 5-3: Example of Catmull-Clark Subdivision Patches 
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Figure 5-4: Example of a Loop Subdivision Patch 
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Subdivision refers to the technique of breaking polygons down starting from vertices on their 
perimeters. There are two types of subdivision shaders implemented by DMPGL 2.0: Catmull-Clark 
subdivision and Loop subdivision. These methods subdivide and generate polygons in the geometry 
shader according to their respective algorithms. This creates more detailed polygons than the 
polygons that were fed into the pipeline and sends them on to the rasterization pipeline. 
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5.2 Rendered Examples of Subdivision 
The figure below is a sample rendering that uses subdivision. 

Figure 5-5: Subdivision Rendering Example 1 

 

In Figure 5-5, the image on the left shows the result of rendering the original mesh. The image on the 
right shows the rendered result after applying Catmull-Clark subdivision. Note that the same vertex 
data was used to create both images. You can see that on the right the polygons are more finely 
subdivided, and the curved surfaces appear smoother than they do in the original. 

Figure 5-6: Subdivision Rendering Example 2 

 

In Figure 5-6, the image on the left shows the original mesh, and the image on the right shows the 
rendered result after applying Loop subdivision. 

5.3 Catmull-Clark Subdivision 
This section describes Catmull-Clark subdivision. Within this section, the word "subdivision" always 
indicates Catmull-Clark subdivision. 
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5.3.1 Definition of Catmull-Clark Subdivision Patches 

A Catmull-Clark subdivision patch is a set of polygons consisting only of quadrilaterals. A patch is the 
group of quads consisting of the quadrilateral to subdivide (the central quad) and all vertices that 
share an edge with the vertices in the central quad. 

Figure 5-7: Example of Catmull-Clark Subdivision Patches 
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If (5, 6, 10, 9) is taken to be the central quad, the group of quads contained within the area defined by 
the vertices (5, 6, 10, 9, 8, 4, 0, 1, 2, 3, 7, 11, 17, 16, 15, 14, 13, 12) constitutes a patch. If (9, 10, 16, 
15) is taken to be the central quad, the group of quads contained within the area defined by the 
vertices (9, 10, 16, 15, 8, 4, 5, 6, 7, 11, 17, 21, 20, 19, 18, 14, 13, 12) constitutes another patch. 

When subdivision is performed, the central quad within each patch is broken down into smaller, finer 
polygons that form a smoother surface. 

5.3.2 Restrictions on Catmull-Clark Subdivision Patches 

The following restrictions apply to subdivision patches when using Catmull-Clark subdivision. 

• They must be made from quads. 
• Central quads are allowed to contain irregular vertices, but each central quad must not contain more 

than a single irregular vertex. 
• The valence of each irregular vertex must be between 3 and 12. (Valence refers to the number of 

edges that touch a given vertex.) 

Here, irregular vertices are defined as vertices with valences other than 4. 
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The figure below shows irregular vertices with valences of 5 and 3. 

Figure 5-8: Examples of Irregular Vertices 

 

In the example on the left in Figure 5-8, the vertex marked in red has a valence of five (it has five 
adjacent edges). In the example on the right, the valence is only three (there are only three adjacent 
edges). Both of these vertices are irregular vertices. 

In the representative example of subdivision patches shown in Figure 5-7, vertex 9 in the central quad 
(5, 6, 10, 9) is an irregular vertex. 

5.3.3 Specifying Indices for Catmull-Clark Subdivision Patches 

Subdivision patches can only be used with glDrawElements. Rendering with glDrawArrays is not 
supported. A vertex buffer must also be used (call a function like glBindBuffer or glBufferData 
to set up the buffer). The stored data that includes the vertex indices must be used only via the vertex 
buffer. 

Before specifying the vertex indices of each subdivision patch, you must specify the overall patch size 
(the number of vertices that make up the patch). For example, if the central quad contains an irregular 
vertex of valence 3, the patch size is 14. If the central quad contains an irregular vertex of valence 5, 
the patch size is 18. If the central quad doesn't contain any irregular vertices, the patch size is 16. 
The patch size can be calculated as follows: 2×(valence of irregular vertex)+8. Specify this size at the 
beginning of the patch. 

The order used to specify indices is shown below. 

1. If there is an irregular vertex among the vertices that make up the central quad, specify that point 
first, as the starting point. If the central quad doesn't contain any irregular vertices, any of its 
vertices can serve as the starting point. Make sure to comply with the glFrontFace setting so 
that the central quad is front-facing. 

2. Take the fifth vertex as the one that forms an edge with the first vertex (the starting point) and forms 
a surface with the first and second vertices. 

3. After that, specify the remaining vertices (6th, 7th, 8th, ...), in the same direction (clockwise or 
counterclockwise) in which you specified the vertices in the central quad. 
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In the example of subdivision patches shown in Figure 5-7, the indices are as follows: 

18, 9, 5, 6, 10, 8, 4, 0, 1, 2, 3, 7, 11, 17, 16, 15, 14, 13, 12,  

18, 9, 10, 16, 15, 5, 6, 7, 11, 17, 21, 20, 19, 18, 14, 13, 12, 8, 4, … 

In the first patch, vertex 9 is an irregular vertex with a valence of 5. This patch contains 18 vertices, so 
first we store the number 18. Next, we store the indices 9, 5, 6, and 10 to indicate the central quad, 
using the irregular vertex as the starting point. Then we store vertex 8, which forms an edge with the 
first vertex and also forms a surface with the first and second vertices. After that, we store the indices 
that enclose the central quad, working around in the same direction in which the central quad was 
specified: 4, 0, 1, 2, 3, 7, 11, 17, 16, 15, 14, 13, and 12. At this point, we've stored 18 vertices, so the 
first patch is complete. We then go on to specify the second patch. 

If two or more patches share the same irregular vertex, the indices of those patches must be stored 
consecutively. Vertex 9 is the irregular vertex in Figure 5-7, so the patches with the central quads 
(9,5,6,10), (9,10,16,15), (9,15,14,13), (9,13,12,8), and (9,8,4,5) must have their indices stored 
consecutively. If patches sharing the same irregular vertex are not consecutive in the index array, 
continuity between subdivision patches is not guaranteed and the mesh could develop holes. 

5.3.4 Inputting Vertex Data for Catmull-Clark Subdivision 

Input vertex attribute data to the subdivision shader in the following order: (1) vertex coordinates 
(from the vertex shader), (2) quaternions (if used), (3) other attributes. Define the following in vertex 
shader assembly code and output the data to the corresponding output registers. If you use 
quaternions, you must output them after the vertex coordinates. 
#pragma output_map(position, o0) // Vertex coordinates 

#pragma output_map(quaternion, o1) // Quaternions 

#pragma output_map(color, o2) // Vertex colors and other such attributes 

5.4 Loop Subdivision 
This section explains Loop subdivision. Within this section, the word "subdivision" always indicates 
Loop subdivision. 

5.4.1 Definition of a Loop Subdivision Patch 

Loop subdivision patches are made from a single triangle and the surrounding vertices. These 
patches comprise a group of triangles that includes both the triangle to subdivide (the center triangle) 
and all vertices that share an edge with the vertices in the center triangle. 
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Figure 5-9: Example of a Loop Subdivision Patch 
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If the triangle defined by vertices (0, 1, 2) is to be subdivided, then the patch includes vertices 0, 1, 
and 2, along with the vertices that share edges with those vertices (3, 4, 5, 6, 7, 8, and 9). 

When subdivision is performed, the center triangle within each patch is broken down into smaller, 
finer polygons that form a smoother surface. 

5.4.2 Restrictions on Loop Subdivision Patches 

The following restrictions apply to subdivision patches when using Loop subdivision. 

• Vertices of center triangles must all have a valence (number of adjacent edges) falling within the 
range from 3 to 12. 

• For all center triangles, the sum of the valences of all three vertices must be 29 or less. 

In the patch example shown in Figure 5-9, the respective valences of vertices 0, 1, and 2 in the center 
triangle are 6, 5, and 5. 

5.4.3 Specifying Indices for Loop Subdivision Patches 

Subdivision patches can only be used with glDrawElements. Rendering with glDrawArrays is not 
supported. A vertex buffer must also be used (call a function like glBindBuffer or glBufferData 
to set up the buffer). The stored data that includes the vertex indices must be used only via the vertex 
buffer. 

Before specifying the vertex indices of each subdivision patch, you must specify the overall patch size. 
The patch size is defined as the sum of the valences of the three vertices of the center triangle + 3. 
Specify this number at the beginning of the patch. 

The order used to specify indices is shown below. 

1. Specify the three vertices that make up the center triangle as the first, second, and third elements. 
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We'll call these v0, v1, and v2. Make sure to comply with the glFrontFace setting so that the 
center triangle is front-facing. 

2. Specify all vertices that share edges with v0. (The order doesn't matter.) 

3. Specify all vertices that share edges with v1. (The order doesn't matter.) 

4. Specify all vertices that share edges with v2. (The order doesn't matter.) 

5. Specify a fixed value of 12, and then specify the three vertices that make up the center triangle 
once again. 

6. Specify the vertex that shares an edge with v0 and v2 but doesn't belong to the center triangle. In 
the same way, specify the vertex that shares an edge with v0 and v1 but doesn't belong to the 
center triangle, followed by the vertex that shares an edge with v1 and v2 but doesn't belong to the 
center triangle. We'll call these e00, e10, and e20, respectively. 

7. Specify the vertex that shares an edge with v0 and is adjacent to v0 next after e00 in the 
counterclockwise direction. In the same way, specify the vertex that shares an edge with v1 and is 
adjacent to v1 next after e10 in the counterclockwise direction. Then specify the vertex that shares 
an edge with v2 and is adjacent to v2 next after e20 in the counterclockwise direction. 

8. Specify the vertex that shares an edge with v0 and is adjacent to v0 next after e10 in the clockwise 
direction. In the same way, specify the vertex that shares an edge with v1 and is adjacent to v1 next 
after e20 in the clockwise direction. Then specify the vertex that shares an edge with v2 and is 
adjacent to v2 next after e00 in the clockwise direction. 

In the example of a patch shown in Figure 5-9, the indices are as follows: 

19, 0, 1, 2, 1, 2, 8, 9, 3, 4, 2, 0, 4, 5, 6, 0, 1, 6, 7, 8 

12, 0, 1, 2, 8, 4, 6, 9, 5, 7, 3, 5, 7,  

Vertices that share an edge with a vertex of the center triangle (indicated by the second, third, and 
fourth indices) may be specified in any order for that vertex, but they must use the same order in all 
patches. In Figure 5-9, for example, the index order of all vertices that share an edge with vertex 0 in 
the patch for center triangle (0, 1, 2) must be the same as the index order of all vertices that share an 
edge with vertex 0 in the patch for center triangle (3, 4, 0). 

5.4.4 Inputting Vertex Data for Loop Subdivision 

With subdivision shaders, you must input both vertex coordinates and valences from the vertex 
shaders to the geometry shaders. Output the vertex attribute data in the following order: (1) vertex 
coordinates, (2) quaternions (if used), (3) other attributes (if used), (4) valences. Define the following 
in vertex shader assembly code and output the data to the corresponding output registers. If you use 
quaternions, you must output them after the vertex coordinates. 
#pragma output_map(position, o0)  // Vertex coordinates 

#pragma output_map(quaternion, o1) // Quaternions 

#pragma output_map(color, o2)  // Vertex colors and other such attributes 

#pragma output_map (generic, o3)  // Valences (use the "generic" attribute) 
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One of the limitations of the Loop subdivision geometry shader is that the data output from the vertex 
shaders (excluding valences) can occupy a maximum of only four output registers. To output more 
than four such vertex attributes, you must set multiple attributes to a single register. However, 
quaternions cannot be set to share an output register with another attribute. 

 
#pragma output_map(position, o0)  // Vertex coordinates 

#pragma output_map(quaternion, o1) // Quaternions 

#pragma output_map(view, o2.xyz)  // View vector 

#pragma output_map(texture0w, o2.w) // Texture coordinate w of texture 0 

#pragma output_map(texture0, o3.xy) // Texture coordinates of texture 0 

#pragma output_map(texture1, o3.zw) // Texture coordinates of texture 1 

#pragma output_map ( generic , o4 ) // Valences 
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6 Particle Systems 
This chapter explains how to program the particle system feature provided by DMPGL 2.0. 

6.1 Overview 
The particle system feature generates large quantities of point sprites along a Bézier curve. The point 
sprites that are generated by the particle system are called particles. Particle systems use a geometry 
shader. Specifically, particles are generated along the Bézier curve that is defined by the four control 
points configured in the geometry shader. Details about the particles (such as their color, size, and 
the rotation angle of the texture coordinates) are determined by interpolating the values set for each 
control point by the position of the particles along the Bézier curve. An example rendering is shown 
below. 

Figure 6-1: Example of Rendering a Particle System 

 

In this example, an RGBA color and a procedural texture are blended and then applied to the 
particles. 

6.2 Setting the Control Point Coordinates 
There are two types of settings for particle systems: those that are set directly in the geometry 
shaders using uniforms, and those that are output from the vertex shaders and then set. The settings 
that are output from the vertex shaders and then set are the vertex coordinates of the four control 
points that define the Bézier curve, and sizes of the bounding boxes. The positions of the control 
points during the actual rendering are set at random within the range of the bounding boxes. 

The vertex coordinates and the sizes of the bounding boxes are transformed to the clip coordinate 
system by the vertex shaders, then output to the geometry shaders. 
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Set the output attributes in the vertex shader as follows. 
#pragma output_map( position, o0 ) 

#pragma output_map( generic, o1 ) 

#pragma output_map( generic, o2 ) 

#pragma output_map( generic, o3 ) 

#pragma output_map( generic, o4 ) 

The vertex coordinates in clip space are output to o0. When the bounding box's XYZ-axis radii are 
given by Rx, Ry, and Rz in object coordinates, o1-o4 are calculated and output as follows. 

Equation 6-1: Transforming the Bounding Box Size to Clip Space 

�

𝑜1. 𝑥 𝑜1.𝑦 𝑜1. 𝑧 0
𝑜2. 𝑥 𝑜2.𝑦 𝑜2. 𝑧 0
𝑜3. 𝑥 𝑜3.𝑦 𝑜3. 𝑧 0
𝑜4. 𝑥 𝑜4.𝑦 𝑜4. 𝑧 0

� = 𝑀𝑝𝑟𝑜𝑗 × 𝑀𝑚𝑜𝑑𝑒𝑙𝑣𝑖𝑒𝑤 × �

𝑅𝑥 0 0 0
0 𝑅𝑦 0 0
0 0 𝑅𝑧 0
0 0 0 1

� 

In this equation, 𝑀𝑝𝑟𝑜𝑗 and 𝑀𝑚𝑜𝑑𝑒𝑙𝑣𝑖𝑒𝑤 correspond to the projection and modelview matrices, 
respectively. 

Because only four vertices worth of data are output from the vertex shaders, there are two ways of 
inputting the vertex coordinates and the sizes of the bounding boxes: (1) inputting them as vertex 
shader attributes and (2) setting them as uniforms. 

The control points that define the Bézier curve are placed at random within the bounding boxes. The 
sample rendering below shows the effect of a change to the sizes of the bounding boxes. 

Figure 6-2: Rendering with the Bounding Box Sizes Set to Zero 

 

In the figure above, the bounding boxes sizes are set to zero for all control points, so there is no 
variation in the particles; they are rendered exactly on top of a single Bézier curve. 
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Figure 6-3: Rendering with the Bounding Box Sizes Changed 

 

In the sample figure above, the control points are distributed from left to right. The size of the 
bounding box for the fourth (rightmost) control point is set to a large value, but the sizes of the 
bounding boxes for all other control points are set to zero. You can see that the closer we get to the 
control point with the large bounding box, the more widely the particles are being distributed. 

6.3 Color and Size of Particles 
The color and size of the four control points are set using reserved uniforms. The color and size of 
each individual particle is calculated by interpolating the values set for the control points by the 
position of the particles along the Bézier curve. 

When setting the color, different reserved uniforms are used depending on whether you specify all the 
RGBA components or just the alpha component. To set all of the RGBA components, use one of the 
reserved geometry shader objects DMP_particleSystem_X_X_1_X.obj (where “X” is either 0 or 
1) and call glUniformMatrix4fv on the reserved uniform dmp_PartSys.color, specifying a 
pointer to a 4x4 matrix that stores the RGBA values for the four control points. The rows of the 4x4 
matrix correspond to the control points: the color of the first control point is stored in the first row, the 
color of the second control point is stored in the second row, and so on. The columns of the 4x4 
matrix correspond to the individual components, stored in the order R, G, B, A (the R values are 
stored in the first column, the G values are stored in the second column, and so on). To set only the 
alpha component, use one of the reserved geometry shaders 
DMP_particleSystem_X_X_0_X.obj and call glUniformMatrix4fv on the reserved uniform 
dmp_PartSys.aspect, specifying a pointer to a 4x4 matrix that stores the alpha values for the four 
control points in the fourth column. Store the alpha components in the 4x4 matrix starting with the first 
control point in the first row and ending with the fourth control point in the fourth row. Using only the 
alpha component results in better performance than using all of the RGBA components. 

The figure below shows an example rendering with RGBA colors applied to the particles. 
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Figure 6-4: Rendering of Particles Using RGBA Color 

 

In Figure 6-4 above, the four control points are distributed from left to right. The RGB components of 
the colors for the control points are as follows. The first control point is set to (0.f, 0.f, 0.f), the second 
is set to (1.f, 0.f, 0.f), the third is set to (0.f, 1.f, 0.f), and the fourth is set to (0.f, 0.f, 1.f). 

The size of the particles is set by calling glUniformMatrix4fv on the reserved uniform 
dmp_PartSys.aspect, specifying a 4x4 matrix whose first column stores the sizes of the four 
control points. Store the size components in the 4x4 matrix starting with the first control point in the 
first row and ending with the fourth control point in the fourth row. 

In the example shown in Figure 6-4, the particle sizes for all control points have been set to the same 
value. The figure below shows what it looks like if each control point is set to a different size. 

Figure 6-5: Rendering with the Particle Size Changed 
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In Figure 6-5 above, the size of the control points are set as follows: the first control point is set to 3.0, 
the second is set to 5.0, the third is set to 7.0, and the fourth is set to 9.0. 

6.4 Using Textures 
Particle system geometry shaders generate texture coordinates 0 and 2 automatically. Texture 
coordinate 0 is always generated, whereas you can choose whether to generate texture coordinate 2. 
Texture coordinate 2 is generated if you use one of the reserved geometry shaders 
DMP_particleSystem_X_X_X_1.obj. It isn't generated if you use one of the reserved geometry 
shaders DMP_particleSystem_X_X_X_0.obj. For texture coordinate 0, the uv coordinates (0,0), 
(1,0), (0,1), and (1,1), indicate the lower-left, lower-right, upper-left, and upper-right of a particle, 
respectively. For texture coordinate 2, the uv coordinates (-1, -1), (1,-1), (-1,1), and (1,1) indicate the 
lower-left, lower-right, upper-left, and upper-right of a particle, respectively. The example shown in 
Figure 6-6 below uses texture coordinate 0. 

Figure 6-6: Rendering of a Particle System with Texture Coordinate 0 Applied 

 

The texture coordinates can be rotated and scaled. (Only texture coordinate 2 can be scaled.) If you 
use one of the reserved geometry shaders DMP_particleSystem_X_1_X_X.obj, texture 
coordinates are not rotated or scaled. If you use one of DMP_particleSystem_X_0_X_X.obj, 
texture coordinates are rotated and scaled. There is no texture coordinate rotation in the example in 
Figure 6-6. 

The angle of rotation and the scaling value for texture coordinates are determined by interpolating the 
values set for the control points by the location of a given particle along the Bézier curve. To set these 
values, call glUniformMatrix4fv on the reserved uniform dmp_PartSys.aspect, specifying a 
pointer to a 4x4 matrix whose second column stores the rotation angles of the texture coordinates for 
the four control points (in radians), and whose third column stores the scaling factor. Store the 
settings for control points 1-4 in rows 1-4 of the 4x4 matrix, respectively. 
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Given a rotation angle of A and a scaling value of R, the uv coordinates for texture coordinate 0 are 
calculated as follows: 

Corner Formula for Rotation Angle 

Lower left (0.5 × (1.0 + (−cosA + sinA)),−cosA − sinA))) 

Lower right (0.5 × (1.0 + (cosA + sinA)),−cosA + sinA))) 

Upper left (0.5 × (1.0 + (−cosA − sinA)), cosA − sinA))) 

Upper right (0.5 × (1.0 + (cosA − sinA)), cosA + sinA))) 

The uv coordinates for texture coordinate 2 are calculated as follows: 

Corner Formula for Rotation Angle 

Lower left (R(−cosA + sinA), R(−cosA − sinA)) 

Lower left (R(cosA + sinA), R(−cosA + sinA)) 

Upper left (R(−cosA − sinA), R(cosA − sinA)) 

Upper right (R(cosA − sinA), R(cosA + sinA)) 

The figure below shows an example of texture coordinate rotation. 

Figure 6-7: Texture Coordinate Rotation 

  

The image on the left uses no rotation, and the image at the right uses both rotation and scaling. The 
particle size is set to the same value in both images. 

6.5 Particle Time 
Particle systems use the concept of time. To set the current time, call glUniform1fv on the 
reserved uniform dmp_PartSys.time with value set to an array storing the current time. Time 
moves forward as the value increases, or moves backward as the value decreases. As the time 
moves forward, particles are generated at the first control point, and move toward the fourth control 
point. To set the speed of particle movement, call glUniform1fv on the reserved uniform 
dmp_PartSys.speed with value set to an array storing a value for the speed. The specified time is 
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converted by a random value for each particle. If the final value for a particle falls within the range [0, 
1], the particle is generated somewhere between the first and fourth control points. 

You can set whether to generate particles when the time falls outside the range [0, 1]. If one of the 
reserved geometry shaders DMP_particleSystem_0_X_X_X.obj is used, particles that fall 
outside the range [0, 1] are not rendered. (This is referred to as “time clamping” from this point in the 
document onward.) When one of DMP_particleSystem_1_X_X_X.obj is used, the current time 
loops within the range from 0 to 1. In other words, particles that reach the fourth control point are re-
generated at the first control point. 

When using time clamping, simply letting the current time value increase will cause particles to stop 
being generated at a certain point in time. It is therefore necessary to reset the time from the application. 

6.6 Sample Particle Renderings 

Figure 6-8: Particles Generated in a Circular Pattern 

 

In this example, the first and fourth control points are set to the same vertex coordinates, and the 
particles are generated along a circular path. 
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Figure 6-9: Particles Generated to Simulate Falling Snow 

 

In this example, the bounding boxes are set very wide in the horizontal direction. The first control 
point has been placed at the top of the screen, and the fourth control point has been placed at the 
bottom of the screen to approximate the appearance of falling snow. 

Figure 6-10: Rendering Using a Particle System for the Density-Rendering Pass of a Gas 

 

This can be used for effects like towering flames. 
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7 Textures 
Textures behave just like they do in OpenGL ES 2.0 and can be used without modification. However, 
the detailed aspects involve some DMPGL 2.0-specific restrictions, so please keep these in mind. 

7.1 Enabling and Disabling Textures 
In OpenGL ES 2.0, textures are enabled by calling glEnable with the argument GL_TEXTURE_2D. 
However, in DMPGL 2.0, this is done by setting the sampler type in a reserved uniform. The reserved 
uniform variable that is set is dmp_Texture[i].samplerType. 

Code 7-1: Enabling Texture 0 
glUniform1i(LOC(”dmp_Texture[0].samplerType”),GL_TEXTURE_2D); 

Code 7-2: Disabling Texture 0 
glUniform1i(LOC(”dmp_Texture[0].samplerType”),GL_FALSE); 

In Code 7-1 above, texture unit 0 is enabled as a 2D texture. Other features can be used by changing 
the sampler type. If FALSE is specified, the texture in question is disabled. If you call 
glEnable(GL_TEXTURE_2D), behavior is undefined. 

7.2 Restrictions on Coordinates 
Here, we’ll use the notation (s, t, r, g) to refer to the set of texture coordinates that the vertex 
shaders take as input. Likewise, (s’, t’, r’) refers to the coordinates output to textures by the 
vertex shaders. With DMPGL 2.0, only texture unit 0 can take all three components (s’, t’, r’). 
Note that all other texture units can only take two components (s’, t’) and will not divide by r’. 

Although there are four texture units, the rasterizer can only provide three sets of texture coordinates 
independently. 

Texture coordinate 0 is provided to texture unit 0, and texture coordinate 1 is provided to texture unit 1. 
You can choose whether to provide texture coordinates 1 or 2 to texture unit 2. You can choose 
whether to provide texture coordinates 0, 1, or 2 to texture unit 3. Use the reserved uniforms 
dmp_Texture[2].texcoord and dmp_Texture[3].texcoord to set your selections for texture 
units 2 and 3. 

Table 7-1 below shows how the rasterizer and texture units are connected when the rasterizer 
provides different sets of coordinates to the texture units. 
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Table 7-1: Examples of Providing Coordinates from the Rasterizer 

Units Used Connection to Rasterizer Description 

TEXTURE0 
TEXTURE2 

TEXTURE0

TEXTURE1

R
as

te
riz

er
TEXTURE2

TEXTURE3

(s’, t’, r’)

(s’, t’)

Input Output

 

This configuration tries to use texture 0 
and texture 2. It is possible to provide r’ 
to texture 0. 
Division by r’ is possible for texture 0. 

TEXTURE1 
TEXTURE2 
TEXTURE3 TEXTURE0

TEXTURE1

R
as

te
riz

er

TEXTURE2

TEXTURE3

(s’, t’)

(s’, t’)

(s’, t’)

Input Output

 

If you provide texture coordinate 2 to 
texture unit 2, and provide texture 
coordinate 0 to texture unit 3, the 
provided texture coordinates can all be 
mutually independent. 
Although texture 0 is disabled, r’ still 
cannot be provided to the other textures. 

TEXTURE0 
TEXTURE1 
TEXTURE2 
TEXTURE3 

TEXTURE0

TEXTURE1

R
as

te
riz

er

TEXTURE2

TEXTURE3

(s’, t’, r’)

(s’, t’)

(s’, t’)

Input Output

 

When using all textures, either texture 
unit 2 or 3 will share texture coordinates 
with other texture units. 

The texture coordinates sent from the vertex shaders are mapped to the vertex shader output 
registers by specifying their attribute name and output register to #pragma output_map as the 
data_name and mapped_register arguments, respectively. 
#pragma output_map(data_name, mapped_register); 
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For details on how texture coordinates are assigned to output registers by the vertex shaders, see the 
Vertex Shader Reference Manual. Table 7-2 shows how the value of data_name corresponds to 
texture coordinates sent from the vertex shaders. 

Table 7-2: Values of data_name When Mapping Texture Coordinates to Output Registers 

data_name Attributes Sent From the Vertex Shader 

texture0 uv components of texture coordinate 0 

texture0w w component of texture coordinate 0 

texture1 uv components of texture coordinate 1 

texture2 uv components of texture coordinate 2 

The vertex attributes for texture0 are the only ones that can contain the w coordinate in addition to 
the u and v coordinates. Be sure to always configure the texture0w vertex attribute for any features 
that require the w coordinate, such as cube mapping, shadows, and projective textures. If you do not 
configure texture0w when the w coordinate is required, the output of texture 0 is undefined. If 
texture 0 is being used as a 2D texture, and a value for texture0w is output by the vertex shaders, 
this value is simply ignored. 

7.3 Precautions When the Filter Mode Is GL_NEAREST 
Suppose the GL_TEXTURE_MIN_FILTER or GL_TEXTURE_MAG_FILTER texture parameter is set to 
GL_NEAREST, and an image with straight horizontal or vertical lines and clear boundaries between 
colors is used as the texture. If those straight lines are rendered to on-screen polygons in such a way 
that they are oriented parallel to or perpendicular to the screen's scanlines, the pattern will sometimes 
appear to be uneven, even though it should appear perfectly straight. This will occur, for example, if a 
texture with horizontal or vertical stripes is rendered to a rectangular polygon whose sides run parallel 
with the screen's scanlines. 

This phenomenon is caused by the precision of the calculations used to interpolate texture 
coordinates within polygons. 

Consider a row or column of fragments that run either perpendicular or parallel to the scanlines. If 
each fragment samples a row or column of texels in the texture, a straight line in the texture will be 
rendered as a straight line on the polygon. 

However, if that row or column of fragments samples near the boundary between two neighboring 
rows or columns, the margin or error in the texture coordinates will cause some of those fragments to 
sample from one row or column, and others to sample from the other. When this happens, straight 
lines within the texture image will be rendered as uneven lines on the polygon. 

You can prevent this phenomenon by adjusting the texture coordinates or the render area so that the 
fragments will sample the centers of the texels in the texture instead of the edges. For example, if you 
had a quad whose texture coordinates were 0 at one edge and 1 at the other, rendering that polygon 
at the same size as the texture would sample the centers of the texels. 



DMPGL 2.0 Programming Guide  

 2009-2011 Nintendo 55 CTR-06-0004-001-D 
CONFIDENTIAL  Released: May 13, 2011 

7.4 Precautions When the Filter Mode Is GL_XXX_MIPMAP_LINEAR 
Trilinear filtering is enabled when texture parameter GL_TEXTURE_MIN_FILTER is 
GL_XXX_MIPMAP_LINEAR. Trilinear filtering generates the final color by interpolating the texture 
colors of two mipmap levels, but calculation mistakes may occur due to the accuracy of the 
interpolation process. Similar mistakes may also occur when interpolating two identical colors. 

When the selected mipmap level changes for a given pixel on a polygon, such as changing from level 
0 to level 1, the color changes from the level 0 texture color to the interpolated color from the texture 
colors for levels 0 and 1, and then the level 1 texture color. If a mipmap level is selected to get the 
texture color of a single level, no colors are interpolated. Consequently, the interpolated color value 
and the non-interpolated color value may exhibit some slight discrepancies, with the interpolated color 
appearing slightly darker. On the polygon, the artifact of this difference causes lines that look like 
boundaries between the mipmap levels to appear. 

Use the texture’s fixed value color as a means of reducing this issue. For example, assume a texture 
in GL_RGB format has an alpha component with a fixed value of 1.0. This fixed-value component and 
the trilinear interpolated value will also be slightly different. In this case, the non-interpolated value will 
simply be 1.0. The texture combiner will then correct the color by multiplying the texture color by the 
difference in color values for this alpha component. 

The following code shows an example of configuring the combiner. 

Code 7-3: Combiner Settings 
glUniform1i(LOC("dmp_TexEnv[0].combineRgb"), GL_MULT_ADD_DMP); 

glUniform3i(LOC("dmp_TexEnv[0].operandRgb"),  

  GL_SRC_COLOR, GL_ONE_MINUS_SRC_ALPHA, GL_SRC_COLOR); 

glUniform3i(LOC("dmp_TexEnv[0].srcRgb"), 

  GL_TEXTURE0, GL_TEXTURE0, GL_TEXTURE0); 

The RGB component input uses the texture colors. The second input is ONE_MINUS_SRC_ALPHA, so 
0 is entered for the non-interpolated portion, and the difference value is entered for the interpolated 
portion. The original texture color is multiplied by this difference value, and this is then added to the 
original texture color. 

If there are no components storing fixed-value colors, as with the GL_RGBA format, then a similar 
method may be used. This would use another texture for the fixed-value color and use this as a multi-
texture. The texture with the fixed-value color must have the same number of texels (i.e., be the same 
size), have the same number of mipmap levels, and have the same uv value entered as for the original 
texture. We recommend using ETC1 textures from a data size and data cache efficiency perspective. 

When texture colors are interpolated, their hues always fade by a fixed amount that depends on their 
color values. Large (bright) color values fade more than small (dark) color values. For texture colors 
between 0.0 and 1.0 that are represented as 8-bit colors between 0 and 255, the maximum texture 
color value of 255 fades the most: two color values of 255 interpolate to a value of 251 (a color loss of 
4). Interpolating the same texture color between two mipmap levels entails a color loss of 4, 3, 2, 1, or 
0 when the original value is in the range 225–255, 161–224, 97–160, 33–96, or 0–32, respectively. 
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8 Texture Combiners 
DMPGL texture combiners provide nearly the same capabilities of texture combiners as defined by 
the OpenGL standard. Texture combiners make it possible to combine the following inputs using the 
hardware’s arithmetic unit: primary colors provided by the rasterizer, texture colors sampled by the 
four texture units, fragment primary and secondary colors output by fragment lighting, output from the 
previous-stage texture combiners, and output from the previous-stage combiner buffers. Once these 
are combined, the result can be output. 

For more information about the various units that provide colors to the texture combiners, see the 
corresponding sections within this document. DMPGL 2.0 uses a unique set of connections when the 
gas feature is being used. For details, see Chapter 16 Gas. 

Figure 8-1: Texture Combiner Connections 
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Texture combiners are always enabled; there is no way to enable or disable them. DMPGL 2.0’s 
default texture combiner configuration outputs the primary color. If you want to change the input 
sources (for example, when using textures), you must explicitly change the combiner settings. 

Up to three colors can be chosen as sources for a single texture combiner; these colors can be 
blended using the selected combiner function. Combiners 0, 1, 2, 3, 4, and 5 are connected in a 
cascading fashion, with combiner 0 being closest to the input. Combiners can choose the output of 
the previous combiner as the source. (In other words, combiner n can choose the output of combiner 
n-1 as its source.) Each combiner can also have a single constant color. 

All combiners except for the final combiner (combiner 5) have a combiner buffer that can be used in 
parallel with the combiner itself. These combiner buffers are put there so that a combiner can access 
combiners other than the one that immediately precedes it. Each combiner buffer except for the first 
one can choose either the preceding combiner buffer or the output of the preceding combiner as input. 
In previous implementations, it was possible to use textures and output from the preceding combiner 
as input. With the new implementation, it is now also possible to use the output of the immediately 
preceding combiner buffer as input. 

The output of the first combiner buffer is a constant color called the buffer color. 
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8.1 Texture Combiner Properties 
The following properties can be set for each combiner: srcRgb{0,1,2}, srcAlpha{0,1,2}, 
operandRgb{0,1,2}, operandAlpha{0,1,2}, combineRgb, combineAlpha, scaleRgb, 
scaleAlpha, and bufferInput{0,1}. Figure 8-2 below shows the order in which the effects of 
these properties are applied. 

Figure 8-2: Combiner Configuration 
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The property names shown in Figure 8-2 above are the names that serve as suffixes to the reserved 
uniform name string “dmp_TexEnv[i].” The notation {0,1,2} refers to the first, second, and third 
arguments to the reserved uniforms. 

The srcRgb{0,1,2} and srcAlpha{0,1,2} properties set the sources that are combined to yield 
the RGB color and alpha, respectively. For each of these properties you can choose a texture color, 
fragment lighting color, or vertex color as the source. 
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The operandRgb{0,1,2} and operandAlpha{0,1,2} properties set whether to send their 
respective sources directly to the combiner function, or whether to invert them before doing so. 

The combineRgb and combineAlpha properties specify the combiner functions that yield the RGB 
color and the alpha, respectively. 

The scaleRgb and scaleAlpha properties set the constants by which the output colors are 
multiplied. 

The bufferInput{0,1} property chooses the source that is input into the combiner buffer. The 
color and alpha values can be specified separately. 

8.2 Sample Texture Combiner Settings 
The example in Figure 8-3 below shows a way of rendering just the unmodified primary color. This is 
done by referencing the primary color from combiner 2 and outputting it directly to the next stage. To 
do this, first set the source 0 of combiner 2 to the primary color (GL_PRIMARY_COLOR), then set 
operand 0 to pass it through unmodified (GL_SRC_COLOR), set the combiner function to output source 
0 without modification (GL_REPLACE), and set the scaling factor to 1.0. These settings will cause the 
texture combiners to output just the primary color and apply no other effects. In this case, combiners 
0 and 1 will not affect the result at all. 

The connections for this case are illustrated in Figure 8-3 below. 

Figure 8-3: Outputting Only the Primary Color 
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These settings would look like the following when coded within a program: 

Code 8-1: Texture Combiner Settings for Outputting Only the Primary Color 
glUniform3i(LOC(”dmp_TexEnv[2].srcRgb”),GL_PRIMARY_COLOR, 

GL_PREVIOUS,GL_PREVIOUS); 

glUniform3i(LOC(”dmp_TexEnv[2].srcAlpha”),GL_PRIMARY_COLOR, 

GL_PREVIOUS,GL_PREVIOUS); 

glUniform1i(LOC(”dmp_TexEnv[2].combineRgb”),GL_REPLACE); 

glUniform1i(LOC(”dmp_TexEnv[2].combineAlpha”),GL_REPLACE); 
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glUniform3i(LOC(”dmp_TexEnv[2].operandRgb”),GL_SRC_COLOR, GL_SRC_COLOR, 

GL_SRC_COLOR); 

glUniform3i(LOC(”dmp_TexEnv[2].operandAlpha”),GL_SRC_ALPHA, GL_SRC_ALPHA, 

GL_SRC_ALPHA); 

glUniform1f(LOC(”dmp_TexEnv[2].scaleRgb”),1.0); 

glUniform1f(LOC(”dmp_TexEnv[2].scaleAlpha”),1.0); 

In the example in Code 8-1 above, the primary color is selected as source 0 for texture combiner 2, 
and passed through to output without any modification. 

Next, let’s take a look at a more complicated configuration. In the following example, we’ve configured 
the texture combiners so that textures 0 and 1 are added in texture combiner 1, and the result is then 
multiplied by the primary color in texture combiner 2. Figure 8-4 shows these connections. 

Figure 8-4: A More Complicated Example of Texture Combiner Connections 
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These connections would be coded as follows: 

Code 8-2: Texture Combiner Settings for Figure 8-4 
glUniform3i(LOC(”dmp_TexEnv[1].srcRgb”),GL_TEXTURE0, GL_TEXTURE1,GL_PREVIOUS); 

glUniform3i(LOC(”dmp_TexEnv[1].srcAlpha”),GL_TEXTURE0, 

GL_TEXTURE1,GL_PREVIOUS); 

glUniform1i(LOC(”dmp_TexEnv[1].combineRgb”),GL_ADD); 

glUniform1i(LOC(”dmp_TexEnv[1].combineAlpha”),GL_ADD); 

glUniform3i(LOC(”dmp_TexEnv[1].operandRgb”),GL_SRC_COLOR, 

GL_SRC_COLOR,GL_SRC_COLOR); 

glUniform3i(LOC(”dmp_TexEnv[1].operandAlpha”),GL_SRC_ALPHA, 

GL_SRC_ALPHA,GL_SRC_ALPHA); 

glUniform3i(LOC(”dmp_TexEnv[2].srcRgb”),GL_PREVIOUS, GL_PRIMARY_COLOR,GL_PREVIOUS); 

glUniform3i(LOC(”dmp_TexEnv[2].srcAlpha”),GL_PREVIOUS, 

GL_PRIMARY_COLOR,GL_PREVIOUS); 

glUniform1i(LOC(”dmp_TexEnv[2].combineRgb”),GL_MODULATE); 

glUniform1i(LOC(”dmp_TexEnv[2].combineAlpha”),GL_MODULATE); 

glUniform3i(LOC(”dmp_TexEnv[2].operandRgb”),GL_SRC_COLOR, 
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GL_SRC_COLOR,GL_SRC_COLOR); 

glUniform3i(LOC(”dmp_TexEnv[2].operandAlpha”),GL_SRC_ALPHA, 

GL_SRC_ALPHA,GL_SRC_ALPHA); 

Let’s try to extend this further and use a combiner buffer to let combiner 2 access combiner 0. 
Combiner 0 will output texture 0, combiner 1 will output texture 1, and combiner 2 will MODULATE the 
output of the two preceding combiners (combiners 1 and 0). 

Figure 8-5: Connections Using a Previous Buffer 
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Code 8-3: Texture Combiner Settings for Figure 8-5 
glUniform3i(LOC(”dmp_TexEnv[0].srcRgb”),GL_TEXTURE0, 

                                     GL_CONSTANT,GL_CONSTANT); 

glUniform3i(LOC(”dmp_TexEnv[0].srcAlpha”),GL_TEXTURE0, 

                                     GL_CONSTANT,GL_CONSTANT); 

glUniform1i(LOC(”dmp_TexEnv[0].combineRgb”),GL_REPLACE); 

glUniform1i(LOC(”dmp_TexEnv[0].combineAlpha”),GL_REPLACE); 

glUniform3i(LOC(”dmp_TexEnv[0].operandRgb”),GL_SRC_COLOR, 

                                     GL_SRC_COLOR,GL_SRC_COLOR); 

glUniform3i(LOC(”dmp_TexEnv[0].operandAlpha”),GL_SRC_ALPHA, 

                                     GL_SRC_ALPHA,GL_SRC_ALPHA); 

glUniform3i(LOC(”dmp_TexEnv[1].srcRgb”),GL_TEXTURE1, 

                                     GL_PREVIOUS,GL_PREVIOUS); 

glUniform3i(LOC(”dmp_TexEnv[1].srcAlpha”),GL_TEXTURE1, 

                                     GL_PREVIOUS,GL_PREVIOUS); 

glUniform1i(LOC(”dmp_TexEnv[1].combineRgb”),GL_REPLACE); 

glUniform1i(LOC(”dmp_TexEnv[1].combineAlpha”),GL_REPLACE); 

glUniform3i(LOC(”dmp_TexEnv[1].operandRgb”),GL_SRC_COLOR, 

                                     GL_SRC_COLOR,GL_SRC_COLOR); 

glUniform3i(LOC(”dmp_TexEnv[1].operandAlpha”),GL_SRC_ALPHA, 

                                     GL_SRC_ALPHA,GL_SRC_ALPHA); 

glUniform2i(LOC(”dmp_TexEnv[1].bufferInput”),GL_PREVIOUS, 
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                                     GL_PREVIOUS); 

glUniform3i(LOC(”dmp_TexEnv[2].srcRgb”),GL_PREVIOUS_BUFFER_DMP, 

                                     GL_PREVIOUS,GL_PREVIOUS); 

glUniform3i(LOC(”dmp_TexEnv[2].srcAlpha”),GL_PREVIOUS_BUFFER_DMP, 

                                     GL_PREVIOUS,GL_PREVIOUS); 

glUniform1i(LOC(”dmp_TexEnv[2].combineRgb”),GL_MODULATE); 

glUniform1i(LOC(”dmp_TexEnv[2].combineAlpha”),GL_MODULATE); 

glUniform3i(LOC(”dmp_TexEnv[2].operandRgb”),GL_SRC_COLOR, 

                                     GL_SRC_COLOR,GL_SRC_COLOR); 

glUniform3i(LOC(”dmp_TexEnv[2].operandAlpha”),GL_SRC_ALPHA, 

                                     GL_SRC_ALPHA,GL_SRC_ALPHA); 

The two values specified for dmp_TexEnv[i].bufferInput are the color and alpha, respectively. 
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9 Texture Collections 
Texture collections are a new feature provided by DMPGL 2.0. They do not exist in the OpenGL 
specification. Texture collections save texture bindings. 

There are certain situations in which multiple bindings are required to render a single object. For 
example, if an object requires both a texture and a cube map, each must be bound. If different 
textures and cube maps are used for two objects A and B, two bindings would normally be required 
for both the texture and the cube map each time you switch objects. The texture collection feature 
can be used to simplify these bindings. 

Texture collections recreate the state of a set of saved texture bindings each time you bind the texture 
collection. For example, if you bind a texture collection for object A and a texture collection for object 
B using different names, each time you bind the corresponding texture collection for an object, the 
texture bindings that were done for each object are recreated. 

Figure 9-1: Texture Bindings Using OpenGL 
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As shown in the figure above, texture binding in OpenGL is done separately for each texture. With 
DMPGL 2.0, however, binding is done using texture collection objects. Unless you reconfigure the 
bindings in a texture collection, it will function just like OpenGL. 
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Figure 9-2: Binding Using Texture Collections 
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Switching Texture Collections

When texture collections are switched, the texture objects that were associated with that texture 
collection are all switched together. 

When a new texture collection is created and bound, all bindings that have been done on the current 
textures are saved to the old texture collection, and all settings made thereafter are saved to the new 
texture collection. To restore the state saved in a texture collection, rebind the texture collection as 
shown in the figure above. This will recreate the texture bindings that were saved in the texture 
collection. 

There are two ways to create a texture collection object. You can use either glGenTextures or 
glBindTexture to bind an unused name to GL_TEXTURE_COLLECTION_DMP. In the initial state of 
DMPGL 2.0, texture collection 0 (the default texture collection) is already bound. 

Code 9-1: Creating a Texture Collection 
GLint collection; 

glGenTextures(1, &collection); 

The texture collection namespace is shared with textures. The one exception is the name “0.” 
Although this name is shared by textures, cube-map textures, and texture collections as the default 
name for all three types, care must be taken with names other than “0” to avoid naming collisions 
between texture collections and texture objects. Code 9-2 below shows how to bind a texture 
collection. When a new texture collection is bound, the bindings for texture objects that were bound 
previously are saved in the previous texture collection. 

Code 9-2: Binding a Texture Collection 
glBindTexture(GL_TEXTURE_COLLECTION_DMP, collection); 

To delete a texture collection object, use glDeleteTextures, just as you would for a texture object.  
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Code 9-3: Deleting a Texture Collection 
glDeleteTextures(1, &collection); 

If a texture collection object is deleted while it is still the currently bound object, the deletion process 
is deferred as long as the object is still in use. The actual deletion occurs when a different texture 
collection object is bound. The default texture collection (0) cannot be deleted. 
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10 Procedural Textures 

10.1 Overview of Procedural Textures 
The procedural texture unit is located at the same position in the graphics pipeline as the texture units. 
Procedural textures are similar to standard textures in that they both determine the texel color at a 
certain pair of (u, v) texture coordinates. 

However, they are different from traditional textures in that the texel color is determined through a 
procedural calculation instead of by accessing an image. The fact that texture images are not 
accessed has several benefits. For example, because competition for memory access is avoided, 
less memory is used, access to memory is sped up, and content size is reduced. Procedural textures 
work best on either completely systematic patterns or on patterns that have an element of 
randomness to them. 

Figure 10-1: Rendered Results 

Wood Grain Stone 

  

The procedural texture feature provided by DMPGL 2.0 is defined as the fourth texture unit (texture 3). 
The position of this step in the pipeline is shown in the conceptual diagram in Figure 10-2 below. Only 
texture 3 can be used as a procedural texture. Conversely, texture 3 cannot be used for anything 
other than procedural textures. 

The parameters for procedural textures are set using the reserved uniform variables 
dmp_Texture[3].*. 
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Figure 10-2: Position of Procedural Textures in the Pipeline 
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Note: With DMPGL 2.0, since mutually independent texture coordinates can only be provided for 
three of the four texture units, special methods can be used to provide coordinates to the 
texture units. For more information about these methods, refer to Chapter 7 Textures. To 
render the output of a procedural texture, that texture must be assigned as the source of a 
texture combiner. For information about how to configure texture combiners, see Chapter 8 
Texture Combiners. 

10.2 Elements Comprising the Procedural Texture Unit 
The procedural texture unit is made up of three computational units. They are connected in series and 
are referred to as the random number generation unit, the clamping unit, and the mapping unit. The 
random number generation unit is the closest to the input. The connections between the units are 
shown in Figure 10-3 below. The random number generation unit provides some fluctuation to the (u, 
v) texture coordinates. The clamping unit determines the manner in which the pattern is mirrored and 
repeated. The mapping unit calculates the texel color based on the values of the (u, v) coordinates. 

Figure 10-3: Internal Structure of the Procedural Texture Unit 
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When determining the image that is output by a procedural texture, the desired image can be 
obtained by setting the parameters according to the procedure listed below. This procedure is aimed 
at illustrating the required steps in an easy-to-understand manner. It does not take into account any of 
the restrictions imposed by the API. 

1. Enable procedural textures. 

2. Configure either RGBA-shared mode or independent alpha mode. This corresponds to the G(u,v) 
and F(g) settings in Figure 10-3 above. 

3. Select the basic shape. This corresponds to the choice of G(u,v) in Figure 10-3. 

4. Set the basic color. Colors are set as color lookup tables. This corresponds to the Color(f) setting in 
Figure 10-3. 

5. Configure the relationship between the basic shape and the color lookup table. This determines 
how the basic shape from step 3 maps to the color lookup table from step 4. This corresponds to the 
F(g) setting in Figure 10-3. 

6. Select the random-number parameters. If random numbers are necessary, enable them and set the 
amount of influence that the random numbers have in your procedural texture. If random numbers 
aren’t needed, disable them. This corresponds to the random number generation unit in Figure 10-3. 

7. Configure the settings for repetition and mirroring. This corresponds to the clamp settings in Figure 
10-3. 

This chapter describes the process of generating procedural textures in this order. If you can grasp 
these parameters, you will also have no problem understanding how to use the non-standard 
parameters. 

10.3 Enabling and Disabling Procedural Textures 
This explains how to start using procedural textures. All you have to do is set the uniform variable as 
shown below. 

Code 10-1: Enabling Procedural Textures 
glUniform1i(LOC(”dmp_Texture[3].samplerType”),GL_TEXTURE_PROCEDURAL_DMP); 

To stop using procedural textures, disable them using the following syntax: 

Code 10-2: Disabling Procedural Textures 
glUniform1i(LOC(”dmp_Texture[3].samplerType”),GL_FALSE); 

It is not possible to set GL_TEXTURE_2D for dmp_Texture[3].samplerType, unlike the other 
texture units (0, 1, and 2). 
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10.4 Choosing RGBA-Shared Mode or Independent Alpha Mode 
Choosing RGBA-shared mode or independent alpha mode amounts to choosing whether the alpha 
component is subordinate to the color, or whether the alpha component is specified independently. In 
the case of independent alpha mode, the F and G functions shown below must each be set twice. If 
you just want to try producing an output image, we recommend using RGBA-shared mode, since it 
can be configured more easily. 

Figure 10-4: Mapping Unit in RGBA-Shared Mode 
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Figure 10-5: Mapping Unit in Independent Alpha Mode 
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The syntax to specify RGBA-shared mode or independent alpha mode is shown below. 

Code 10-3: RGBA-Shared Mode 
glUniform1i(LOC(”dmp_Texture[3].ptAlphaSeparate”),GL_FALSE); 

Code 10-4: Independent Alpha Mode 
glUniform1i(LOC(”dmp_Texture[3].ptAlphaSeparate”),GL_TRUE); 

10.5 Selecting the Basic Shape 
Among the various elements that make up procedural textures, the G function is the one that 
determines the basic shape of the output image. 

The basic shape is defined by a function that maps from a given set of (u, v) coordinates in the range 
[0.0, 1.0] to a single value g. The figure below illustrates the patterns of the basic shapes, with 
arbitrary colors assigned to them. The (u, v) coordinates are both in the range [-1.0, 1.0], and the 
clamping is set to “mirrored repeat” mode. (This is described in detail later in the document.) 
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Figure 10-6: Patterns Formed by the Basic Shapes 
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Here, g has a value in the range [0.0, 1.0], and the assignment of colors in Figure 10-6 follows the 
pattern shown below. 

Figure 10-7: Relationship Between Scalar Values and Colors 
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Choose the basic shape from Figure 10-6 that most closely resembles the image you want to render 
in your procedural texture. If you want to render a random pattern, choose the shape whose non-
random elements are closest to what you’re looking for. For example, to render a wood-grain texture 
with parallel grain lines, you might choose the U or V patterns. Likewise, to render a texture that 
resembles tree stump rings, you might choose the ADDSQRT pattern. 

To set the basic shape in the procedural texture unit, set the reserved uniform 
dmp_Texture[3].ptRgbMap to the constant whose name matches the basic pattern you want to 
use. If you’re using independent alpha mode, you will also need to set the G function for the alpha 
component by configuring dmp_Texture[3].ptAlphaMap separately. 

The constants are defined using the syntax GL_PROCTEX_NameOfBasicShape_DMP. For example, 
to select the U pattern (vertical stripes), use the following syntax: 



  DMPGL 2.0 Programming Guide 

CTR-06-0004-001-D 70  2009-2011 Nintendo 
Released: May 13, 2011  CONFIDENTIAL 

Code 10-5: Setting the G(u,v) Mapping Function to the “U” Pattern 
glUniform1i(LOC(”dmp_Texture[3].ptRgbMap”), GL_PROCTEX_U_DMP); 

glUniform1i(LOC(”dmp_Texture[3].ptAlphaMap”), GL_PROCTEX_U_DMP); 

If using RGBA-shared mode, any settings assigned to the reserved uniform for the alpha component 
(dmp_Texture[3].ptAlphaMap) are ignored. 

10.6 Configuring the Color Lookup Tables 
Use the color lookup tables to set the basic colors of the pattern generated by the procedural texture. 
The R, G, B, and A components of the color are set individually using glTexImage1D. The 
internalformat and format arguments of the glTexImage1D function can only be set to 
GL_LUMINANCEF_DMP, and the type argument can only be set to GL_FLOAT. Refer to the DMPGL 
Specifications for the detailed definitions. In the example below, the color is set by defining the 
functions func_R, func_G, func_B, and func_A over the domain [0, 1.0]. These functions yield 
the individual components of the desired color. 

Code 10-6: Configuring the Color Lookup Tables for the R, G, B, and A Components 
GLfloat func_R(GLfloat x /* x must be in the range [0.0f , 1.0f] */ ){ 

 return /* Appropriate value for the R component of the F function */; 

} 

GLfloat func_G(GLfloat x /* x must be in the range [0.0f , 1.0f] */ ){ 

 return /* Appropriate value for the G component of the F function */; 

} 

GLfloat func_B(GLfloat x /* x must be in the range [0.0f , 1.0f] */ ){ 

 return /* Appropriate value for the B component of the F function */; 

} 

GLfloat func_A(GLfloat x /* x must be in the range [0.0f , 1.0f] */ ){ 

 return /* Appropriate value for the A component of the F function */; 

} 

 

// The size (SIZE) must be a power of two no greater than 128 

#define SIZE 128   

GLint ref_R = ...; // Lookup table number [0..31] 

GLint ref_G = ...; // Lookup table number [0..31] 

GLint ref_B = ...; // Lookup table number [0..31] 

GLint ref_A = ...; // Lookup table number [0..31] 

GLfloat map_color_R[SIZE+256]; // Lookup table 

GLfloat map_color_G[SIZE+256]; // Lookup table 

GLfloat map_color_B[SIZE+256]; // Lookup table 

GLfloat map_color_A[SIZE+256]; // Lookup table 

GLint texID[4]; 

for(int i=0; i< SIZE; i++){ // Set the function values 
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map_color_R[i] = func_R((GLfloat)i / (GLfloat)SIZE); 

map_color_G[i] = func_G((GLfloat)i / (GLfloat)SIZE); 

map_color_B[i] = func_B((GLfloat)i / (GLfloat)SIZE); 

map_color_A[i] = func_A((GLfloat)i / (GLfloat)SIZE); 

}; 

for(int i=0; i< SIZE; i++){ // Set the deltas of the function values 

map_color_R[i+256] = func_R((i+1) / (GLfloat)SIZE)- func_R(i / (GLfloat)SIZE); 

map_color_G[i+256] = func_G((i+1) / (GLfloat)SIZE)- func_G(i / (GLfloat)SIZE); 

map_color_B[i+256] = func_B((i+1) / (GLfloat)SIZE)- func_B(i / (GLfloat)SIZE); 

map_color_A[i+256] = func_A((i+1) / (GLfloat)SIZE)- func_A(i / (GLfloat)SIZE); 

}; 

glGenTextures(4,texID); 

glBindTexture(LUT_TEXTURE0_DMP + ref_R, texID[0]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP + ref_R, 0, 

GL_LUMINANCEF_DMP, SIZE+256, 0, GL_LUMINANCEF_DMP, GL_FLOAT, map_color_R); 

glBindTexture(GL_LUT_TEXTURE0_DMP + ref_G, texID[1]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP + ref_G, 0, 

GL_LUMINANCEF_DMP, SIZE+256, 0, GL_LUMINANCEF_DMP, GL_FLOAT, map_color_G); 

glBindTexture(GL_LUT_TEXTURE0_DMP + ref_B, texID[2]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP + ref_B, 0, 

GL_LUMINANCEF_DMP, SIZE+256, 0, GL_LUMINANCEF_DMP, GL_FLOAT, map_color_B); 

glBindTexture(GL_LUT_TEXTURE0_DMP + ref_A, texID[3]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP + ref_A, 0, 

GL_LUMINANCEF_DMP, SIZE+256, 0, GL_LUMINANCEF_DMP, GL_FLOAT, map_color_A); 

 

// To allow the reserved fragment shader to access the four lookup tables we’ve 

// created, we set each reserved uniform to the number of the corresponding 

// lookup table 

 

glUniform1i(LOC(“dmp_Texture[3].ptSamplerR”), ref_R); 

glUniform1i(LOC(“dmp_Texture[3].ptSamplerG”), ref_G); 

glUniform1i(LOC(“dmp_Texture[3].ptSamplerB”), ref_B); 

glUniform1i(LOC(“dmp_Texture[3].ptSamplerA”), ref_A); 

// Specify ptTexOffset 

glUniform1i(LOC(“dmp_Texture[3].ptTexOffset”), 0); 

// Specify ptTexWidth 

glUniform1i(LOC(“dmp_Texture[3].ptTexWidth”), SIZE); 

In RGBA-shared mode, the color lookup table set to ptSamplerA is referenced in the same way as 
the other components of the color. In independent alpha mode, the ptSamplerA setting is ignored. 

 



  DMPGL 2.0 Programming Guide 

CTR-06-0004-001-D 72  2009-2011 Nintendo 
Released: May 13, 2011  CONFIDENTIAL 

10.7 Establishing the Relationship Between the Basic Shape and the 
Color Lookup Tables 

The relationship between the G function that was selected as the basic shape and the configured 
color lookup tables is determined by the F(g) function. The conceptual diagram in Figure 10-8 below 
illustrates the relationship in a visual form. First, the G function takes a pair of (u, v) coordinates and 
determines a single g value from them. The F function then maps the g value to another value, f. 
Finally, f is used to access the color lookup tables and look up the color. By cleverly defining your F(g) 
function, you can output images with different appearances, even given the same basic shape and 
the same color lookup tables as inputs. The domain and the range of the F(g) function are both 
defined as [0.0, 1.0]. 

Figure 10-8: Determining the Relationship Between the G Function and the Color Lookup Table 

g = G(U,V) 
 

f = F(g)

0.0 1.0

F(g)

G(U,V)

 

For example, let’s assume that you’ve chosen ADDSQRT2 as the basic shape and configured your 
color lookup tables as follows: 

Figure 10-9: Sample Color Lookup Table 
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Given the color lookup tables in Figure 10-9, the images in the figure below show the effects of 
several possible definitions for the F function. 

Figure 10-10: Effects of the F(g) Function 

 0.0 1.0

F(x) = x

 

 
0.0 1.0

F(x) = 1.0-x

 

 0.0 1.0

F(x) = { 2x     .. (x<0.5)
2.0-2x .. (x≥0.5)

 

 

In RGBA-shared mode, a single F function determines the image that is output, but in independent 
alpha mode, an independent F function must be defined for the alpha component. 

In the following example shown in Code 10-7, we create two GLfloat arrays of size 256 (one for the 
F function for the RGB components, and the other for the F function for the alpha component), then 
create the F function lookup tables. These arrays must be of size 256; the first 128 elements are used 
to store the function’s values, and the last 128 elements are used to store the deltas of the function’s 
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values. This example assumes that we’ve already defined the functions func_RGB(x) and 
func_A(x), which calculate the values we want to set in our tables. The integer variables ref_RGB 
and ref_A used in the example are identification numbers for the lookup tables. They are used when 
accessing the lookup tables from a reserved uniform, and can be set to any value between 0 and 31 
(inclusive). 

Code 10-7: Registering the F(g) Mapping Function 
GLfloat func_RGB(GLfloat x /* x must be in the range [0.0f , 1.0f] */ ){ 

 return /* Appropriate value for the F_RGB function  */; 

} 

GLfloat func_A(GLfloat x /* x must be in the range [0.0f , 1.0f] */ ){ 

 return /* Appropriate value for the F_A function  */; 

} 

 

// Main body of program 

GLint ref_RGB = ...; // Lookup table number [0..31] 

GLint ref_A = ...; // Lookup table number [0..31] 

GLfloat map_F_RGB[256]; 

GLfloat map_F_A[256]; 

GLint texID[2]; 

for(int i=0;i<128;i++) // Set the function values 

map_F_RGB[i] = func_RGB(i/128.f); 

for(int i=0;i<128;i++) // Set the deltas of the function values 

map_F_RGB[i+128] = func_RGB((i+1)/128.f) – func_RGB(i/128.f); 

for(int i=0;i<128;i++) // Set the function values. 

map_F_A[i] = func_A(i/128.f); 

for(int i=0;i<128;i++) // Set the deltas of the function values 

map_F_A[i+128] = func_A((i+1)/128.f) – func_A(i/128.f); 

glGenTextures(2,texID); 

glBindTexture(GL_LUT_TEXTURE0_DMP + ref_RGB, texID[0]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP + ref_RGB, 0, 

GL_LUMINANCEF_DMP, 256, 0, GL_LUMINANCEF_DMP, GL_FLOAT, map_F_RGB); 

glBindTexture(GL_LUT_TEXTURE0_DMP + ref_A, texID[1]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP + ref_A, 0, 

GL_LUMINANCEF_DMP, 256, 0, GL_LUMINANCEF_DMP, GL_FLOAT, map_F_A); 

  

// To allow the reserved fragment shader to access the two lookup tables we’ve 

// created, we set each reserved uniform to the number of the corresponding 

// lookup table 

glUniform1i(LOC(”dmp_Texture[3].ptSamplerRgbMap”), ref_RGB); 

glUniform1i(LOC(”dmp_Texture[3].ptSamplerAlphaMap”), ref_A);  
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In RGBA-shared mode, there is no need for the map_F_A[] array used in the sample code. In 
independent alpha mode, both lookup tables are required (one for RGB and one for alpha). 

The range of values that can be set for the F function is restricted to [0.0, 1.0]. The range of the 
values that can be set for the deltas is restricted to [-1.0, 1.0]. GLfloat is the only acceptable type 
for the array passed to glTexImage1D, GL_FLOAT is the only value that can be specified for the 
type argument, and GL_LUMINANCEF_DMP is the only value that can be specified for the format 
argument. To use a configured table as the F function for the RGB components of the procedural 
texture unit, set dmp_Texture[3].ptSamplerRgbMap to the number of the lookup table. To set the 
F function for the alpha component, set dmp_Texture[3].ptSamplerAlphaMap to the number of 
the lookup table. In the sample code, these table numbers are ref_RGB and ref_A. Note that these 
numbers aren’t the name of the lookup table that was bound (texID[]). 

10.8 Configuring the Noise 
Once the relationship between the basic shape and the color lookup tables has been established, 
you’ll want to provide some fluctuation using random numbers. In this section, this fluctuation is called 
noise. To enable noise, set the reserved uniforms as shown below. 

Code 10-8: Enabling Noise 
glUniform1i(LOC(”dmp_Texture[3].ptNoiseEnable”),GL_TRUE ); 

Code 10-9: Disabling Noise 
glUniform1i(LOC(”dmp_Texture[3].ptNoiseEnable”),GL_FALSE ); 

Noise has three parameters (F, A, and P), and can be applied to change the u and v coordinates 
independently. The three parameters F, A, and P are set by reserved uniforms as shown below. 

Code 10-10 Sample Settings for Noise-Control Parameters 
glUniform3f(LOC(”dmp_Texture[3].ptNoiseU”), 0.1, 0.2, 0.3);//F=0.1,P=0.2,A=0.3 

glUniform3f(LOC(”dmp_Texture[3].ptNoiseV”), 0.2, 0.4, 0.5);//F=0.2,P=0.4,A=0.5 

The A parameter (amplitude) defines the strength of the fluctuation. Larger values for the A parameter 
cause the fluctuation to have more of an effect, meaning that the resulting image will look less like the 
original basic shape. 

Large A 
parameter

Small A 
parameter
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The F parameter (frequency) defines the fineness of the fluctuation. Larger values for the F 
parameter cause more sudden changes in fluctuation, whereas smaller values for the F parameter 
cause the fluctuation to change more gradually. 

Large F 
parameter

Small F 
parameter

 

The P parameter (phase) shifts the starting position for the fluctuation. The way in which the function 
fluctuates can be changed by altering the P parameter. 

P Parameter
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Figure 10-11 below shows six renderings; the settings used to create these renderings are identical 
except for the values for the A parameter. Without the random-number component, the settings for all 
these images would have produced perfect concentric circles. Therefore, any visible departure from 
concentric circles is caused by the random numbers. 

Figure 10-11: Relationship Between A Parameter and Shape 

 

The parameters other than A were kept constant; F was set to 0.3, and P was set to 0.0. The higher 
the A value is set, the more prominent the waves of fluctuation become. When A is set to 0.0, no 
fluctuation occurs. 

A=0.5 A=0.4 A=0.3 

A=0.2 A=0.1 A=0.0 
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Figure 10-12 below shows six renderings; the settings used to create these renderings are identical 
except for the values of the F parameter. Without the random-number component, the settings for all 
these images would have produced perfect concentric circles. Therefore, any visible departure from 
concentric circles is caused by the random numbers. 

Figure 10-12: Relationship Between F Parameter and Shape 

 

All parameters other than F were kept constant; for both the u and v components P was set to 0.0 
and A was set to 0.3. The greater the value of F, the greater the frequency becomes, resulting in a 
more finely detailed fluctuation pattern. When F is set to 0.0, no fluctuation occurs. 

F=0.6 

F=0.4 F=0.2 F=0.0 

F=1.0 F=0.8 
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Figure 10-13 below shows six renderings; the settings used to create these renderings are identical 
except for the values of the P parameter. Without the random-number component, the settings for all 
these images would have produced perfect concentric circles. Therefore, any visible departure from 
concentric circles is caused by the random numbers. 

Figure 10-13: Relationship Between P Parameter and Shape 

 

The parameters other than P were kept constant; F was set to 0.3, and A was set to 0.3. The only 
difference caused by changing P is the starting point for the fluctuation. This should be used when 
you don’t always want to start out with the same random number; for example, change the value of P 
when you want to change the fluctuation pattern used in animations. 

If you are changing P to produce an animation and set P equal to a large value, small variations in P 
will cease to affect the fluctuation. Because this phenomenon is caused by the accuracy of 
calculations in the hardware, if you change P—by adding a fixed value to it, for example—and then 
run an animation using the changed noise, you will need to restore P to a small value some time 
before it gets large. As long as F and P are positive numbers, you can get the same fluctuation results 
when F×P is a multiple of 16 and when 0 is specified for P. This allows you to maintain an animation’s 
continuity by reverting P to 0 when you calculate F×P. However, the fluctuation may not be the same 
when F×P is 16 and when 0 is specified for P if a large value has been specified for F. 

Aside from the A, F, and P parameters, you also need to configure a noise continuity or noise 
modulation function. The noise modulation function attempts to take the noise values that are 
calculated discretely, and convert them to natural, continuous values. A function that smoothes out 
the ends of the domain [0.0, 1.0] is therefore ideal. 

In Code 10-11 below, we create a table for the noise modulation function by preparing a single 
GLfloat array of size 256. This array must be of size 256, the first 128 elements are used to store 

P=1.0 P=0.5 

P=0.2 P=0.1 P=0.0 

P=2.0 
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the function’s values, and the last 128 elements are used to store the deltas of the function’s values. 
This code sample assumes that we’ve already defined the function func_N(x), which calculates the 
values we want to set in our table. The integer variable ref_Noise used in the sample is the lookup 
table's identification number. It is used when accessing lookup tables from a reserved uniform, and 
can be set to any value between 0 and 31 (inclusive). 

Code 10-11: Configuring the Noise Modulation Lookup Table 
GLfloat func_N(GLfloat x /* x must be in the range [0.0f , 1.0f] */ ){ 

 return /* Appropriate value for the noise modulation function */; 

} 

 

GLfloat map_Noise[256]; 

GLint ref_Noise = ...; // Arbitrary value in the range [0,31] 

GLint texID[1]; 

for(int i=0; i<128; i++) // Set values for the function 

map_Noise[i] = func_N(i/128.f); 

for(int i=0; i<128; i++) // Set the deltas between the function’s values 

map_Noise[i+128] = func_N((i+1)/128.f) – func_N(i/128.f); 

glGenTextures(1, texID); 

glBindTexture(GL_LUT_TEXTURE0_DMP + ref_Noise, texID[0]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP + ref_Noise, 0, 

GL_LUMINANCEF_DMP, 256, 0, GL_LUMINANCEF_DMP, GL_FLOAT, map_Noise); 

 

// To allow the reserved fragment shader to use the lookup table we’ve created, 

// we set the reserved uniform to ref_Noise. 

glUniform1i(LOC(“dmp_Texture[3].ptSamplerNoiseMap”), ref_Noise); 

Figure 10-14 Sample Noise Modulation Functions 

  

0.0 x=1.0 

0.0 

1.0 func_N(x) 

 

シフト計算  

0.0 x=1.0 

0.0 

1.0 func_N(x) 

 

The graphs in Figure 10-14 above take func_N(x) as the example noise modulation function. If a 
function like the one shown to the left is provided as the noise modulation function, the noise will be 
concentrated around the value 0.5. With the noise modulation function shown on the right, the noise 
will tend to be scattered at the values 0.0 and 1.0. The recommended function is 3𝑥2 − 2𝑥3, which is 
shown on the left in Figure 10-14. This will give the most natural appearance under most 



DMPGL 2.0 Programming Guide  

 2009-2011 Nintendo 81 CTR-06-0004-001-D 
CONFIDENTIAL  Released: May 13, 2011 

circumstances. However, the reference images that appear within this chapter simply use the function 
𝑓(𝑥) = 𝑥. 

10.9 Clamp Settings 
The clamping unit handles two operations: shift calculation and clamp calculation. Clamping is nearly 
identical to the normal wrapping modes for textures, except that features such as GL_PULSE_DMP 
and GL_CLAMP_TO_ZERO_DMP are added. The shift calculation occurs first, and clamping is then 
applied to the shifted coordinates. For the sake of convenience in describing these operations, we’ll 
describe the clamp calculation first, and then move on to the shift calculation. 

The clamp calculation converts coordinates outside the range [0.0, 1.0] to coordinates within this 
range. The table below shows the relationship between the various clamp modes and the resulting 
coordinates from each mode. 

Table 10-1: Overview of Clamp Parameters 

Clamp Mode Clamped Coordinate 

GL_SYMMETRICAL_REPEAT_DMP  
1.0 

1.0 2.0 3.0 4.0 0.0 -1.0  

GL_MIRRORED_REPEAT  
1.0 

1.0 2.0 3.0 4.0 0.0 -1.0  

GL_PULSE_DMP  
1.0 

1.0 2.0 3.0 4.0 0.0 -1.0  

GL_CLAMP_TO_EDGE  
1.0 

1.0 2.0 3.0 4.0 0.0 -1.0  

GL_CLAMP_TO_ZERO_DMP  
1.0 

1.0 2.0 3.0 4.0 0.0 -1.0  

GL_SYMMETRICAL_REPEAT_DMP repeats the same image along a grid. GL_MIRRORED_REPEAT flips 
(mirrors) the image around each even number on the axis. GL_PULSE_DMP picks up the pixel at the 
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edge of the texture that is closest to the pixel being rendered. GL_CLAMP_TO_EDGE references the 
image within the texture when its value falls within the range [-1.0, 1.0]; when the value falls outside 
of that range, it references the pixels at the edge of the texture. GL_CLAMP_TO_ZERO_DMP 
references the texture image when the value falls within the range [-1.0, 1.0]; when the value falls 
outside of that range, it references the image at coordinate 0. 

For example, to use GL_SYMMETRICAL_REPEAT_DMP for the clamp calculation, use the API to 
configure the following settings. 

Code 10-12: Clamp Parameter Configuration 
GLuint uclamp = GL_SYMMETRICAL_REPEAT_DMP; 

GLuint vclamp = GL_SYMMETRICAL_REPEAT_DMP; 

glUniform1i(LOC(”dmp_Texture[3].ptClampU”),uclamp); 

glUniform1i(LOC(”dmp_Texture[3].ptClampV”),vclamp); 

Bricklayers will often shift progressive rows of bricks by half a brick length. The shift calculation 
makes it possible to express this type of pattern. Here, a block refers to a collection of texels whose 
coordinates share the same integer portion. A shift operation refers to the act of shifting a block. The 
shift width refers to the distance a block is shifted. The conceptual diagram in Figure 10-15 below 
illustrates what a set of blocks looks like with and without shift calculation. Shift calculation is useful 
for alleviating visual monotony. The shift mode is set independently for the u and v coordinates. 
Shifting of blocks in the U direction is determined by the integer portion of each block’s v-coordinate. 
Shifting of blocks in the V direction is determined by the integer portion of each block’s u-coordinate. 

Figure 10-15 Repeating Clamps Without (Left) and with (Right) Shift Calculation 

 

Whether a given block is shifted by shift calculation depends on whether the shift mode is set to ODD 
or EVEN. The conceptual diagrams in Figure 10-16 and Figure 10-17 below illustrate shifting in both 
ODD and EVEN modes. In the figures, the u-coordinates are shifted based on the integer portion of 
the v-coordinates. 
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Figure 10-16: Shifting in ODD Mode 
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Figure 10-17: Shifting in EVEN Mode 
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1
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2n

2n+1
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While it is not possible to adjust the shift width to a value of your choosing, the shift width varies 
depending on the clamp mode. The shift width is 0.5 (half a block) for all clamp modes except for 
mirrored repeat mode, as shown in Figure 10-18 below. 
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Figure 10-18: Shift Width in Modes Other Than Mirrored Repeat Mode 

0.5

Shift Width

 

If clamping is set to mirrored repeat mode, the shift width is 1.0 (a whole block). This is because the 
broad sense of the term a single block is considered to also include the flipped (mirrored) side of the 
pattern. 

Figure 10-19: Shift Width in Mirrored Repeat Mode 

1.0

   

Shift Width
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To illustrate the effects of the SHIFT-U, SHIFT-V, CLAMP-U, and CLAMP-V parameters, we 
established the coordinate system shown in Figure 10-20 for each polygon and rendered the 
appearance of various combinations. 

Figure 10-20: Polygon and Texture Coordinates 

0, 0

0, 4 4, 4

4, 0

 

In the six rendered images shown in Figure 10-21, all settings are identical except for the shift and 
clamp modes. 
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Figure 10-21: Renderings Illustrating the Effect of Shift Mode 

 

In the figures above, the only differences are the SHIFT-U, CLAMP-U, and CLAMP-V parameters for 
each polygon. 

Table 10-2: CLAMP Parameters in Figure 10-21 

 CLAMP-U and CLAMP-V Parameters 

Top Row GL_SYMMETRICAL_REPEAT_DMP 

Bottom Row GL_MIRRORED_REPEAT 

Table 10-3: SHIFT Parameters in Figure 10-21 

 SHIFT-U Parameters 

Left GL_NONE_DMP 

Center GL_ODD_DMP 

Right GL_EVEN_DMP 

The images in the top row were rendered using repeat mode; the images in the bottom row were 
rendered using mirrored repeat mode. No shifting was done on the images in the left column. 

The upper row shows SYMMETRICAL_REPEAT_DMP mode. 
The lower row shows MIRRORED_REPEAT mode. 

Right: EVEN Center: ODD Left: NONE 
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11 DMP Fragment Lighting 
This chapter explains the fragment lighting feature provided by DMPGL 2.0. When using DMP 
fragment lighting, the reserved fragment shader provided by DMPGL 2.0 must be attached to a valid 
program object. 

Note that the term “OpenGL” within this chapter refers to OpenGL 1.x, which does not support the 
use of programmable pipelines. The term “Red Book” refers to the OpenGL Programming Guide, 
which was also written with OpenGL 1.x in mind. 

The variable i, which appears within notation for the reserved uniforms for this chapter, 
dmp_FragmentLightSource[i].*, refers to the light number. i can take values from 0 to 7. 

11.1 Overview 
DMPGL 2.0 provides fragment lighting capabilities. In other words, the use of DMPGL 2.0 lets you 
control lighting on a per-fragment basis instead of a per-vertex basis. 

DMP fragment lighting provides an interface for changing settings through reserved uniforms. This 
means that like OpenGL, the formula used for lighting calculation is fixed. The user can incorporate 
terms (consisting themselves of functions) into the lighting calculation formula. In other words, the 
user can choose both the actual functions that are used as terms of the calculation, as well as the 
arguments that are passed to these functions. The functions are specified as lookup tables. This 
method makes it possible to define a Phong, Cook-Torrance, or Schlick-like anisotropic lighting model, 
or any other shading model that can be represented by the DMP fragment lighting formula. 

To enable DMP fragment lighting, set the reserved uniform as shown below. 
glUniform1i(LOC(“dmp_FragmentLighting.enabled”), GL_TRUE); 

You must also enable one or more light sources. For example, the following code can be used to 
enable light0. 
glUniform1i(LOC(“dmp_FragmentLightSource[0].enabled”), GL_TRUE); 

11.2 Scene Range 
When using DMP fragment lighting, you must keep in mind a precaution about the range of the scene. 
The dimensions of the scene are limited to the range (-215, 215). The distance between the various 
objects that make up the scene and the viewpoint must be less than 216. When using point light 
sources, the same is true; the distance from the light to the viewpoint must be less than 216. 

11.3 Lights and Materials 

11.3.1 Ambient, Diffuse, Specular, and Emissive Light 

Like OpenGL, DMP fragment lighting uses the concepts of ambient, diffuse, specular, and emissive 
light. The OpenGL Red Book includes definitions and real-world examples of each. As we stated 



  DMPGL 2.0 Programming Guide 

CTR-06-0004-001-D 88  2009-2011 Nintendo 
Released: May 13, 2011  CONFIDENTIAL 

earlier, a major difference between OpenGL and DMP fragment lighting is that with DMP fragment 
lighting, all of these types of light act on individual fragment units. 

Another difference is that DMP fragment lighting uses two specular colors. These colors, called 
specular0 and specular1, are expressed in RGBA format. The specular1 color is used for 
modeling of monochromatic (black and white) representations. For more details about this type of 
model, see section 11.4 DMP Fragment Lighting Equations. 

However, the biggest difference between DMP fragment lighting and OpenGL is the fact that DMP 
fragment lighting contains such a variety of ways of specifying how specular light is reflected off 
objects. This is the ultimate example of the flexibility that characterizes DMP fragment lighting settings. 

11.3.2 Material Color 

Similar to materials in OpenGL, materials in DMP fragment lighting also have ambient light color, 
diffuse light color, and specular light color. The difference between DMP fragment lighting and 
OpenGL in terms of material color is that in DMP, two specular lights can be specified (specular0 
and specular1). This difference makes two-layered representations possible (for example, two-
toned paint jobs on a bicycle). 

11.3.3 Creating Light Sources 

All light source properties for DMP fragment shading are specified using the reserved uniforms 
dmp_FragmentLightSource[i].*. The table below shows the values that can be specified, along 
with the corresponding default values. 

Table 11-1: Light Source Properties for DMP Fragment Lighting and Their Default Values 

Reserved Uniform Name Default Value Description 

dmp_FragmentLightSource[i].ambient (0.0,0.0,0.0,1.0) Sets the ambient light 

dmp_FragmentLightSource[i].diffuse (1.0,1.0,1.0,1.0) 
or 
(0.0,0.0,0.0,1.0) 

Intensity of diffuse light 
(Default for light 0 is white; 
default for other lights is black) 

dmp_FragmentLightSource[i].specular0 (1.0,1.0,1.0,1.0) 
or 
(0.0,0.0,0.0,1.0) 

Intensity of specular light 0 
(Default for light 0 is white; 
default for other lights is black) 

dmp_FragmentLightSource[i].specular1 (1.0,1.0,1.0,1.0) 
or 
(0.0,0.0,0.0,1.0) 

Intensity of specular light 1 
(Default for light 0 is white; 
default for other lights is black) 

dmp_FragmentLightSource[i].position (0.0,0.0,1.0,0.0) Position of light 
(x, y, z, w) 

dmp_FragmentLightSource[i].spotDirection (0.0,0.0,-1.0) Direction of spotlight 
(x, y, z) 

If you compare Table 11-1 above with Table 5-1 in the OpenGL Red Book, you’ll notice the following 
differences: 
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1. There are two types of specular lights. This allows you to specify one more specular light than a 
strict OpenGL implementation would allow. (See section 11.3.1 Ambient, Diffuse, Specular, and 
Emissive Light.) 

2. The features that correspond to the GL_SPOT_EXPONENT and GL_SPOT_CUTOFF parameters are 
not supported. DMP fragment lighting provides a flexible means of controlling the spread of the cone 
of illumination produced by a spotlight. This is done by letting the user define a function for 
calculating the cosine of the angle between the axis of the light cone and the fragment's light vector. 
This function is specified using a lookup table (for details, see section 11.4 DMP Fragment Lighting 
Equations). 

3. DMP fragment lighting does not support features that correspond to GL_CONSTANT_ATTENUATION, 
GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION in OpenGL. As with spotlights, 
users can define their own function to control attenuation based on the distance between a fragment 
and a light source. 

The code below is an example of how to configure light sources using DMP fragment lighting. 

Code 11-1: Sample Light Source Configuration 
GLfloat la[] = {0.f, 0.f, 0.f, 1.f}; 

GLfloat ld[] = {1.f, 1.f, 1.f, 1.f}; 

GLfloat ls0[] = {0.35f, 0.35f, 0.35f, 1.f}; 

GLfloat ls1[] = {0.35f, 0.35f, 0.35f, 1.f}; 

GLfloat lpos0[] = {-35.5f, 0.f, 35.5f, 1.f}; 

GLfloat sd[] = {-1.f, -1.f, 0.f}; 

glUniform4fv(LOC(“dmp_FragmentLightSource[0].ambient”), 1, la ); 

glUniform4fv(LOC(“dmp_FragmentLightSource[0].diffuse”), 1, ld ); 

glUniform4fv(LOC(“dmp_FragmentLightSource[0].specular0”), 1, ls0); 

glUniform4fv(LOC(“dmp_FragmentLightSource[0].specular1”), 1, ls1 ); 

glUniform4fv(LOC(“dmp_FragmentLightSource[0].position”), 1, lpos0); 

glUniform3fv(LOC(“dmp_FragmentLightSource[0].spotDirection”), 1, sd); 

Note that light sources (or groups of light sources) that are created in this way are per-fragment light 
sources (or groups thereof). These are distinct from per-vertex light sources. 

11.3.4 Lighting Models 

The OpenGL functions glLightModel* are used to control the four properties of the OpenGL 
lighting model. These four properties are the following: (1) the ambient light intensity in the scene, (2) 
whether the viewer is local to the scene, (3) whether to light one face or both faces of objects, and (4) 
whether the specular color should be distinguished from the other colors. The first of these properties 
(the global ambient) is also defined for DMP fragment lighting. It is set using a reserved uniform and 
is used to calculate the global ambient light for DMP fragment lighting. For details, refer to DMP 
Fragment Lighting Equations. 
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Code 11-2: Global Ambient Light Configuration 
GLfloat al[] = {0.2f, 0.2f, 0.2f, 1.f}; 

glUniform4fv(LOC(“dmp_FragmentLighting.ambient”), 1, al); 

The viewpoint calculation for DMP fragment lighting assumes that the viewer is always local to the 
scene. 

Whether lighting calculations should be performed for both the front and back faces of objects is 
specified using the reserved uniform dmp_FragmentLightSource[i].twoSideDiffuse. Unlike 
OpenGL, DMP fragment lighting always calculates specular light independently. (See section 11.4 
DMP Fragment Lighting Equations.) 

11.3.5 Defining Material Properties 

The reserved uniforms dmp_FragmentMaterial* are used to define material properties for DMP 
fragment lighting. Note that DMP fragment lighting does not support specification of different 
properties for the front and back faces. The names and default values of the uniforms that can be 
used to specify material parameters are shown below. 

Table 11-2: Parameters Set When Defining Materials and Their Default Values 

Reserved Uniform Name Default Value Description 

dmp_FragmentMaterial.ambient (0.2, 0.2, 0.2, 1.0) Ambient color of material 

dmp_FragmentMaterial.diffuse (0.8, 0.8, 0.8, 1.0) Diffuse color of material 

dmp_FragmentMaterial.specular0 (0.0, 0.0, 0.0, 1.0) Specular 0 color of material 

dmp_FragmentMaterial.specular1 (0.0, 0.0, 0.0, 1.0) Specular 1 color of material 

dmp_FragmentMaterial.emission (0.0, 0.0, 0.0, 1.0) Emissive color of material 

dmp_FragmentMaterial.sampler{D0, 
D1,FR,RR,RG,RB}  Lookup tables used for calculating 

DMP fragment lighting 

Lookup tables for DMP fragment lighting each contain 512 entries. The first 256 entries are the lookup 
values, which must fall within the range [0, 1.0]. The following 256 entries are used to store the 
differences between each lookup value and the previous one. These differences (called “deltas” from 
this point onward) must fall within the range [-1.0, 1.0]. Spotlight distributions and distance attenuation 
distributions, like material properties, are defined by lookup tables that are loaded by the 
glTexImage1D function. (See section 11.3.3 Creating Light Sources.) 

You may have already noticed that DMP fragment lighting does not support the GL_SHININESS 
parameter. In OpenGL, GL_SHININESS is used as the exponent of the dot product of a normal and a 
half-angle vector. DMP fragment lighting, on the other hand, allows you to specify any function of your 
choice, not just the exponent. If you want to use an exponential function like the one OpenGL uses to 
calculate specular light, just specify an exponential function to the lookup table. Code 11-3 below 
specifies an exponential function that behaves in the same way as if GL_SHININESS had been set to 
30 in OpenGL. (For details, see section 11.4 DMP Fragment Lighting Equations.) 
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Code 11-3: Material Definition 
GLfloat mat_specular0[] = {1.f, 0.8f, 0.6f, 1.f};   

GLfloat mat_diffuse [] = {0.8f, 0.6f, 0.4f, 1.f}; 

GLfloat mat_ambient [] = {0.f, 0.f, 0.f, 1.f}; 

glUniform4fv(LOC(“dmp_FragmentMaterial.specular0”), 1, mat_specular0); 

glUniform4fv(LOC(“dmp_FragmentMaterial.ambient”), 1, mat_ambient); 

glUniform4fv(LOC(“dmp_FragmentMaterial.diffuse”), 1, mat_diffuse); 

 

GLfloat lut[512]; 

int j; 

for (j = 0; j < 256; j++) 

    lut[j] = powf((float)j/256.f, 30.f); 

for (j = 0; j < 255; j++) 

    lut[j + 256] = lut[j + 1] - lut[j]; 

lut[255 + 256] = 1.f - lut[255]; 

glTexImage1D(GL_LUT_TEXTURE0_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerD1"), 0); 

11.4 DMP Fragment Lighting Equations 
This section explains the equations that are used when calculating lighting. 

DMP fragment lighting operates on a per-fragment basis. Unlike OpenGL, DMP fragment lighting 
always calculates two colors: the primary and secondary colors. OpenGL only calculates both if the 
lighting model is set to GL_SEPARATE_SPECULAR_COLOR. 

Equation 11-1: Calculation of Primary and Secondary Colors 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑜𝑙𝑜𝑟 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑣𝑒 𝑙𝑖𝑔ℎ𝑡 𝑓𝑟𝑜𝑚 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
+𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑙𝑖𝑔ℎ𝑡 
+𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑎𝑛𝑑 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑙𝑖𝑔ℎ𝑡 𝑓𝑟𝑜𝑚 𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑙𝑜𝑟 = 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 𝑙𝑖𝑔ℎ𝑡 𝑓𝑟𝑜𝑚 𝑙𝑖𝑔ℎ𝑡 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

11.4.1 Primary Color 

The equation shown below explains how the primary color is calculated in greater detail. 

Equation 11-2: Detailed Calculation of Primary Color 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑜𝑙𝑜𝑟 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑣𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑚𝑜𝑑𝑒𝑙 × 𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  

+�(𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠𝑝𝑜𝑡𝑙𝑖𝑔ℎ𝑡𝑖) × (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖)
𝑛−1

𝑖=0

 

× (𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 × 𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + (𝑚𝑎𝑥{𝑳𝒊 ∙ 𝒏, 0} 𝑜𝑟 𝑎𝑏𝑠(𝑳𝒊 ∙ 𝒏)) 
× 𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 × 𝐷𝑖𝑓𝑓𝑢𝑠𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 × (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖)) 
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The value used for the (𝑚𝑎𝑥 {𝑳𝒊 ∙ 𝒏, 0} 𝑜𝑟 𝑎𝑏𝑠(𝑳𝒊 ∙ 𝒏) ) term will depend on the value of the reserved 
uniform dmp_FragmentLightSource[i].twoSideDiffuse. In other words, if 
GL_LIGHT_ENV_TWO_SIDE_DIFFUSE is true, the absolute value of 𝑳 ∙ 𝒏 will be used. Otherwise, 
the greater of the two values 𝑳 ∙ 𝒏 and 0 will be used. The latter case is analogous to the one-sided 
lighting feature of OpenGL. 

The terms that appear within the equation are described below. 

11.4.1.1 Effect of Spotlight 

The (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠𝑝𝑜𝑡𝑙𝑖𝑔ℎ𝑡𝑖) term is used for modeling the distribution of the light from a spotlight, just 
as it is with OpenGL. However, in DMP fragment lighting the distribution itself can be defined freely 
with a lookup table. The following procedure is used to enable spotlights. 

Code 11-4: Enabling Spotlights 
glUniform1i(LOC(“dmp_FragmentLightSource[i].spotEnabled”), GL_TRUE);  

In this case, a spotlight will only be enabled for the ith light, and the ith light’s own lookup table will 
be used. 

Use the following code to disable a spotlight. Spotlights are disabled by default. 

Code 11-5: Disabling Spotlights 
glUniform1i(LOC(“dmp_FragmentLightSource[i].spotEnabled”), GL_FALSE);  

11.4.1.2 Effect of Shadow Attenuation 

The (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖) term is an element for adjusting the shadow, and is sampled 
from the texture configured in the reserved uniform dmp_LightEnv.shadowSelector. The 
(𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖) term can be replaced by a value of 1 using the following command. 

Code 11-6: Replacing the Shadow Attenuation Term with One 
glUniform1i(LOC(“dmp_FragmentLightSource[i].shadowed”), GL_FALSE); 

11.4.1.3 Effect of Distance Attenuation 

The 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖 term is an element for adjusting distance attenuation and is 
used to get a distribution that depends on the distance between an object and a light source, just as it 
is with OpenGL. That said, the distribution itself can be defined freely with a lookup table. The code 
sample below shows how to enable distance attenuation. 

Code 11-7: Enabling Distance Attenuation 
glUniform1i(LOC(“dmp_FragmentLightSource[i].distanceAttenuationEnabled”), 

 GL_TRUE); 

To disable distance attenuation, you would use the following code. Distance attenuation is disabled by 
default. 
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Code 11-8: Disabling Distance Attenuation 
glUniform1i(LOC(“dmp_FragmentLightSource[i].distanceAttenuationEnabled”), 

 GL_FALSE); 

All other terms in the equation have the same meanings as those defined by OpenGL. 

11.4.2 Secondary Color 

The secondary color is calculated as follows. 

Equation 11-3: Detailed Calculation of Secondary Color 

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑙𝑜𝑟

= �(𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠𝑝𝑜𝑡𝑙𝑖𝑔ℎ𝑡𝑖) × (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖)
𝑛−1

𝑖=0

× (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖) × 𝑓𝑖  
                           × (𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 × 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 × 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛0 × 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖  
                           +𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 × (𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝒐𝒓 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙) × 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛1

× 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖) 

If you compare this with the equation that appears in the OpenGL Red Book for calculating the 
secondary color, you’ll notice that in the DMP fragment lighting secondary color equation there are 
two terms for the specular light: 

𝑇𝑒𝑟𝑚0 = 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 × 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 × 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛0 × 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 
𝑇𝑒𝑟𝑚1 = 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 × (𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑟 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙) × 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛1

× 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 

In the corresponding OpenGL function, there is only one such term: 

(𝑚𝑎𝑥{𝑵 ∙ 𝑯𝑖 , 0})𝑠ℎ𝑖𝑛𝑖𝑛𝑒𝑠𝑠 × 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 × 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

You can reduce the DMP fragment lighting equation to the same equation as the one used by 
OpenGL to calculate specular light. To do so, set 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛0 to an exponential function (use 
𝑵 ∙ 𝑯𝒊 as the argument, and use the shininess as the exponent), set 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 to 1, 
and set 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 to zero. However, DMP fragment lighting has another term of the same 
type. This lets you construct two-layered models, which for example can be used to represent two-
tone paint. Use of the two-term equation doesn’t only enable two-layer modeling; it could also be 
used to represent translucent models. In that case, you would use the first term to represent 
subsurface scattering, and the second term to represent the ordinary surface reflection. 

The terms that appear within Equation 11-3 are described below. The terms (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠𝑝𝑜𝑡𝑙𝑖𝑔ℎ𝑡𝑖), 
(𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖), and (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖) have the same meanings 
that were already provided by the description of the primary color in section 11.4.1 Primary Color. 
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11.4.2.1 Clamping of Unlit Areas 

The function 𝑓𝑖 is 1 if 𝐿 ∙ 𝑛 >0 or 0 otherwise. This means that, like OpenGL, if a fragment is facing 
away from light 𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖, the secondary color will be zero. This is enabled by default, or if the 
following instruction is issued. 

Code 11-9: Enabling Clamping of Unlit Areas 
glUniform1i(LOC(“dmp_LightEnv.clampHighlights“), GL_TRUE); 

If the following instruction is issued, the value 1 is used instead of 𝑓𝑖. 

Code 11-10: Disabling Clamping of Unlit Areas 
glUniform1i(LOC(“dmp_LightEnv.clampHighlights“), GL_FALSE); 

If you disable clamping of unlit areas, light can then pass through to areas where light would not 
normally reach. This setting is used for translucent materials that use strong subsurface scattering, 
such as wax, skin, and marble. 

11.4.2.2 Geometry Factors 

The terms 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 and 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 are required elements for 
constructing a Cook-Torrance shading model. 

The term 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟𝑗𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 (where j is 0 or 1) is included when the reserved uniform 
dmp_FragmentLightSource[i].geomFactorj is set to GL_TRUE. Include the code shown in 
Code 11-11 when you don’t want to include the geometry factors. 

Code 11-11: Code for Not Using Geometry Factors 
glUniform1i(LOC(“dmp_FragmentLightSource[i].geomFactor0“), GL_FALSE); 

glUniform1i(LOC(“dmp_FragmentLightSource[i].geomFactor1“), GL_FALSE); 

With these settings, the value 1 is used for the geometry factors during DMP fragment lighting 
calculation. 

11.4.2.3 Distributions and Reflection 

The terms 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛0, 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛1, and 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 are sampled values from lookup tables. 
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛0 and 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛1 each indicate one sample value. 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 indicates a vector 
with three elements, each of which is interpreted as an RGB value. When this term is multiplied by 
𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖, the multiplication is done individually for each element. 

11.5 Defining the Lighting Environment 
The reserved uniforms dmp_LightEnv.* and dmp_FragmentLightSource[i].* are used to 
specify how light sources interact with materials and properties. 

11.5.1 Lighting Environment Parameters 

The reserved uniforms in the table below are all set to one of two values, GL_FALSE or GL_TRUE. 
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Table 11-3: Boolean Lighting Environment Parameters and Their Default Values 

Reserved Uniform Name Default 
Value Description 

dmp_LightEnv.lutEnabledRefl GL_FALSE Sets whether to use the 
value 1 or a lookup table 
as the reflection 
component of term 1 

dmp_FragmentLightSource[i].twoSideDiffuse GL_FALSE Sets whether to use 
𝑎𝑏𝑠(𝐋 ∙ 𝐧) or 𝑚𝑎𝑥 {L∙n, 0} 

dmp_LightEnv.bumpRenorm GL_FALSE Enables or disables 
recalculation of the bump 
vectors 

dmp_LightEnv.clampHighlights GL_TRUE Sets whether to clamp the 
specular color to 0 when 

0 

dmp_FragmentLightSource[i].geomFactor0 GL_FALSE Sets whether to use the 
geometry factor in term 0 

dmp_FragmentLightSource[i].geomFactor1 GL_FALSE Sets whether to use the 
geometry factor in term 1 

dmp_LightEnv.lutEnabledD0 GL_FALSE Sets whether to use a 
lookup table or the value 1 
as the distribution 
component of term 0 

dmp_LightEnv.lutEnabledD1 GL_FALSE Sets whether to use a 
lookup table or the value 1 
as the distribution 
component of term 1 

dmp_FragmentLightSource[i].shadowed GL_FALSE Configures the use of 
shadow 

dmp_LightEnv.shadowPrimary GL_FALSE Applies shadow 
attenuation to the primary 
color 

dmp_LightEnv.shadowSecondary GL_FALSE Applies shadow 
attenuation to the 
secondary color 

dmp_LightEnv.shadowAlpha GL_FALSE Applies shadow 
attenuation to the alpha 
component 

dmp_LightEnv.invertShadow GL_FALSE Inverts shadow attenuation 

dmp_LightEnv.absLutInput{D0,D1,FR,SP,RR 
RG,RB} 

GL_FALSE Configures either [0,1] 
or [-1,1] as the range of 
the arguments of various 
lookup tables 

dmp_FragmentLightSource[i].spotEnabled GL_FALSE Applies spotlights 
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Reserved Uniform Name Default 
Value Description 

dmp_FragmentLightSource[i].distanceAttenuationEnabled GL_FALSE Applies distance 
attenuation 

The non-boolean reserved uniforms (as shown below) can take parameters other than GL_FALSE 
and GL_TRUE. 

Table 11-4: Non-Boolean Lighting Environment Parameters and Their Default Values 

Reserved Uniform Name Values 

dmp_LightEnv.lutInput{D0,D1,SP} GL_LIGHT_ENV_NH_DMP, 
GL_LIGHT_ENV_VH_DMP, 
GL_LIGHT_ENV_NV_DMP, 
GL_LIGHT_ENV_LN_DMP, 
GL_LIGHT_ENV_SP_DMP, or 
GL_LIGHT_ENV_CP_DMP 

dmp_LightEnv.lutInput{FR,RR,RG,RB} GL_LIGHT_ENV_NH_DMP, 
GL_LIGHT_ENV_VH_DMP, 
GL_LIGHT_ENV_NV_DMP or 
GL_LIGHT_ENV_LN_DMP 

dmp_LightEnv.lutScale{D0,D1,SP,FR,RR,RG,RB} 1.0, 
2.0, 
3.0, 
4.0, 
8.0, 
0.5, or 
0.25 

dmp_LightEnv.config GL_LIGHT_ENV_LAYER_CONFIG0_DMP, 
GL_LIGHT_ENV_LAYER_CONFIG1_DMP, 
GL_LIGHT_ENV_LAYER_CONFIG2_DMP, 
GL_LIGHT_ENV_LAYER_CONFIG3_DMP, 
GL_LIGHT_ENV_LAYER_CONFIG4_DMP, 
GL_LIGHT_ENV_LAYER_CONFIG5_DMP, 
GL_LIGHT_ENV_LAYER_CONFIG6_DMP or 
GL_LIGHT_ENV_LAYER_CONFIG7_DMP 

dmp_LightEnv.bumpMode GL_LIGHT_ENV_BUMP_NOT_USED_DMP, 
GL_LIGHT_ENV_BUMP_AS_BUMP_DMP, or 
GL_LIGHT_ENV_BUMP_AS_TANG_DMP 

dmp_LightEnv.fresnelSelector GL_LIGHT_ENV_NO_FRESNEL_DMP, 
GL_LIGHT_ENV_PRI_ALPHA_FRESNEL_DMP, 
GL_LIGHT_ENV_SEC_ALPHA_FRESNEL_DMP, or 
GL_LIGHT_ENV_PRI_SEC_ALPHA_FRESNEL_DMP 

dmp_LightEnv.bumpSelector 
dmp_LightEnv.shadowSelector 

GL_TEXTURE0,  
GL_TEXTURE1, 
GL_TEXTURE2, or 
GL_TEXTURE3 

dmp_FragmentLightSource[i].distanceAttenuationBias Any float value 

dmp_FragmentLightSource[i].distanceAttenuationScale Any float value 
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11.5.2 Lookup Tables 

Up to 22 lookup tables used for lighting calculations can be bound at a given time. The corresponding 
reserved uniforms are shown below. 
dmp_FragmentMaterial.samplerD0, 

dmp_FragmentMaterial.samplerD1, 

dmp_FragmentMaterial.samplerFR, 

dmp_FragmentMaterial.samplerRR, 

dmp_FragmentMaterial.samplerRG, 

dmp_FragmentMaterial.samplerRB, 

dmp_FragmentLightSource[i].samplerSP (where i is an integer from 0 to 7), 

dmp_FragmentLightSource[i].samplerDA (where i is an integer from 0 to 7) 

In order, these represent distribution 0, distribution 1, the Fresnel factors, the R, G, and B components 
of the reflection, the effect of spotlights for lights 0-7, and the effect of distance attenuation for lights 0-7. 

11.5.3 Binding Lookup Tables 

Lookup tables are managed by means of a texture object and a target for the lookup table. Instances 
of lookup tables are bound using these texture objects and targets. 

In Code 11-12 below, we create a lookup table by preparing a single float array of size 512. This 
array must be of size 512; the first 256 elements are used to store the function’s values, and the last 
256 elements are used to store the deltas of the function’s values. The roles of these blocks of 
elements cannot be changed. This code sample assumes that we’ve already defined the function 
func(x), which calculates the values we want to set in our table. The integer variable ref_func 
used in the code sample is the lookup table's identification number. It is used when accessing the 
created lookup table from a reserved uniform, and can be set to any value between 0 and 31 
(inclusive). 

Code 11-12: Binding a Lookup Table 
GLfloat func(GLfloat x /* x must be in the range [0.f , 1.f] */ ) 

{ 

    return /* Return as the value of the lookup table */; 

} 

 

GLfloat map_func[512]; 

GLint ref_func = ...; // Arbitrary value in the range [0,31] 

GLint tex_name; 

for (int i = 0; i < 256; i++) // Set the function values 

    map_func[i] = func((float)i/256.f); 

for (int i = 0; i < 256; i++) // Set the deltas of the function values 

    map_func[i+256] = func((float)(i+1)/256.f) – func(i/256.f); 

glGenTextures(1, &tex_name); 

glBindTexture(GL_LUT_TEXTURE0_DMP+ref_func, tex_name); 
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glTexImage1D(GL_LUT_TEXTURE0_DMP+ref_func, 0, 

    GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, GL_FLOAT, map_func); 

 

// To allow the reserved fragment shader to use the lookup table we’ve created, 

// set a reserved uniform to ref_func. 

glUniform1i(LOC(“ReservedUniformToBindWithLookupTable”), ref_func); 

11.5.4 Layer Configuration 

As explained in section 11.4 DMP Fragment Lighting Equations, lookup tables for materials are used 
to represent various characteristics of materials like the spotlight and reflection distributions. Layer 
configurations determine which lookup tables are used within the lighting equations for the primary 
and secondary colors, and where in the lighting equations those lookup tables are used. 

Table 11-5 describes the layer configurations for the secondary color. 

Table 11-5: Layer Configurations for the Secondary Color in DMP Fragment Lighting 

Layer Configuration 
Lookup Table Assignments 

 
Rr Rg Rb D0 D1 Fr Sp 

GL_LIGHT_ENV_LAYER_CONFIG0_DMP RR RR RR D0 - - SP 1 

GL_LIGHT_ENV_LAYER_CONFIG1_DMP RR RR RR - - FR SP 1 

GL_LIGHT_ENV_LAYER_CONFIG2_DMP RR RR RR D0 D1 - - 1 

GL_LIGHT_ENV_LAYER_CONFIG3_DMP - - - D0 D1 FR - 1 

GL_LIGHT_ENV_LAYER_CONFIG4_DMP RR RG RB D0 D1 - SP 2 

GL_LIGHT_ENV_LAYER_CONFIG5_DMP RR RG RB D0 - FR SP 2 

GL_LIGHT_ENV_LAYER_CONFIG6_DMP RR RR RR D0 D1 FR SP 2 

GL_LIGHT_ENV_LAYER_CONFIG7_DMP RR RG RB D0 D1 FR SP 4 

The numbers in the third column in Table 11-5 indicate how many hardware cycles are required for 
the lighting calculations with the various layer configurations. For high-speed calculation, we 
recommend choosing a layer configuration with a low number. 

The correspondences between the terms within the lighting equation for the secondary color and the 
assignments in Table 11-5 are shown below. 

• Rr: R component of Reflection 
• Rg: G component of Reflection 
• Rb: B component of Reflection 
• D0: Distribution0 
• D1: Distribution1 
• Sp: Effect of spotlights 

You can choose only a single layer configuration, and it applies to all per-fragment light sources. For 
example, if you selected layer configuration 0 using the function below, the secondary color equation 
would be as shown in Equation 11-4. 
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Code 11-13: Selecting Layer Configuration 0 
glUniform1i(LOC(“dmp_LightEnv.config”), GL_LIGHT_ENV_LAYER_CONFIG0_DMP); 

Equation 11-4: Secondary Color Equation Using Layer Configuration 0 

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑙𝑜𝑟 = �𝑆𝑃 × (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖) × (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑖) × 𝑓𝑖

𝑛−1

𝑖=0

 

                                       × (𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 × 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 × 𝐷0 × 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖  
                                       +𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖 × (𝑅𝑅 𝒐𝒓 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙) × 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖) 

Because no lookup table is assigned to D1 in layer configuration 0 in Table 11-5, distribution 1 is 
removed from the equation altogether (it is replaced with the value 1). 

As an example, the code sample below uses a single light source (light source 0) and assigns the 
lookup tables RR, D0, and SP to light source 1. 

Code 11-14: Assigning Lookup Tables RR, D0, and SP to Light Source 1 
glUniform1i(LOC(“dmp_LightEnv.config”), GL_LIGHT_ENV_LAYER_CONFIG0_DMP); 

glTexImage1D(GL_LUT_TEXTURE0_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut0); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRR"), 0); 

glTexImage1D(GL_LUT_TEXTURE1_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut1); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerD0"), 1); 

glTexImage1D(GL_LUT_TEXTURE2_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut2); 

glUniform1i(LOC("dmp_FragmentLightSource[0].samplerSP"), 2); 

With the lookup table assignments in the code sample above, the secondary color equation becomes 
the following. 

Equation 11-5: Secondary Color Equation for Code 11-14 

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑙𝑜𝑟 = lut2 × (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛0) × (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛0) × 𝑓0 
                                       × (𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_0 × 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 × lut1 × 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_0 
                                       +𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_0 × (lut0 𝒐𝒓 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙) × 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_0) 

11.5.5 Selecting Lookup Table Arguments 

Table 11-6 below is a list of input values to the lookup tables. These values are constants that are set 
for the reserved uniforms dmp_LightEnv.lutInput*. (However, only 
LIGHT_ENV_{NH,VH,NV,LN}_DMP can be used as input to 
dmp_LightEnv.lutInput{FR,RR,RG,RB}.) 
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Table 11-6: List of Constants Set for dmp_LightEnv.lutInput* 

Constants Available as 
Parameters Description 

LIGHT_ENV_NH_DMP Cosine of the angle formed by the normal and the half-angle vector  

LIGHT_ENV_VH_DMP Cosine of the angle formed by the view vector and the half-angle vector  

LIGHT_ENV_NV_DMP Cosine of the angle formed by the normal and the view vector  

LIGHT_ENV_LN_DMP Cosine of the angle formed by the light vector and the normal  

LIGHT_ENV_SP_DMP Cosine of the angle formed by the inverse light vector and the spotlight direction  

LIGHT_ENV_CP_DMP Cosine of the angle  formed by the projection of the half-angle vector on the 
tangent plane and the tangent vector  (see Figure 11-1 below) 

Figure 11-1: Basic Vectors and Angles Used in Lighting Calculations 
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By assigning the arguments that serve as inputs to the lookup tables, in Code 11-15 we can complete 
the example of how to use lookup tables that we started in Code 11-14. 

Code 11-15: How to Use Lookup Tables 
glUniform1i(LOC(“dmp_LightEnv.config”), GL_LIGHT_ENV_LAYER_CONFIG0_DMP); 

glTexImage1D(GL_LUT_TEXTURE0_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut0); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRR"), 0); 

glTexImage1D(GL_LUT_TEXTURE1_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut1); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerD0"), 1); 

glTexImage1D(GL_LUT_TEXTURE2_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut2); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerSP"), 2); 

 

glUniform1i(LOC(“dmp_LightEnv.lutInputRR”), GL_LIGHT_ENV_NH_DMP); 

glUniform1i(LOC(“dmp_LightEnv.lutInputD0”), GL_LIGHT_ENV_NV_DMP); 
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glUniform1i(LOC(“dmp_LightEnv.lutInputSP”), GL_LIGHT_ENV_LN_DMP); 

In the following example, the secondary color equation becomes as shown when it uses the lookup 
tables and inputs set in Code 11-15. 

Equation 11-6: Secondary Color Equation Using Lookup Tables as in Code 11-15 

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑙𝑜𝑟
= lut2(𝑳 ∙ 𝑵) × (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛0) × (𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛0)
× 𝑓0 

                                 × (𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_0 × 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟0𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 × lut1(𝑵 ∙ 𝑽) × 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟0𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_0 
                                 +𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_0 × (lut0(𝑵 ∙ 𝑯) 𝒐𝒓 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

× 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝐹𝑎𝑐𝑡𝑜𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_0) 

11.5.6 Adjusting Lookup Table Output Values 

As we explained in section 11.3.5, material lookup tables store values in the range [0, 1]. Because 
many terms are multiplied together in the lighting equations, it may sometimes be necessary to 
increase the size of the values that are sampled from the lookup tables. In other words, there may be 
situations when you need your lookup tables to output values larger than the [0, 1] range. Scaling 
factors for lookup tables have been provided for this purpose. The following values can be used as 
scaling factors: 1.0, 2.0, 4.0, 8.0, 0.5, and 0.25. 

11.5.7 Tangent Vectors 

When using anisotropic representations or normal mapping, it may be necessary to specify tangent 
vectors in addition to the normals defined for the vertices. The normals and tangent vectors specified 
here are the basis vectors that construct the tangent space defined by the vertices. (The basis 
vectors of this tangent space are T, B, and N, as shown in Figure 11-1.) Furthermore, the vertex 
program must convert the rotation matrix constructed of these basis vectors (shown below) to a 
quaternion, and output that quaternion. The equation below is a rotation matrix that converts from 
tangent space to eye space. 

Equation 11-7: Rotation Matrix to Convert from Tangent Space to Eye Space 

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥 = �
𝑇𝑥 𝐵𝑥 𝑁𝑥
𝑇𝑦 𝐵𝑦 𝑁𝑦
𝑇𝑧 𝐵𝑧 𝑁𝑧

� 

11.5.8 Normal Mapping 

The normals of each fragment within a surface are calculated by interpolating between vertices. 
When using what is also known as bump mapping, it is necessary to apply perturbation to these 
“smooth” normals. 



  DMPGL 2.0 Programming Guide 

CTR-06-0004-001-D 102  2009-2011 Nintendo 
Released: May 13, 2011  CONFIDENTIAL 

In this case, you select a texture to serve as the bump texture. The R, G, and B channels of the bump 
texture store the perturbation normals x, y, and z in the tangent space (the space that has the basis 
vectors T, B, and N, as shown in Figure 11-1). Each perturbation normal is a value in the range [-1.0, 1.0]. 

An example of normal mapping is shown below. 

Code 11-16: Normal Mapping 
glUniform1i(LOC(“dmp_LightEnv.bumpMode”), GL_LIGHT_ENV_BUMP_AS_BUMP_DMP); 

glUniform1i(LOC(“dmp_LightEnv.bumpSelector”), GL_TEXTURE1); 

glUniform1i(LOC(“dmp_LightEnv.bumpRenorm”), GL_TRUE); 

The third line in this code sample generates the z component. This is useful in eliminating 
quantization noise, which can occur due to a lack of bit precision (8 bits per coordinate) in the bump 
image. This is also required when using textures in formats such as GL_HILO8_DMP, for which there 
is no z component. 

The use of normal mapping requires that tangent vectors be assigned for the vertices (see section 
11.5.7 Tangent Vectors for more information). 

11.5.9 Tangent Mapping 

It is also possible for tangent vectors to be perturbed. An example is shown below. 

Code 11-17: Setting the Tangent 
glUniform1i(LOC(“dmp_LightEnv.bumpMode”), GL_LIGHT_ENV_BUMP_AS_TANG_DMP); 

glUniform1i(LOC(“dmp_LightEnv.bumpSelector”), GL_TEXTURE1); 

glUniform1i(LOC(“dmp_LightEnv.bumpRenorm”), GL_FALSE); 

The first line in Code 11-17 specifies that the bump texture is to be used as a tangent map. The 
second line specifies the texture to use. The third line disables generation of the z component. 
Generation of the z component assumes that the bump texture is being used for bump mapping; it is 
not necessary for tangent mapping. 

11.6 Defining Quaternions 
With DMP fragment lighting, normal vectors and view vectors are targets for rasterization just like vertex 
coordinates are. As a result, your vertex shaders must output both normal vectors and view vectors. 
Note that while view vectors can be output directly from the vertex shaders, the same is not true for 
normal vectors. Normal vectors are considered to be one of the basis vectors that construct the tangent 
space (a.k.a. surface-local space), and the tangent space is defined on a per-vertex basis. To make 
these basis vectors into vertex shader output attributes, they are first converted into quaternions. 

The same is true when using normal vectors as vertex attributes, as is the case when using 
anisotropic reflection models or bump mapping. Like normal vectors, tangent vectors are also 
considered to be one of the basis vectors that construct the tangent spaces defined on a per-vertex 
basis. Tangent vectors are output as quaternions. 
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The C function in Code 11-18 below converts the rotation matrix m in Equation 11-7 to the quaternion 
array quat. 

Code 11-18: Function to Convert a Rotation Matrix to Quaternions 
void matrix_to_quat( float quat[4], const float m[3][3] ) 

{ 

    float tr, s, q[4]; 

    int i, j, k; 

    int nxt[3] = {1, 2, 0}; 

 

    tr = m[0][0]+m[1][1]+m[2][2]; 

 

    if ( tr > 0.f ) 

    { 

        s = sqrtf(tr+1.f); 

        quat[3] = s/2.f; 

        s = 0.5f/s; 

        quat[0] = (m[1][2]-m[2][1])*s; 

        quat[1] = (m[2][0]-m[0][2])*s; 

        quat[2] = (m[0][1]-m[1][0])*s; 

    } 

    else 

    { 

        i = 0; 

        if (m[1][1] > m[0][0]) i = 1; 

        if (m[2][2] > m[i][i]) i = 2; 

        j = nxt[i]; 

        k = nxt[j]; 

 

        s = sqrtf(m[i][i]-(m[j][j]+m[k][k])+1.f); 

        q[i] = s*0.5f; 

        if (s != 0.f) s = 0.5f/s; 

        q[3] = (m[j][k]-m[k][j])*s; 

        q[j] = (m[i][j]+m[j][i])*s; 

        q[k] = (m[i][k]+m[k][i])*s; 

        quat[0] = q[0]; 

        quat[1] = q[1]; 

        quat[2] = q[2]; 

        quat[3] = q[3]; 

    } 

} 
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11.7 Lookup Table Configuration 
As stated in section 0 The terms 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛0, 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛1, and 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 are sampled values 
from lookup tables. 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛0 and 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛1 each indicate one sample value. 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 
indicates a vector with three elements, each of which is interpreted as an RGB value. When this term 
is multiplied by 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟1𝑙𝑖𝑔ℎ𝑡_𝑠𝑟𝑐_𝑖, the multiplication is done individually for each element. 

Defining the Lighting Environment,, each lookup table consists of an array of type float with 512 
elements, the first 256 of which are used for storing the function’s values, and the last 256 of which 
are used for storing the deltas between the function’s values. The size of the array cannot be 
changed, nor can the roles of these blocks of elements. If dmp_LightEnv.absLutInput* is set to 

GL_TRUE, the lookup table’s output value is calculated as follows, given input value a in the range 

[0.0, 1.0]: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑇𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒,𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑎 × 256) 𝑎𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 
                        + 𝑇𝑎𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒,𝑢𝑠𝑖𝑛𝑔 (256 + 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑎 × 256)) 𝑎𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 
                                  ×  𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑎 × 256) 

In other words, this is 𝑂𝑢𝑡𝑝𝑢𝑡 =  𝐿𝑈𝑇(⌊𝑎 × 256⌋) + 𝐿𝑈𝑇(⌊𝑎 × 256⌋ + 256) × {𝑎 × 256}. 

The fractional portion has a precision of 4 bits, and the maximum possible value of (𝑎 × 256) given 
input value 𝑎 is only 255.9375. As a result, if you configure your lookup table in the manner shown in 
Code 11-12, it is not possible to obtain func(1.0) in return for the maximum input value. 

To obtain func(1.0) in return for the maximum input value, you must revise your lookup table 
configuration. An example is shown below. 

 
GLfloat func(GLfloat x /* x must be in the range [0.f , 1.f] */ ) 

{ 

    return /* Return as the value of the lookup table */; 

} 

 

GLfloat map_func[512]; 

GLint ref_func = ...; // Arbitrary value in the range [0,31] 

GLint tex_name; 

for (int i = 0; i < 256; i++) // Set the function’s values 

    map_func[i] = func((float)i/256.f); 

for (int i = 0; i < 255; i++) // Set the deltas of the function’s values 

    map_func[i+256] = map_func[i+1] – map_func[i]; 

map_func[511] = (func(1.f)-map_func[255])*16.f/15; 
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12 Illumination Models in DMP Fragment Lighting 

12.1 Specular and Diffuse Reflections 
Different materials reflect light in different ways. For example, metals that have smooth, mirror-like 
surfaces perfectly reflect incident light by reflecting it all in a single direction. Light that is reflected in 
this way is called specular light. 

Figure 12-1: Specular and Diffuse Reflections 

 

The image on the left in Figure 12-1 shows the reflection of light off a mirror (specular reflection). The 
image on the right shows the scattered reflections off a polished metal (diffuse reflection). 

The angle of reflection is the same as the angle of incidence. This principle is known as Snell's law. 

If the surface of a material is rough, incoming light is reflected in a range of directions (see Figure 12-
1). Because this range is extremely small, highlights can still be seen in polished metal. This slightly-
scattered reflection is also specular, and is seen in any material that has a sheen or luster to it (for 
example, velvet and silk). 

Specular highlights are represented in computer graphics using the Blinn-Phong equation1. 

Equation 12-1: Blinn-Phong Equation 

𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 = 𝑐𝑜𝑙𝑜𝑟 × (𝛮 ∙ 𝛨)𝑠 

The exponent 𝑠 is a constant known as shininess, and 𝛮 ∙ 𝛨 represents the dot product of the normal 
𝑁 with the half-angle vector 𝛨, which is itself defined by Equation 12-2 below. 𝐿 is a unit vector 
pointing at the light source, and 𝑉 is a unit vector pointing at the viewer. 

                                                      
1  Blinn, James F. Models of Light Reflection for Computer Synthesized Pictures, ACM Computer Graphics, SIGGRAPH 1977 

Proceedings, 11(4), pp. 192-198 
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Equation 12-2: Calculation of the Half-Angle Vector 

𝛨 =
𝐿 + 𝑉

|𝐿 + 𝑉| 

These unit vectors are shown in Figure 12-2 below. The color of the specular highlight is calculated 
by multiplying to yield each component. 

Equation 12-3: Color of Specular Highlights 

𝑐𝑜𝑙𝑜𝑟 = 𝑚 × 𝑠 = �𝑚𝑟𝑠𝑟 ,𝑚𝑔𝑠𝑔,𝑚𝑏𝑠𝑏� 

In Equation 12-3, 𝑚 indicates the color of the material, and 𝑠 indicates the color of the light source. 

The reason that the dot product 𝑁 ∙ 𝐻 is used within the specular calculation is explained by the 
reflection model known as microfacet reflection. 

Figure 12-2: Light Source Vector 𝑳, Half-Angle Vector 𝑯, and View Vector 𝑽 

 

 

In contrast, with materials like chalk, incident light is reflected in an entirely different way. The light is 
scattered uniformly in all directions (see the image on the right in Figure 12-1). This type of reflection 
is referred to as either diffuse light or Lambertian reflectance, and is represented using the following 
equation. 

Equation 12-4: Diffuse Light Equation 

𝑑𝑖𝑓𝑓𝑢𝑠𝑒 = 𝑐𝑜𝑙𝑜𝑟 × 𝐿 ∙ 𝛮 

The 𝑐𝑜𝑙𝑜𝑟 term in Equation 12-4 is calculated using the same equation as we use to calculate 
specular light, Equation 12-3. Both 𝐿 and 𝑁 are unit vectors. 

Equation 12-5: Dot Product of Light Source Vector and Normal Vector 

𝐿 ∙ 𝛮 = 𝑐𝑜𝑠(𝛼) 
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The variable 𝛼 represents the angle formed by 𝐿 and 𝑁. The dot product 𝐿 ∙ 𝑁 has a maximum 
value of 1.0 when 𝛼 is 0° (in other words, when 𝐿 and 𝑁 are pointing in the exact same direction), 
and is 0.0 when 𝛼 is 90° (in other words, when 𝐿 is parallel to the surface). All real-world materials 
actually have both specular and diffuse properties. See the image on the right in Figure 12-3 below. 

Figure 12-3: Difference Between Idealized Diffuse Reflection and Reflection in a Typical Material 

N N

 

The image on the left in Figure 12-3 shows idealized diffuse reflection. The image on the right shows 
typical light reflection for a typical material. 

For this type of material with mixed characteristics, the reflection is represented by simply summing 
the specular and diffuse components. For more information, see section 12.3.2 Blinn-Phong Model. 

Equation 12-6: Reflection in Materials with Both Diffuse and Specular Components 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 + 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 

Even if the equations used to calculate the specular and diffuse components are the same, there are 
cases when the light source and the material have different combinations of specular and diffuse 
colors. This means that materials and light sources both use models in which the color of their 
specular light differs from the color of their diffuse light. This approach is used by OpenGL as well as 
many other lighting models. 

The reflection of light in the real world is not as simple as the aforementioned equations would seem 
to indicate. Reflection is typically represented as a function of the directions of the viewpoint and light 
sources. This function is known as the bidirectional reflectance distribution function (or "BRDF"). The 
next section considers how the BRDF is implemented using DMP fragment lighting. From this point 
forward, the BRDF will be referred to simply as reflectance. 

12.2 Fresnel Reflectance 
When light propagates through a medium other than a vacuum, it travels slower than it would in a 
vacuum. The factor that represents the ratio of these speeds is known as the refractive index (𝜂). It is 
known that the refractive index and the reflectance of a given material depend on this ratio of the 
speed of light in that material versus the speed of light in a vacuum. 
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The French scientist Augustin-Jean Fresnel derived the formulas that are now known as the Fresnel 
equations. These equations describe the fact that the reflection and refraction of transmitted light are 
functions of the angle of incidence 𝛼 and the refractive index 𝜂. Figure 12-4 below shows how Fresnel 
reflection relates to the angle of incidence. The graph on the left shows the relationship between 
reflection and the angle of incidence for glass. The graph on the right shows the same for aluminum. 

Figure 12-4: Relationship Between Angle of Incidence and Fresnel Reflection in a Dielectric 
Material (Left) and a Metal (Right) 

 

The smooth surfaces of glass allow it to transmit some of the incident light and reflect the rest as 
specular light. In the same way, metals reflect light in accordance with the Fresnel equations, but 
metals absorb some of the incident rays of light. This absorption is represented mathematically by the 
absorption coefficient (𝜅). In other words, for metals, the Fresnel reflectance is determined by three 
factors: 𝛼, 𝜂, and the absorption coefficient 𝜅. 

As you can see from Figure 12-4 above, the greater the angle between the light source and the line of 
sight, the closer the reflection becomes to 1.0. The rendered images in Figure 12-5 illustrate the 
effect of this relationship. 

Figure 12-5: Differences in Reflection When the Fresnel Equations Are Used (Left) and Not 
Used (Right) 
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To simplify the discussion, the Fresnel reflectance is represented as a cosine function of angle 𝜎. The 
cosine of 𝜎 can be found easily by taking the dot product of the light vector and the normal. 

Based on this fact, the Fresnel reflection function is expressed as 𝐹(𝑐𝑜𝑠(𝜎) , 𝜂) for dielectric materials, 
or as 𝐹(𝑐𝑜𝑠(𝜎) , 𝜂, 𝜅) for metals. 

12.3 Lighting Models 
Lighting models refer to mathematical models that express how lighting occurs within a three-
dimensional scene. These models include information such as the colors of the light sources, the 
colors of the materials, and how the light is reflected. A typical lighting model can be broken down into 
several components: ambient, emissive, diffuse, and specular. 

Equation 12-7: Typical Lighting Model 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑_𝑙𝑖𝑔ℎ𝑡 = 𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑒 + 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 + 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 + 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 

Below, we explain the specular-related aspects of the Blinn-Phong, Cook-Torrance, Schlick, and other 
lighting models. The first three terms in Equation 12-7 are almost identical for all lighting models; 
DMP fragment lighting uses the same values in all lighting models for these first three terms. (For 
more information, see Chapter 11 DMP Fragment Lighting.) 

With DMP fragment lighting, reflected light is considered to be composed of two terms, the primary 
color and the secondary color. 

Equation 12-8: Reflected Light in DMP Fragment Lighting 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑_𝑙𝑖𝑔ℎ𝑡 = 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 + 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 

Note that the primary color is simply the sum of the ambient, emissive, and diffuse components. The 
secondary color, on the other hand, is used to represent various types of BRDFs (Blinn-Phong and 
Cook-Torrance, for example) in addition to the specular component. The specific BRDF 
implementations are covered in section 12.3.6.1 Implementation Using DMP Fragment Lighting. 

12.3.1 Microfacet Reflection  

Here, we consider reflections on rough surfaces. Rough surfaces can be thought of as a collection of 
many tiny flat surfaces. Each of these tiny surfaces has its own normal, which points in a different 
direction from the other normals. These surfaces are so small that they cannot be seen with the 
naked eye, and are known as microfacets. 

Figure 12-6 below shows how light is reflected off of a microfacet, and how that light reaches the eye 
of the viewer. Because the individual microfacets are flat and smooth, the normals (labeled "local 
normal" in the figure below) must be identical to the half-angle vector of the light vector 𝐿 and the 
view vector 𝑉 in order for the light to be reflected completely toward the viewer. Furthermore, these 
normals also serve as the half-angle vector 𝐻 described in section 12.1 Specular and Diffuse 
Reflections. 
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Figure 12-6: Reflection of Light in Microfacet Mode 

local
normal HL
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In Figure 12-6, the lighting model is shown in the image to the left. The same scenario is represented 
using vectors in the image to the right. 

The greater the number of microfacets there are that reflect light toward the viewer, the more light will 
be reflected in this direction. Here, we introduce the distribution function 𝐷(𝑋). This function 
represents the proportion of microfacets whose normals point in the X direction. The amount of light 
that is reflected toward the viewer is in turn proportional to 𝐷(𝐻). Microfacet reflections are 
represented by Equation 12-9 below, in which 𝐻 represents the half-vector, and the tilde represents 
proportionality. 

Equation 12-9: Microfacet Reflections 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 ~ 𝐷(Η) 

D is also known as the slope distribution function because it expresses how the slopes of the facets 
are distributed. 

12.3.2 Blinn-Phong Model 

The Blinn-Phong equation (Equation 12-1) in section 12.1 Specular and Diffuse Reflections is in 
accordance with Equation 12-9, the relationship derived in the previous section. The dot product 
𝑁 ∙ 𝐻 is equivalent to the cosine of the angle formed by the local normal of a microfacet and the 
average normal of the surface when viewed macroscopically. The value of the dot product is also an 
index that indicates how different a given local normal is from the average normal. This means that 
the equation below can be seen as following the microfacet approach. 

Equation 12-10: Microfacet Approach to Blinn-Phong Model 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑜𝑚𝑒_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝐷(Ν ∙ Η) 

The simplest-case Blinn-Phong reflection model is a simple microfacet model that uses a power 
function as its distribution function. Section 0 provides a more accurate mathematical model 
conceived of by R. Cook and K. Torrance2. 

                                                      
2 Cook, Robert L., and Torrance, Kenneth E. A Reflectance Model for Computer Graphics, ACM Computer Graphics, SIGGRAPH 1981 

Proceedings, 15(4), pp. 307-316 
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The generalized Blinn-Phong model uses 𝑁 ∙ 𝐻 as an argument to another distribution function. The 
Gaussian function is one example of a possible distribution function. 

Equation 12-11: Gaussian Distribution Function 

𝐷(𝛮 ∙ 𝛨) = exp �−
𝛼 cos(𝛮 ∙ 𝛨)2

𝑚2 � 

When the value of 𝑁 ∙ 𝐻 is close to 1.0 (in other words, at the center of highlights), using either a 
Gaussian function or a power function as the distribution function will yield similar behavior. Likewise, 
when the shininess 𝑠 in Equation 12-1 is 𝑠 = 2/𝑚^2  , the values of the highlights will be nearly the 
same regardless of whether a Gaussian function or a power function is used as the distribution 
function. 

The figure below shows the result of a sample implementation using DMP fragment lighting. 

Figure 12-7: Result of a Sample Implementation Using DMP Fragment Lighting 

 

Figure 12-7 shows two examples of Blinn-Phong shading with a power distribution function, with the 
specular shininess 𝑠 set to 1 (left) and 10 (right). 

Implementation Using DMP Fragment Lighting 

Code 12-1 below is an example implementation of the Blinn-Phong model using DMP fragment 
lighting. This example uses layer configuration 0. 

Code 12-1: Example Implementation of the Blinn-Phong Model 
GLfloat ms1[] = {0.f, 0.f, 0.f, 1.f}; 

glUniform4fv(LOC("dmp_FragmentMaterial.specular1")), 1, ms1); 

glUniform1i(LOC("dmp_LightEnv.lutEnabledRefl")), GL_FALSE); 

 

glUniform1i(LOC("dmp_LightEnv.lutEnabledD0"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputD0"), GL_TRUE); 
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glUniform1i(LOC("dmp_LightEnv.lutInputD0"), GL_LIGHT_ENV_NH_DMP); 

glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor1"), GL_FALSE); 

 

for (j = 0 ; j < 256 ; j++) 

    lut[j] = powf((float)j/256.f, 2.0f); 

for (j = 0 ; j < 255 ; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[255 + 256] = 1.f - lut[255]; 

glTexImage1D(GL_LUT_TEXTURE0_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, 

GL_LUMINANCEF_DMP, GL_FLOAT, lut); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerD0"), 0); 

This implementation uses a lookup table that ranges from 0.0 to 1.0. The arguments are absolute 
values; since the fronts of the surfaces face the light source, 𝑁 ∙ 𝐻 will never evaluate to a negative 
value. The next section, 12.3.3 Cook-Torrance Model, explains the specification of the reserved 
uniform dmp_FragmentLightSource[0].geomFactor1. 

Figure 12-7 shows the rendered results if the power function is used, with 𝑠 set to the two values 1.0 
and 10.0. 

If the specular1 component is set to zero, only one term is used for the secondary color of DMP 
fragment lighting. When two terms are present, this indicates a two-layered Blinn-Phong model. For 
example, if we consider the layer defined by 𝑠 = 90 to be the second layer, we would assign some 
values to the specular1 properties of the light and the material, and set the reserved uniform 
dmp_LightEnv.lutEnabledD1 to GL_TRUE. 

Code 12-2: Assigning Values to the "specular1" Properties of the Light and Material 
GLfloat ls1[] = {1.f, 0.01f, 0.25f, 1.f}; 

GLfloat ms1[] = {1.f, 1.f, 1.f, 1.f}; 

glUniform4fv(LOC("dmp_FragmentLightSource[0].specular1"), 1, ls1); 

glUniform4fv(LOC("dmp_FragmentMaterial.specular1"), 1, ms1); 

glUniform1i(LOC("dmp_LightEnv.lutEnabledRefl"), GL_FALSE); 

We then create a lookup table, bind the lookup table to distribution 1, and specify the arguments to 
the table. 

Code 12-3: Creating a Lookup Table and Binding It to Distribution 1 
glUniform1i(LOC("dmp_LightEnv.lutEnabledD1"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.lutInputD1"), GL_LIGHT_ENV_NH_DMP); 

glUniform1i(LOC("dmp_LightEnv.absLutInputD1"), GL_TRUE); 

glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor1"), GL_FALSE); 

 

for (j = 0 ; j < 256 ; j++) 

    lut[j] = powf((float)j/256.f, 90.f);  

for (j = 0 ; j < 255 ; j++) 
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    lut[j + 256] = lut[j + 1] - lut[j]; 

lut[255 + 256] = 1.f - lut[255]; 

glTexImage1D(GL_LUT_TEXTURE1_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerD1"), 1); 

In the case of the generalized Blinn-Phong model, other functions can be used in place of the power 
function.  

For example, the right-hand image in Figure 12-8 below shows the results if  
powf((float)j/256.f, 90.f) is replaced with gaussian((float)j/256.f, 0.149f), and 
powf((float)j/256.f, 2.f) is replaced with gaussian((float)j/256.f, 1.f).  

Here, a Gaussian function is used with 𝑚 such that 𝑠 = 2/𝑚^2 to make the distribution at the center 
of the highlight appear the same as if a power function had been used as the distribution function. 

Figure 12-8: Example of a Generalized Blinn-Phong Model 

  

The image on the left in Figure 12-8 was created using a power function. The image on the right was 
created using a Gaussian function. The highlights resemble each other where 𝑁 ∙ 𝐻 is close to 1, but 
the differences are more apparent in the darker areas. 

12.3.3 Cook-Torrance Model 

To represent the amount of reflected light more accurately, this lighting model multiplies the 
distribution function 𝐷 by the Fresnel reflection 𝐹 of the microfacets that reflect light toward the view 
vector 𝑉 by the distribution function. 

Equation 12-12: Basic Cook-Torrance Model 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 ~ 𝐹 × 𝐷 
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The 𝐹 in Equation 12-12 is called the Fresnel factor or Fresnel term. 

As stated in section 12.2 Fresnel Reflectance, the Fresnel reflection 𝐹 is expressed as a cosine 
function of the angle formed by a light vector and a normal. Here, the normal is the local normal of a 
microfacet, and is the same as the half-angle vector 𝐻. As a consequence, 𝐿 ∙ 𝑁 (the cosine of the 
angle formed by the light vector and the normal) is equivalent to 𝐿 ∙ 𝐻.  

In this model, the distribution function 𝐷(𝑁 ∙ 𝐻) is multiplied by 𝐹(𝐿 ∙ 𝐻,η). In DMP fragment lighting, 
𝑉 ∙ 𝐻 is used instead of 𝐿 ∙ 𝐻. The reason for this is that 𝐻 is the half-angle vector of 𝐿 and 𝑉, so 
𝐿 ∙ 𝐻 is equivalent to 𝑉 ∙ 𝐻. 

Equation 12-13: Basic Cook-Torrance Model in DMP Fragment Lighting 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 ~ 𝐹(𝑉 ∙ 𝛨, 𝜂) × 𝐷(𝛮 ∙ 𝛨) 

Furthermore, the Cook-Torrance model takes into account the fact that facets can cast shadows on 
each other (see Figure 12-9 below). For example, even if a microfacet is facing a direction that will 
cause it to reflect light (Case A), it's possible that not all of the light reflected by the microfacet will 
reach the viewer (Case B). Likewise, the opposite situation is also possible, namely that some of the 
light may not reach the microfacet (Case C). These possibilities are included in the model by adding 
another factor, called the geometry factor. 

Equation 12-14: Basic Cook-Torrance Model with Geometry Factor 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 ~ 𝐹(𝑉 ∙ 𝛨, 𝜂) × 𝐷(𝛮 ∙ 𝛨) × 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 

Figure 12-9: Details of the Geometry Factor 
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To represent Equation 12-14 above more accurately, it is necessary to multiply it by a parameter that 
takes the angle into account. See the viewing geometry factor (= 1/𝑁 ∙ 𝑉)3 for more details. In DMP 
fragment lighting, this parameter and the geometry factor are grouped together as a single factor, 
represented by the symbol 𝐺. This is called the combined angular and geometry factor. This yields 
the Cook-Torrance models shown below. 

Equation 12-15: Cook-Torrance Model for Dielectric Materials 

𝐶𝑜𝑜𝑘_𝑇𝑜𝑟𝑟𝑎𝑛𝑐𝑒 = 𝐹(𝑉 ∙ 𝛨, 𝜂) × 𝐷(𝛮 ∙ 𝛨) × 𝐺 

Equation 12-16: Cook-Torrance Model for Metals 

𝐶𝑜𝑜𝑘_𝑇𝑜𝑟𝑟𝑎𝑛𝑐𝑒 = 𝐹(𝑉 ∙ 𝛨, 𝜂, 𝜅) × 𝐷(𝛮 ∙ 𝛨) × 𝐺 

From this point onward, the geometry factors are referred to collectively and simply as 𝐺. (This refers 
to the geometry factor defined by Cook-Torrance, multiplied by the viewing geometry factor. 𝐺 is 
further transformed using a proprietary method and is implemented by an approximation formula. For 
details, see the DMPGL Specifications.) 

𝐺 approaches infinity as the angle formed by the view vector and the light vector approaches 180°. 
This means that Cook-Torrance highlight values become very large if the incident light is coming from 
straight ahead. 

Figure 12-10: Effect of the Geometry Factor 

 

As seen in Figure 12-10 above, the greater the angle between the view vector and the light vector, 
the brighter the highlights. 

The Cook-Torrance model uses the Beckmann function as its distribution function. 

                                                      
3 Watt, Alan. 3D Computer Graphics, 3rd Edition, Addison-Wesley Publishing Ltd, Addison-Wesley Publishing Company Inc., 2000, pp. 

21 
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Equation 12-17: Standard Beckmann Function 

𝐷 =
1

𝑚2(𝛮 ∙ 𝛨)4
𝑒

((𝛮∙𝛨)2−1)
𝑚2(𝛮∙𝛨)2  

Here, if 𝑚 is small (Beckmann distributions are usually such that 𝑚 < 1), 𝑚 has the following 
significance: 

“The proportion of facets whose slope is 𝑚 is 1/𝑒 times the proportion of facets with a slope of 
zero.” 

When 𝑠 = 2
𝑚2 = 2( 1

𝑚𝐵
+ 2), three different distribution functions yield very similar values in the 

proximity of 𝑁 ∙ 𝐻 = 1 and will yield very similar values: the power function, the Gaussian function, 
and the Beckmann function. 

The Beckmann function is normalized so that the value of its integral is one. However, when 𝑚 is 
small, the values of this function in the proximity of 𝑁 ∙ 𝐻 = 1 become very large. Because DMP 
fragment lighting implements all functions that contain distribution functions as lookup tables, their 
values can range only from 0.0 to 1.0. As a result, it is best to use a distribution function shaped such 
that its maximum value is one. DMP fragment lighting uses the Beckmann distribution shown below, 
without the 𝑚2 in the denominator. 

Equation 12-18: Modified Beckmann Function Used by DMP Fragment Lighting 

𝐷 =
1

(𝛮 ∙ 𝛨)4
𝑒

((𝛮∙𝛨)2−1)
𝑚2(𝛮∙𝛨)2  

The refractive index 𝜂 and absorption coefficient 𝜅 of the Fresnel equations depend on the color. If 
𝐹(𝑉 ∙ 𝐻, 𝜂) is expressed as three components (red, green, and blue), Equation 12-15 becomes the 
following: 

Equation 12-19: DMP Cook-Torrance Model Expressed Using Color Components 

𝐶𝑜𝑜𝑘_𝑇𝑜𝑟𝑟𝑎𝑛𝑐𝑒 = 𝐹𝑟𝑔𝑏(𝑉 ∙ 𝛨) × 𝐷(𝛮 ∙ 𝛨) × 𝐺 

Here, 𝐹𝑟𝑔𝑏(𝑉 ∙ 𝛨) consists of three components: 𝐹𝑟(𝑉 ∙ 𝛨), 𝐹𝑔(𝑉 ∙ 𝛨), and 𝐹𝑏(𝑉 ∙ 𝛨). 

To find 𝐹𝑟𝑔𝑏(𝑉 ∙ 𝛨) easily, use the 𝜂 and 𝜅 values that correspond to the wavelengths of the red, 
green, and blue components to calculate 𝐹 .4 For example, the color gold would be represented by 
the following values for 𝜂, 𝜅, 𝐹𝑟, 𝐹𝑔, and 𝐹𝑏. 

𝜂 = 0.183521, 𝜅 = 2.959155      630𝑛𝑚 
𝜂 = 0.516924, 𝜅 = 2.276178      525𝑛𝑚 
𝜂 = 1.464924, 𝜅 = 1.1860113   455𝑛𝑚 

𝐹𝑟 = 𝐹(𝑉 ∙ 𝐻, 0.183521, 2.959155) 
𝐹𝑔 = 𝐹(𝑉 ∙ 𝐻, 0.516924, 2.276178) 

                                                      
4 Glassner, Andrew S. Principles of Digital Image Synthesis, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1995 



DMPGL 2.0 Programming Guide  

 2009-2011 Nintendo 117 CTR-06-0004-001-D 
CONFIDENTIAL  Released: May 13, 2011 

𝐹𝑏 = 𝐹(𝑉 ∙ 𝐻, 1.464924, 1.1860113) 

As a consequence, if 𝑉 ∙ 𝐻 is close to 1, the inequality 𝐹𝑟 > 𝐹𝑔 > 𝐹𝑏 will apply, and this causes gold 
to appear yellow. 

With metals, the Fresnel reflection has almost no dependence on the angle. As a result, the Fresnel 
factor can sometimes be treated as a constant. This type of Cook-Torrance model is known as a 
simplified Cook-Torrance model. 

Equation 12-20: Simplified Cook-Torrance Model 

𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑_𝐶𝑜𝑜𝑘_𝑇𝑜𝑟𝑟𝑎𝑛𝑐𝑒 = 𝑅𝑟𝑔𝑏 × 𝐷(𝛮 ∙ 𝛨) × 𝐺 

𝑅𝑟𝑔𝑏 consists of three constants: 𝑅𝑟, 𝑅𝑔, and 𝑅𝑏. Variants of the Cook-Torrance model that use 
angle-dependent Fresnel factors are known as full-scope Cook-Torrance models. See Glassner for a 
list of the refractive indices and absorption coefficients for silver, copper, aluminum, and other metals. 

12.3.3.1 Implementation Using DMP Fragment Lighting 

Full-scope Cook-Torrance models can be implemented in DMP fragment lighting using layer 
configurations 4, 5, and 7. The following example has been implemented using layer configuration 4. 
First, since we're only using the second term of the lighting equation, we set the material’s 
specular0 component to zero. 

Code 12-4: Setting the Material's specular0 Component to Zero 
GLfloat ms0[] = {0.f, 0.f, 0.f, 0.f}; 

glUniform4fv(LOC("dmp_FragmentMaterial.specular0"), 1, ms0); 

We then set the color of the light source's specular1 component to (1.0,1.0,1.0). This is because 
the color is obtained from the Fresnel factor. 

Code 12-5: Setting the Light Source's specular1 Component 
GLfloat ls1[] = {1.f, 1.f, 1.f, 1.f}; 

glUniform4fv(LOC("dmp_FragmentLightSource[0].specular1"), 1, ls1); 

glUniform1i(LOC("dmp_LightEnv.lutEnabledRefl"), GL_TRUE); 

Next, we prepare four lookup tables. Three of these are used as Fresnel factors and take 𝑉 ∙ 𝐻 as an 
argument, and the other one is used as a distribution function and takes 𝑁 ∙ 𝐻 as an argument. 

Code 12-6: Preparing Four Lookup Tables 
glUniform1i(LOC("dmp_LightEnv.config"),GL_LIGHT_ENV_LAYER_CONFIG4_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRR"), GL_LIGHT_ENV_VH_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRG"), GL_LIGHT_ENV_VH_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRB"), GL_LIGHT_ENV_VH_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputD1"), GL_LIGHT_ENV_NH_DMP); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRR"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRG"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRB"), GL_FALSE); 
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glUniform1i(LOC("dmp_LightEnv.absLutInputD1"), GL_FALSE); 

We then enable the combined angular and geometry factor. 

Code 12-7: Enabling the Combined Angular and Geometry Factor 
glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor1"), GL_TRUE); 

Next, we configure three of the lookup tables using  and  values that represent gold. 

Code 12-8: Configuring Three Lookup Tables to Express Gold 
for (j = 0; j < 128; j++) 

    lut[j] = nk_fresnel((float)j/128.f, 0.183521f, 2.959155f); 

for (j = 0; j < 127; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[127 + 256] = nk_fresnel(1.f, 0.183521f, 2.959155f) - lut[127]; 

glBindTexture(GL_LUT_TEXTURE0_DMP, lutids[0]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRR"), 0); 

 

for (j = 0; j < 128; j++) 

    lut[j] = nk_fresnel((float)j/128.f, 0.516924f, 2.276178f); 

for (j = 0; j < 127; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[127 + 256] = nk_fresnel(1.f, 0.516924f, 2.276178f) - lut[127]; 

glBindTexture(GL_LUT_TEXTURE1_DMP, lutids[1]); 

glTexImage1D(GL_LUT_TEXTURE1_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRG"), 1); 

 

for (j = 0; j < 128; j++) 

    lut[j] = nk_fresnel((float)j/128.f, 1.464924f, 1.860113f); 

for (j = 0; j < 127; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[127 + 256] = nk_fresnel(1.f, 1.464924f, 1.860113f) - lut[127]; 

glBindTexture(GL_LUT_TEXTURE2_DMP, lutids[2]); 

glTexImage1D(GL_LUT_TEXTURE2_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRB"), 2); 

Finally, we configure the Beckmann distribution function. 
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Code 12-9: The Beckmann Distribution Function 
for (j = 1; j < 128; j++) 

    lut[j] = beckmann((float)j/128.f, 1.f); 

for (j = 0; j < 127; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[127 + 256] = beckman(1.f, 1.f) - lut[127]; 

glBindTexture(GL_LUT_TEXTURE3_DMP, lutids[3]); 

glTexImage1D(GL_LUT_TEXTURE3_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerD1"), 3); 

Figure 12-11 includes the result of simulating a gold appearance using a Beckmann function with 
𝑚 = 1. 

Figure 12-11: A Cook-Torrance Model for Gold 

 

For these images, the Beckmann distribution used the values 𝑚 = 1.0 (left) and 𝑚 = 5.5 (right). 

12.3.4 Schlick Anisotropic Model 

The models described so far have assumed that the surfaces have the same lighting characteristics 
in all directions—in other words, these were all isotropic lighting models. Under this assumption, 
reflections are always symmetrical with respect to the normal. The opposite case, in which surfaces 
have characteristics with a directional bias, is referred to as anisotropic. Consider the case of brushed 
metal as an example; the direction of the brushed pattern constitutes the directional bias. Whereas for 
cloth, the threads that make up the surface have a certain directionality to them. 

The light-scattering properties of an anisotropic surface vary as a function of what direction along the 
surface you are considering. To consider reflections on these types of surfaces, we introduce another 
unit vector called the tangent vector (see Figure 12-12 below). 
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Schlick5 proposed that in order to represent anisotropic reflection, the distribution function should be 
made up of two functions. One of these functions depends on 𝑁 ∙ 𝐻, and the other depends on 
cos (𝜑). (Here, 𝜑 represents the angle formed by the tangent vector 𝑇 and the projection of the 
vector 𝐻 on the tangent plane.) The distribution function 𝐷 can therefore be represented by the 
following equation. 

Equation 12-21: Distribution Function for Schlick Anisotropic Model 

𝐷 = 𝑍(𝛮 ∙ 𝐻) × 𝐴(cos(𝜑)) 

Figure 12-12: Relationships Between the Angles and Vectors Used in Anisotropic Reflection 
Models 
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Schlick proposed the following for these two functions 𝑍 and 𝐴. 

Equation 12-22: Schlick's Proposed Zenith and Azimuth Functions 

𝑍(𝑡) =
𝑟

(1 + 𝑟𝑡2 − 𝑡2)2 

 

𝐴(𝜔) = �
𝑝

𝑝2 − 𝑝2𝜔2 + 𝜔2 

The 𝑟 parameter characterizes the roughness of the surface. When 𝑟 = 1, 𝑍 is a constant, which 
indicates that the surface has a pure diffuse reflection. As 𝑟 approaches 0, the reflection elongates 
further in the direction of the specular light. When 𝑟 = 0, the surface exhibits total specular reflection. 

                                                      
5 Schlick, Christophe. An Inexpensive BRDF Model for Physically-Based Rendering, Computer Graphics Forum, 13(3), pp. 233-246 

(1994) 
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The 𝑝 parameter characterizes the anisotropy of the surface. When 𝑝 = 1, 𝐴 is a constant, which 
indicates that the surface has no anisotropy whatsoever. As 𝑝 approaches 0, the anisotropy 
increases. When 𝑝 = 0, the surface exhibits complete anisotropy. 

Figure 12-13: Relationship Between the Zenith-Angle and Z Function Value (Left) and the 
Azimuth-Angle and A Function Value (Right) in the Polar Coordinate System 
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The figure on the left shows the relationship between the zenith angle and the Z function value for 

four types of r  where α  ranges between 2π−  and 2π . The figure on the right shows the 

relationship between the azimuth angle and the A function value for four types of p  where ϕ  

ranges between 0 and π2 . 

The geometry factor designated by Schlick is different from the one used in the Cook-Torrance model. 
However, its behavior is similar to the geometry factor of the Cook-Torrance model if we assume that 
the angular term and the geometry factor have been combined into a single variable, as was 
described earlier in section 12.3.3 Cook-Torrance Model. In other words, highlights become extremely 
bright as the angle formed by the view vector and the normal approaches 90°. This phenomenon 
occurs when the incident light is coming from straight ahead and 𝑟 is not very large (𝑟 < 1). In the 
Cook-Torrance model, the 𝐺 factor of surfaces with low degrees of roughness becomes very large as 
the angle formed by the view vector and the light vector approaches 180°. 

Based on these facts, the same combined angular and geometry factor that was used for the Cook-
Torrance model can also be used for the Schlick model. The equation for the Schlick model in DMP 
fragment lighting is shown below. 

Equation 12-23: Schlick Model Used in DMP Fragment Lighting 

𝑆𝑐ℎ𝑙𝑖𝑐𝑘 = 𝐹𝑟𝑔𝑏(𝑉 ∙ 𝛨) × 𝑍(𝛮 ∙ 𝛨) × 𝐴(cos(𝜑)) × 𝐺 
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The terms 𝐹𝑟𝑔𝑏 and 𝐺 are the same as the corresponding terms in section 12.3.3 Cook-Torrance 
Model. 

12.3.4.1 Implementation Using DMP Fragment Lighting 

The sample code below is an implementation of a Schlick model using DMP fragment lighting. 

Code 12-10: Sample Implementation of the Schlick Model 
glUniform1i(LOC("dmp_LightEnv.absLutInputD1"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRB"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRG"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRR"), GL_TRUE); 

 

glUniform1i(LOC("dmp_LightEnv.lutInputD1"), GL_LIGHT_ENV_CP_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRB"), GL_LIGHT_ENV_NH_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRG"), GL_LIGHT_ENV_NH_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRR"), GL_LIGHT_ENV_NH_DMP); 

 

glUniform1i(LOC("dmp_LightEnv.lutEnabledRefl"), GL_TRUE); 

 

glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor0"), GL_FALSE); 

glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor1"), GL_FALSE); 

 

glUniform1i(LOC("dmp_LightEnv.config"), GL_LIGHT_ENV_LAYER_CONFIG7_DMP); 

glUniform1i(LOC("dmp_LightEnv.bumpMode"),GL_LIGHT_ENV_BUMP_AS_BUMP_DMP); 

glUniform1i(LOC("dmp_LightEnv.bumpSelector"), GL_TEXTURE1); 
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Figure 12-14: Sample Rendering Lit Using a Schlick Model Implemented Using DMP Fragment 
Lighting 

 

12.3.5 Subsurface-Scattering Model 

When light enters an object made of a translucent material like skin, wax, or marble, the light is 
scattered internally in many directions, then emitted from the object. In other words, such materials 
are characterized by strong subsurface scattering. In such materials, the position from which a ray of 
light is reflected is different from the position of incidence where it entered the material. As a result, it 
is not possible to apply one of the BRDF models described in section 12.1 Specular and Diffuse 
Reflections to this type of material. 

Jensen, et al. proposed a model that is based on the diffusion theory. This model takes the integral of 
the incident light and the diffuse reflection function over a certain region of the surface. The size of the 
integral region is roughly on the same order as the length of the mean free path. For typical materials, 
this is between one and several millimeters. 

Let's consider an object that is made of a translucent material: for example, a hand. If only a single 
light source illuminates the object in a dark environment, the convex areas appear to have the highest 
degree of transparency. The same is true under complicated lighting environments. In other words, 
the rendering of the convex areas is most important with subsurface scattering. 

With that in mind, if we consider the convex areas to be areas on the surfaces of spheres with radius 
S, we can take the integral of those areas using the formula proposed by Jensen et al. (The radius S 
is much longer than the length of the mean free path.) If we also assume that the surface is rough, 
the reflection model can be expressed using Equation 12-24 below. 
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Equation 12-24: Subsurface Scattering Equation 

𝑆𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 = 𝑅𝑟𝑔𝑏(𝐿 ∙ 𝛮) × 𝑇(𝑉 ∙ 𝛮) 

𝑅𝑟𝑔𝑏(𝐿 ∙ 𝑁) is composed of two terms. These terms are the diffuse (or Lambertian) term and the 
wrapping term. The wrapping term represents the penetration of light into surface regions that are not 
lit directly. 

Equation 12-25: Definitions of Diffuse and Wrapping Terms for Subsurface Scattering 

𝑅𝑟𝑔𝑏(𝐿 ∙ 𝛮) = 𝑟(𝐿 ∙ 𝛮) + 𝑊(𝐿 ∙ 𝛮) 

The terms are defined as follows: 

𝑟 = 0.5𝛼 ′�𝑒−𝛽 + 𝑒−𝛽′� 
𝛽 = �3(1 − 𝛼 ′) 
𝛽′ = 𝛽𝐵 

𝐵 = 1 +
4
3

(1 + 𝐹𝑑𝑟)
(1 − 𝐹𝑑𝑟) 

𝑊(𝐿 ∙ 𝑁) =
𝛼′𝑌𝑖0

4𝜋(1 + 𝑖1ℎ) 

𝑌 = 𝑙
�1 − (𝐿 ∙ 𝑁)2

𝑆
 

ℎ =
𝐿 ∙ 𝑁
𝑌

 

𝑖0 = √2π �𝑒−𝛽𝛽−0.5 + 𝐵𝑒−𝛽′𝛽′−0.5� 

𝑖𝑖 =
π(𝑒−𝛽 + 𝑒−𝛽′)

𝑖0
 

See Jensen et al.6 for more information about the terms 𝛼′ (albedo) and 𝐹𝑑𝑟. 

12.3.5.1 Implementation Using DMP Fragment Lighting 

The sample code below shows a subsurface scattering implementation based on DMP fragment 
lighting. 

Code 12-11: Sample Implementation of Subsurface Scattering 
glUniform1i(LOC("dmp_LightEnv.absLutInputD0"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputD1"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputSP"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputFR"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRB"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRG"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRR"), GL_FALSE); 

 

                                                      
6 Jensen, H. W., Marschner, S., Levoy, M., and Hanrahan, P. A practical model for subsurface light transport, SIGGRAPH 2001 

Proceedings, E. Fiume, Ed., Annual Conference Series, pp. 511–518 
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glUniform1i(LOC("dmp_LightEnv.lutInputRB"), GL_LIGHT_ENV_LN_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRG"), GL_LIGHT_ENV_LN_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRR"), GL_LIGHT_ENV_LN_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputD1"), GL_LIGHT_ENV_NV_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputD0"), GL_LIGHT_ENV_NH_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputFR"), GL_LIGHT_ENV_NV_DMP); 

 

glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor0"), GL_FALSE); 

glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor1"), GL_FALSE); 

 

glUniform1f(LOC("dmp_LightEnv.lutScaleRR"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleRG"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleRB"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleD0"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleD1"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleSP"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleFR"), 2.f); 

 

glUniform1i(LOC("dmp_LightEnv.lutEnabledRefl"), GL_TRUE); 

 

glUniform1i(LOC("dmp_LightEnv.config"), GL_LIGHT_ENV_LAYER_CONFIG7_DMP); 

glUniform1i(LOC("dmp_LightEnv.fresnelSelector" ), 

GL_LIGHT_ENV_PRI_SEC_ALPHA_FRESNEL_DMP); 

glUniform1i(LOC("dmp_LightEnv.clampHighlights"), GL_FALSE); 

 

glUniform1i(LOC("dmp_LightEnv.lutEnabledD0"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.lutEnabledD1"), GL_TRUE); 

 

GLfloat qlut[3][512], lut[512]; 

int j, co; 

for (co = 0; co < 3; co++) 

    memset(qlut[co], 0, sizeof(qlut[0])); 

memset(lut, 0, sizeof(lut)); 

 

for (j = 0 ; j < 128; j++) { 

    LN = (float)j/128.f; 

    kappa = 1.0f - LN * LN; 

    for (co = 0; co < 3; co++) { 

        if (LN > 0.0) 

        lut[co][j] = mat.dif_refl[co] * LN; 

        gamma = mat.zr[co] * sqrt(kappa); 

        h = fabsf(LN) / gamma; 



  DMPGL 2.0 Programming Guide 

CTR-06-0004-001-D 126  2009-2011 Nintendo 
Released: May 13, 2011  CONFIDENTIAL 

        qlut[co][j] += mat.i0[co] * (1.0f / (1.0f + mat.i1[co] * h)) * gamma * 

mat.albedo[co] * 0.25f * REV_PI; 

        qlut[co][j] = pow(qlut[co][j], display_gamma); 

    } 

} 

for (j = 128 ; j < 256; j++) { 

    LN = (float)(j - 256) /128.f; 

    kappa = 1.0f - LN * LN; 

    for (co = 0; co < 3; co++){ 

        if (LN > 0.0) 

            lut[co][j] = mat.dif_refl[co] * LN; 

        gamma = mat.zr[co] * sqrt(kappa); 

        h = fabsf(LN) / gamma; 

        qlut[co][j] += mat.i0[co] * (1.0f / (1.0f + mat.i1[co] * h)) * 

        gamma * mat.albedo[co] * 0.25f * REV_PI; 

        qlut[co][j] = pow(qlut[co][j], display_gamma); 

    } 

} 

for (j = 0 ; j < 127; j++) 

    for (co = 0; co < 3; co++) 

        qlut[co][j + 256] = qlut[co][j+1] - qlut[co][j]; 

for (co = 0; co < 3; co++) 

    qlut[co][127 + 256] = pow(mat.dif_refl[co], display_gamma) - qlut[co][127]; 

for (j = 128 ; j < 255 ; j++) 

    for (co = 0; co < 3; co++) 

        qlut[co][j + 256] = qlut[co][j+1] - qlut[co][j]; 

for (co = 0; co < 3; co++) 

    qlut[co][255 + 256] = qlut[co][0] - qlut[co][255]; 

glBindTexture(GL_LUT_TEXTURE0_DMP, lutids[0]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP, 0, GL_LUMINANCEF_DMP, 512, 0,GL_LUMINANCEF_DMP, 

GL_FLOAT, qlut[0]); 

glBindTexture(GL_LUT_TEXTURE1_DMP, lutids[1]); 

glTexImage1D(GL_LUT_TEXTURE1_DMP, 0, GL_LUMINANCEF_DMP, 512, 0,GL_LUMINANCEF_DMP, 

GL_FLOAT, qlut[1]); 

glBindTexture(GL_LUT_TEXTURE2_DMP, lutids[2]); 

glTexImage1D(GL_LUT_TEXTURE2_DMP, 0, GL_LUMINANCEF_DMP, 512, 0,GL_LUMINANCEF_DMP, 

GL_FLOAT, qlut[2]); 

 

for (j = 0 ; j < 256; j++) { 

    lut[j] = 1.f - r_fresnel((float)j/256.f, 1.7f, 0.36f, 0.f); 

    lut[j] = pow(lut[j], display_gamma); 

} 
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for (j = 0 ; j < 255; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[255 + 256] = pow((1.f - r_fresnel(1.f, 1.7f, 0.36f, 0.f)), display_gamma) - 

lut[255]; 

glBindTexture(GL_LUT_TEXTURE3_DMP, lutids[3]); 

glTexImage1D(GL_LUT_TEXTURE3_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, 

GL_LUMINANCEF_DMP, GL_FLOAT, lut); 

 

for (j = 0 ; j < 128; j++) 

    lut[j] = beckmann( (float)j/128.f, 0.5f); 

for ( j = 0 ; j < 127 ; j++ ) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[127 + 256] = 1.f - lut[127]; 

glBindTexture(GL_LUT_TEXTURE4_DMP, lutids[4]); 

glTexImage1D(GL_LUT_TEXTURE4_DMP, 0, GL_LUMINANCEF_DMP, 512, 0,GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

 

for (j = 0 ; j < 256; j++) 

    lut[j] = r_fresnel((float)j/256.f, 2.f, 0.25f, 0.f); 

for (j = 0 ; j < 255; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[255 + 256] = r_fresnel(1.f, 2.f, 0.25f, 0.f) - lut[255]; 

glBindTexture(GL_LUT_TEXTURE5_DMP, lutids[5]); 

glTexImage1D(GL_LUT_TEXTURE5_DMP, 0, GL_LUMINANCEF_DMP, 512, 0,GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRR"), 0); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRG"), 1); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRB"), 2); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerD1"), 3); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerD0"), 4); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerFR"), 5); 

The sample code below shows how to configure the texture combiners. The example uses the 
combiner function GL_MULT_ADD_DMP, which multiplies Arg0 and Arg1 and then adds Arg2 to the 
result. 

Code 12-12: Sample Texture Combiner Settings 
glUniform1i(LOC("dmp_Texture[0].samplerType"), GL_TEXTURE_CUBE_MAP); 

glUniform1i(LOC("dmp_TexEnv[0].combineRgb"), GL_ADD); 

glUniform1i(LOC("dmp_TexEnv[0].combineAlpha"), GL_REPLACE); 

glUniform3i(LOC("dmp_TexEnv[0].operandRgb"),  

GL_SRC_COLOR, GL_SRC_COLOR, GL_SRC_COLOR); 
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glUniform3i(LOC("dmp_TexEnv[0].operandAlpha"),  

GL_SRC_ALPHA, GL_SRC_ALPHA, GL_SRC_ALPHA); 

glUniform3i(LOC("dmp_TexEnv[0].srcRgb"), GL_FRAGMENT_PRIMARY_COLOR_DMP, 

GL_FRAGMENT_SECONDARY_COLOR_DMP, GL_PRIMARY_COLOR); 

glUniform3i(LOC("dmp_TexEnv[0].srcAlpha"), 

 GL_PRIMARY_COLOR, GL_PRIMARY_COLOR, GL_PRIMARY_COLOR); 

 

glUniform1i(LOC("dmp_TexEnv[1].combineRgb"), GL_MULT_ADD_DMP); 

glUniform1i(LOC("dmp_TexEnv[1].combineAlpha"), GL_REPLACE); 

glUniform3i(LOC("dmp_TexEnv[1].operandRgb"), 

GL_SRC_COLOR, GL_SRC_ALPHA, GL_SRC_COLOR); 

glUniform3i(LOC("dmp_TexEnv[1].operandAlpha"), 

 GL_SRC_ALPHA, GL_SRC_ALPHA, GL_SRC_ALPHA); 

glUniform3i(LOC("dmp_TexEnv[1].srcRgb"), 

GL_TEXTURE0, GL_FRAGMENT_PRIMARY_COLOR_DMP, GL_PREVIOUS); 

glUniform3i(LOC("dmp_TexEnv[1].srcAlpha"), 

 GL_PREVIOUS, GL_PREVIOUS, GL_PREVIOUS); 

Figure 12-15: Sample Rendering of a Material That Causes Subsurface Scattering Using DMP 
Fragment Lighting 

 

12.3.6 Toon Shading 

Toon shading is a technique that only uses a few bands for shading (typically it uses either two or 
three bands). Each of these bands is shaded using a solid color. To perform toon shading, we prepare 
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a dot product value 𝐷 (either 𝑁 ∙ 𝐻 or )𝐿 ∙ 𝑁), as well as a shading function 𝑓(𝐷) that satisfies the 
requirements listed below. 

Consider the sequence 𝛿0, 𝛿1, 𝛿2, … , 𝛿𝑚, comprising all the values within the range of possible dot 
product values. The shading function is such that it yields a constant value over each segment 𝛿𝑗−1, 𝛿𝑗 
within that sequence. 

The values of the function for each segment are multiplied by a constant color. 

12.3.6.1 Implementation Using DMP Fragment Lighting 

The code sample below implements toon shading using layer configuration 6. 

Code 12-13: Sample Toon Shading Implementation Using Layer Configuration 6 
glUniform1i(LOC("dmp_LightEnv.absLutInputD0"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputD1"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputFR"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRR"), GL_FALSE); 

 

glUniform1i(LOC("dmp_LightEnv.lutInputRR"), GL_LIGHT_ENV_LN_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputD0"), GL_LIGHT_ENV_LN_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputD1"), GL_LIGHT_ENV_NV_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputFR"), GL_LIGHT_ENV_NV_DMP); 

 

glUniform1i(LOC("dmp_LightEnv.lutEnabledRefl"), GL_TRUE); 

 

glUniform1i(LOC("dmp_LightEnv.config"), GL_LIGHT_ENV_LAYER_CONFIG6_DMP); 

 

glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor0"), GL_FALSE); 

glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor1"), GL_FALSE); 

glUniform1i(LOC("dmp_FragmentLightSource[0].spotEnabled"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.clampHighlights"), GL_FALSE); 

Let 𝑓(𝐷) = 𝐷, and use 𝐿 ∙ 𝑁 as the dot product. Although different parameters and dot product 
values can be used for the diffuse and highlight portions, we've used 𝐿 ∙ 𝑁 as the dot product for both 
in our sample code. 

The configuration of the diffuse component is shown below. 

Code 12-14: Sample Diffuse Configuration 
float delta[] = {1.f, 0.7f, 0.5f, -1.f}; 

for (j = 127; j >= 0; j--) { 

    LN = (float)j/128.f ; 

    if (LN > delta[i]) 

        lut[j] = previous; 

    else  



  DMPGL 2.0 Programming Guide 

CTR-06-0004-001-D 130  2009-2011 Nintendo 
Released: May 13, 2011  CONFIDENTIAL 

    { 

        lut[j] = LN; 

        previous = lut[j]; 

        i++; 

    } 

} 

for (j = 0 ; j < 127; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[127 + 256] = 0.f; 

for (j = 255; j >= 128; j--) { 

    LN = (float)(j - 256) /128.f; 

    if (LN > delta[i]) 

        lut[j] = previous; 

    else { 

        lut[j] = LN; 

        previous = lut[j]; 

        i++; 

    } 

} 

for (j = 128; j < 255; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[255 + 256] = lut[0] - lut[255]; 

glBindTexture(GL_LUT_TEXTURE0_DMP, lutids[0]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRR"), 0); 

If the delta array is changed, the shaded portion will change as well.  

The following code configures the highlights. 

Code 12-15: Sample Highlight Configuration 
float highlight_eps = 0.01f ; 

for (j = 0; j < 256; j++) 

    if ((float)j/256.f <= 1.f - highlight_eps)  

        lut[j] = 0.f; 

    else  

        lut[j] = 1.f; 

for (j = 0; j < 255; j++) 

    lut[j + 256] = lut[j+1] - lut[j]; 

lut[255 + 256] = 0.f; 

glBindTexture(GL_LUT_TEXTURE1_DMP, lutids[1]);  
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glTexImage1D(GL_LUT_TEXTURE1_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, lut); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerD0"), 1); 

Figure 12-16 shows the rendered result. 

Figure 12-16: Toon Shading Sample with 𝑳 ∙ 𝑵 as the Dot Product and 𝒇(𝑫) = 𝑫 as the 
Shading Function 

 

Code 12-16 below is another example, this time of toon shading using layer configuration 7. In this 
code, we've used 𝑅𝑟𝑔𝑏(𝐿 ∙ 𝑁) as 𝑓(𝐷). (See section 12.3.5 Subsurface-Scattering Model for a prior 
example of using 𝑅𝑟𝑔𝑏(𝐿 ∙ 𝑁).) 

Code 12-16: Sample Toon Shading Implementation Using Layer Configuration 7 
glUniform1i(LOC("dmp_LightEnv.absLutInputD0"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputD1"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputSP"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputFR"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRB"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRG"), GL_FALSE); 

glUniform1i(LOC("dmp_LightEnv.absLutInputRR"), GL_FALSE); 

 

glUniform1i(LOC("dmp_LightEnv.lutInputRB"), GL_LIGHT_ENV_LN_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRG"), GL_LIGHT_ENV_LN_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputRR"), GL_LIGHT_ENV_LN_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputD1"), GL_LIGHT_ENV_NV_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputD0"), GL_LIGHT_ENV_NH_DMP); 

glUniform1i(LOC("dmp_LightEnv.lutInputFR"), GL_LIGHT_ENV_NV_DMP); 
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glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor0"), GL_FALSE); 

glUniform1i(LOC("dmp_FragmentLightSource[0].geomFactor1"), GL_FALSE); 

 

glUniform1f(LOC("dmp_LightEnv.lutScaleRR"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleRG"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleRB"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleD0"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleD1"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleSP"), 2.f); 

glUniform1f(LOC("dmp_LightEnv.lutScaleFR"), 2.f); 

 

glUniform1i(LOC("dmp_LightEnv.lutEnabledRefl"), GL_TRUE); 

 

glUniform1i(LOC("dmp_LightEnv.config"), GL_LIGHT_ENV_LAYER_CONFIG7_DMP); 

glUniform1i(LOC("dmp_LightEnv.fresnelSelector"), 

GL_LIGHT_ENV_PRI_SEC_ALPHA_FRESNEL_DMP); 

glUniform1i(LOC("dmp_LightEnv.clampHighlights"), GL_FALSE); 

 

glUniform1i(LOC("dmp_LightEnv.lutEnabledD0"), GL_TRUE); 

glUniform1i(LOC("dmp_LightEnv.lutEnabledD1"), GL_TRUE); 

Next we use the 𝑅𝑟𝑔𝑏(𝐿 ∙ 𝑁) expression (see section 12.3.5 Subsurface-Scattering Model for a prior 
example) to configure the lookup table. When TOON is not defined, we use the original 𝑅𝑟𝑔𝑏(𝐿 ∙ 𝑁) 
expression. 

Code 12-17: Configuring the Lookup Table Using 𝑹𝒓𝒈𝒃(𝑳 ∙ 𝑵) 
for (j = 127; j >= 0; j--) { 

    LN = (float)j/128.f; 

// When TOON is defined, the skin shading function is 

// transformed into steps acc. to the delta[] array 

#ifdef TOON 

    if (LN > delta[i]){ 

        for (co = 0; co < 3; co++) 

            qlut[co][j] = previous[co]; 

        continue; 

    } 

#endif  

    kappa = 1.0f - LN * LN; 

    for (co = 0; co < 3; co++) { 

        if (LN > 0.0) 

            qlut[co][j] = mat.dif_refl[co] * LN; 

        gamma = mat.zr[co] * sqrt(kappa); 
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        h = fabsf(LN); 

        qlut[co][j] += mat.i0[co] * (gamma / (gamma + mat.i1[co] * h)) * gamma * 

mat.albedo[co] * 0.25f * REV_PI; 

        qlut[co][j] = pow(qlut[co][j], display_gamma); 

    } 

// When TOON is defined, the skin shading function is 

// transformed into steps according to the delta[] array 

#ifdef TOON 

    for (co = 0; co < 3; co++) 

        previous[co] = qlut[co][j];  

    i++;  

#endif  

} 

for (j = 255; j >= 128; j--) { 

    LN = (float)(j - 256) /128.f; 

// When TOON is defined, the skin shading function is 

// transformed into steps according to the delta[] array 

// In other words, f(LN) = f_sss(LN) is used as the initial shading function. 

// See Chapter 12 Illumination Models in DMP Fragment Lighting for details. 

#ifdef TOON 

    if (LN > delta[i]){ 

        for (co = 0; co < 3; co++) 

            qlut[co][j] = previous[co];  

        continue;  

    } 

#endif  

    kappa = 1.0f - LN * LN; 

    for (co = 0; co < 3; co++) { 

        if (LN > 0.0) 

            qlut[co][j] = mat.dif_refl[co] * LN; 

        gamma = mat.zr[co] * sqrt(kappa); 

        h = fabsf(LN);  

        qlut[co][j] += mat.i0[co] * (gamma / (gamma + mat.i1[co] * h)) * 

            gamma * mat.albedo[co] * 0.25f * REV_PI; 

        qlut[co][j] = pow(qlut[co][j], display_gamma); 

    } 

// When TOON is defined, the skin shading function is 

// transformed into steps according to the delta[] array 

#ifdef TOON 

    for (co = 0; co < 3; co++) 

        previous[co] = qlut[co][j];  

    i++;  
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#endif  

} 

for (j = 0; j < 127; j++) 

    for (co = 0; co < 3; co++) 

        qlut[co][j + 256] = qlut[co][j+1] - qlut[co][j]; 

for (co = 0; co < 3; co++) 

    qlut[co][127 + 256] = pow(mat.dif_refl[co], display_gamma) - qlut[co][127]; 

for (j = 128; j < 255; j++) 

    for (co = 0; co < 3; co++) 

        qlut[co][j + 256] = qlut[co][j+1] - qlut[co][j]; 

for (co = 0; co < 3; co++) 

    qlut[co][255 + 256] = qlut[co][0] - qlut[co][255]; 

glBindTexture(GL_LUT_TEXTURE0_DMP, lutids[0]); 

glTexImage1D(GL_LUT_TEXTURE0_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, qlut[0]); 

glBindTexture(GL_LUT_TEXTURE1_DMP, lutids[1]); 

glTexImage1D(GL_LUT_TEXTURE1_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, qlut[1]); 

glBindTexture(GL_LUT_TEXTURE2_DMP, lutids[2]); 

glTexImage1D(GL_LUT_TEXTURE2_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, GL_LUMINANCEF_DMP, 

GL_FLOAT, qlut[2]); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRR"), 0); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRG"), 1); 

glUniform1i(LOC("dmp_FragmentMaterial.samplerRB"), 2); 
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Figure 12-17: Using a Nonlinear Function as the Shading Function 𝒇(𝑫) as the Nonlinear 
Function 

 

Figure 12-17 above is an example of rendered results with the subsurface scattering function 
𝑅𝑟𝑔𝑏(𝐿 ∙ 𝑁) used for toon shading. 
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13 DMPGL 2.0 Bump Mapping 
With DMP fragment lighting, bump mapping can be implemented using normal maps. This chapter 
explains local-surface space (a very important concept in implementing bump mapping) as well as the 
specific bump-mapping-related features and operations of DMPGL 2.0. 

13.1 Overview 
Bump mapping is a technique for perturbing (that is, providing fluctuation to) the normal vectors of 
objects that are used in the lighting equation. Bump mapping perturbs these normals at each pixel to 
produce the appearance of bumps and depressions in the surfaces of the objects. Bump mapping 
makes it possible to use simple geometry with low polygon counts but achieve rendered results that 
appear to have complicated shapes. 

DMP fragment lighting supports bump mapping that uses maps (called normal maps) that store 
perturbed normals that were calculated in advance based on height information. 

Figure 13-1: Example of Bump Mapping 

 

Although the model used to generate the image in Figure 13-1 above is made from only two triangles, 
the use of bump mapping allows shading on a per-pixel basis. 
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Figure 13-2: Bump Mapping to Make a Low-Polygon Count Model Appear to Have Many 
Polygons 

 

 

The image at the upper left in Figure 13-2 is the original polygon model. The image at the upper right 
is the result of applying a normal map to the original model. The image below is the normal map. 
Recent modeling tools support features for creating normal maps that can give models with low 
polygon counts the type of highly detailed appearance seen in this example. 

To use bump mapping, you must calculate lighting on a per-fragment basis. OpenGL 2.0 and prior 
versions do not support fragment lighting as a standard feature. Starting with OpenGL 1.3, a texture 
combiner function called GL_DOT3_RGB was added. It provided support for calculating dot products 
on a per-fragment basis using the two inputs to the texture combiner. By combining this dot product 
calculation with cube mapping (used as normalized cube maps), it is possible to calculate the diffuse 
or specular components on a per-fragment basis. Bump mapping can also be implemented using 
normal maps. 
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Figure 13-3: Bump Mapping Using GL_RGB_DOT3 

 

The light vector is converted to the surface-local coordinate system and is then output as a texture 
coordinate that references a cube map. Because this light vector loses its normalization during the 
interpolation process, the cube map is used to normalize it. The dot product of the normalized light 
vector and the perturbed normal is calculated by the texture combiner. (In the example in Figure 13-3, 
the boundary lines between polygons are visible because the light vectors have not been normalized 
by a cube map.)  

DMP fragment lighting supports per-fragment calculation of the dot products listed below in the same 
way that it supports the GL_DOT3_RGB texture combiner function described earlier. The following are 
just examples of the dot products supported by DMP fragment lighting. For more details, see the 
chapter on DMP Fragment Lighting in the DMPGL 2.0 Specifications. 

• VH: Dot product of the view vector and the half-angle vector 
• NH: Dot product of the normal vector and the half-angle vector 
• LN: Dot product of the normal vector and the light vector 
• VN: Dot product of the normal vector and the view vector 

The vectors indicated here are generated by interpolating at each fragment. However, DMP fragment 
lighting also allows you to replace these normals generated at each fragment with R, G, and B 
components that are looked up from a texture (these components are taken to be the x, y, and z 
component of the normal, respectively). Using the lookup values from the texture as the perturbed 
normals makes bump mapping possible. 

13.2 Surface-Local Space and Tangents 
As stated in the previous section, the use of values referenced from textures as perturbed normals 
usually involves storing the normals within the textures in a coordinate system called surface-local 
space. This is true regardless of whether bump mapping is implemented using OpenGL’s 
GL_DOT3_RGB texture combiner function or by using DMP fragment lighting. 
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The surface-local coordinate system assumes that each vertex is at the origin (0.0, 0.0, 0.0) and that 
the unperturbed surface normal (the original normal of the surface) at each vertex is (0.0, 0.0, 1.0). In 
other words, normal vectors point toward the positive Z-axis in this coordinate system. 

Figure 13-4: Example Surface-Local Coordinate System 

 

The lighting calculation requires that the individual vectors are all defined in the same coordinate 
system. In other words, one of two approaches is required: (1) converting all vectors used in the 
calculation except the normals to the surface-local coordinate system, or (2) conversely, converting 
the perturbed normals defined in the surface-local coordinate system to the coordinate system in 
which the other vectors are defined. 

In either case, the basis vectors that construct the surface-local space are required for the conversion. 
The normal is one of the basis vectors. Because the basis vectors are orthogonal to each other, 
defining one additional basis vector also determines the last one. As Figure 13-4 above shows, the 
basis vectors that make up the surface-local space commonly have different values at each vertex. 
Here we define a new vertex attribute that, along with the surface normal, is one of the basis vectors. 
This new vertex attribute is known as either the tangent vector or the tangent. 

Equation 13-1: Basis Vectors That Define Surface-Local Space 

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥 = �
𝑇𝑥 𝑇𝑦 𝑇𝑧
𝐵𝑥 𝐵𝑦 𝐵𝑧
𝑁𝑥 𝑁𝑦 𝑁𝑧

� 

The matrix in Equation 13-1 above is a rotation matrix made from the basis vectors that form the 
surface-local space at each vertex. This rotation matrix transforms from object space to the surface- 
local coordinate system. In this equation, 𝑁 represents the surface normal, 𝑇 represents the tangent 
vector, and 𝐵 represents the binormal vector. 

If we take this approach and use vectors defined in the surface-local coordinate system, representing 
the surface-local coordinate system defined at each vertex requires that we define an additional 
vertex attribute for the last of the basis vectors that make up this coordinate system. 
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Figure 13-5: Example of Surface-Local Space Defined at Each Vertex of an Object 

 

The blue lines superimposed on the Noh mask indicate the normal vectors, and the red lines indicate 
the tangent vectors. The coordinate system formed by these two vectors and the binormal vector is 
defined at each vertex. 

13.3 Normals Stored in Textures and the Arbitrariness of Surface-Local 
Space 

As stated in the previous section, surface normals are one of the basis vectors that form the surface-
local coordinate system. The values of the other two basis vectors are arbitrary, and there are 
multiple ways of determining them. 

Figure 13-6: Example of an Arbitrary Coordinate System 

  

Although one of the basis vectors that make up a surface-local coordinate system is defined as the 
normal, the other two vectors are arbitrary, because they are nondeterministic: they do not resolve to 
any specific unique values. In the figure above, blue lines indicate normals, red lines indicate tangent 
vectors, and green lines indicate binormal vectors. The tangent and binormal vectors can be rotated 
about the normal in an infinite number of directions. 
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However, let’s assume we create a perturbation normal that satisfies the following requirements: 

“Let the U-axis of the texture space be the direction of the tangent vector in surface-local space, 
and let the V-axis of the texture space be the direction of the binormal vector in surface-local 
space. The x, y, and z components of the perturbation normal, expressed in the surface-local 
coordinate system, are all stored in the texture.” 

Under this arrangement, the directions that maximize 𝜕𝑢 and 𝜕𝑣 (the partial differentials of the 
texture coordinates at each vertex) are the U-axis and V-axis of the texture space. Furthermore, 𝜕𝑢 
and 𝜕𝑣 are themselves the respective tangent and binormal vectors, in relation to the perturbed 
normal stored in the texture. In other words, 𝜕𝑢 and 𝜕𝑣 at each vertex are the remaining two basis 
vectors that form the surface-local coordinate system at that vector, and as a result, with this 
approach the surface-local spaces at each vertex are deterministic (that is to say, a single normal will 
define only a single surface-local space). 

Based on these assumptions, the tangent vector is then calculated for each vertex as follows. 

Equation 13-2: Per-Vertex Tangent Vector Calculation 

𝑇�⃗ =
(𝑣3 − 𝑣1)(𝑝2 − 𝑝1) − (𝑣2 − 𝑣1)(𝑝3 − 𝑝1)
(𝑢2 − 𝑢1)(𝑣3 − 𝑣1) − (𝑣2 − 𝑣1)(𝑢3 − 𝑢1)

 

In this equation, 𝑇�⃗  represents the tangent vector at the vertex 𝑝1 within the triangle formed by the 
vectors 𝑝1, 𝑝2, 𝑝3., which themselves represent the vertex coordinates. The variables 𝑢 and 𝑣 
represent the texture coordinates at each vertex. For details about the derivation of this equation, 
click here7. 

13.4 Bump Mapping with DMPGL 2.0 Fragment Lighting 
As we explained in the previous section, shading calculations for per-fragment bump mapping require 
two conditions: (1) the perturbed normals must be stored in a texture in the surface-local coordinate 
system, and (2) the surface normal and the tangent vector—two of the basis vectors that form the 
surface-local coordinate system—must be defined as vertex attributes for each vertex. 

13.4.1 Bump Mapping Operations 

When bump mapping is enabled in DMP fragment lighting, dot products are calculated as follows. 

1. The normals and tangent vectors that are defined as vertex attributes are transformed to eye 
coordinates during vertex operations (that is, by a vertex shader). 

2. The per-fragment normals, tangent vectors, and binormals are generated based on the per-vertex 
normals and tangent vectors defined as described above. All three of these vectors are defined in 
the eye coordinate system. 

3. These three vectors are used to generate a transformation matrix that converts to the eye 
coordinate system from the surface-local coordinate system. This matrix is used to transform the 

                                                      
7 http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson8.php 

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson8.php
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perturbed normals referenced from the texture from the surface-local coordinate system to the eye 
coordinate system. 

4. Once the perturbed normals have been transformed to the eye coordinate system, they replace the 
unperturbed normals, and the dot products LN, VN, and NH are calculated. 

To enable bump mapping, set the reserved uniform dmp_LightEnv.bumpMode to 
GL_LIGHT_ENV_BUMP_AS_BUMP_DMP. You must also use the reserved uniform 
dmp_LightEnv.bumpSelector to select the texture unit where the perturbed normals are stored. 

13.4.2 Quaternion Transformation 

Note that the rasterization process does not generate per-fragment normals, tangent vectors, and 
binormals directly from the normals, tangent vectors, and binormals that are specified as vertex 
attributes (the binormals are actually calculated from the normals and tangent vectors). This means 
that the vertex shaders don't output normals or tangent vectors directly. 

The 3x3 transformation matrix shown below is made up of a normal, a tangent vector, and a binormal. 
It is used to convert from the surface-local coordinate system to the eye coordinate system. 

Equation 13-3: Surface-Local to Eye Coordinate Transformation Matrix 

�
𝐸𝑥
𝐸𝑦
𝐸𝑧
� = �

𝑇𝑥 𝐵𝑥 𝑁𝑥
𝑇𝑦 𝐵𝑦 𝑁𝑦
𝑇𝑧 𝐵𝑧 𝑁𝑧

� �
𝑆𝑥
𝑆𝑦
𝑆𝑧
� 

Here, 𝑁 indicates the normal, 𝑇 indicates the tangent vector, 𝐵 indicates the binormal, 𝑆 indicates 
the coordinate values in the surface-local coordinate system, and 𝐸 indicates the coordinate values 
in the eye coordinate system. This rotation matrix can be converted into a (per-vertex) quaternion, 
which is used to generate per-fragment quaternions in the rasterization process. These quaternions 
are converted into the original rotation matrix during fragment lighting. 

As a result, when handling perturbed normals using DMP fragment lighting (to be more precise, if 
there are any vectors that must be converted from the surface-local coordinate system to the eye 
coordinate system), the vertex shaders must use the normal and tangent vector at each vertex to 
generate a rotation matrix that will convert from the eye coordinate system to the surface-local 
coordinate system, and convert the resulting rotation matrices into quaternions. Furthermore, these 
quaternions must be output by the vertex shaders. 

The quaternion (𝑄𝑥,𝑄𝑦,𝑄𝑧,𝑄𝑤) that is generated from the rotation matrix in Equation 13-3 above is 
calculated as follows. 

Equation 13-4: Conversion of Rotation Matrix to Quaternions 

𝑄𝑤 =
1
2�

1 + 𝑇𝑥 + 𝐵𝑦 + 𝑁𝑧 

𝑄𝑥 =
1

4𝑄𝑤
(𝐵𝑧 − 𝑁𝑦) 
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𝑄𝑦 =
1

4𝑄𝑤
(𝑁𝑥 − 𝑇𝑧) 

𝑄𝑧 =
1

4𝑄𝑤
(𝑇𝑦 − 𝐵𝑥) 

Some ingenuity is required to create a mathematically stable routine for calculating these components. 
For details, see Akeine-Moller and Haines8. For more details about the actual vertex shader code 
used to generate the quaternions, refer to the sample code in the file Common.asm in the CTR-SDK. 

13.5 Format and Type of Normal Maps 
DMPGL 2.0 allows all supported 2D textures to be used for storing perturbed normals. Normally, a 
texture format that has RGB components is used for this purpose, in which case the R, G, and B 
components are used to represent the x, y, and z components, respectively, of the perturbed normals 
in the surface-local coordinate system. The values of the x, y, and z components range from  
-1.0 to 1.0. The value -1.0 is interpreted as the minimum intensity of the component, and the value 
1.0 is interpreted as the maximum intensity of the component. 

Equation 13-5 below expresses the mapping between the intensities and the vector components in a 
format that uses 8 bits to store each of the R, G, and G components. 

Equation 13-5: Relationship Between Intensity and the Vector Components for 8-Bit RGB 

𝑣𝑎𝑙𝑢𝑒_𝑜𝑓_𝑥,𝑦, 𝑧 = �
𝑣𝑎𝑙𝑢𝑒_𝑜𝑓_𝑟,𝑔, 𝑏

28 − 1
� × 2.0 − 1.0 

As an example, if the format is GL_RGB and the type is GL_UNSIGNED_BYTE, a value of -1.0 
indicates an intensity of zero for a given component, whereas a value of 1.0 indicates an intensity of 
255. 

Figure 13-7: Sample Normal Map 

 

                                                      
8 Akenine-Moller, Tomas; Haines, Eric. Real-Time Rendering, 2nd Edition (Japanese translation). Tokyo, Born Digital, Inc., 2006,  

p. 38 - p. 40 
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For flat (unperturbed) areas, the normals will have a value of (0.0, 0.0, 1.0), which in the normal map 
will be indicated by the RGB values (128, 128, 255). These areas will appear bluish. 

To enable the generation of the z-component of the perturbed normals, it is also possible to use the 
GL_HILO8_DMP format, which lacks a B component. 

If the generation of the z-component of the perturbed normals is disabled, then perturbed normals 
fetched from the texture will be used as is, without normalization. You should thus store the 
normalized values in the texture. 

If the texture filter mode of perturbed normals is not point sampling (GL_NEAREST), then due to 
sample-value filtering, perturbed normals may be fetched with non-normalized values. If this happens, 
enable the generation of the z-component of the perturbed normals. 

13.6 Tangent Mapping 
In DMP fragment shading, the lookup values from textures have other applications beyond their use 
as perturbed normals. If you specify GL_LIGHT_ENV_CP_DMP to one of the reserved uniforms 
dmp_LightEnv.lutInput{D0,D1,SP}, a value with the tangent applied will be used as the input 
to the lookup table. This type of input value is normally required for lighting that expresses anisotropic 
reflection. If you use tangent mapping, the tangent defined at each vertex can be replaced by the 
perturbed normal, which provides variation in the shading for per-fragment anisotropic reflection. 

To enable bump mapping, set the reserved uniform dmp_LightEnv.bumpMode to 
GL_LIGHT_ENV_BUMP_AS_TANG_DMP. You must also use the reserved uniform 
dmp_LightEnv.bumpSelector to select the texture unit where the perturbed tangents are stored. 

To reiterate, tangent mapping replaces the individual tangents defined at each vertex with perturbed 
tangents. 

When using tangent mapping, we recommend that you don’t use features that generate the z-
component. DMPGL 2.0 tangent maps assume that the perturbed tangents don’t have a z-component. 
If you use a feature to generate the z-component, a perturbed normal may be generated that has a 
non-zero z-component in the tangential coordinate system, giving rise to an unintended perturbed 
normal. 

Figure 13-8: Perturbed Tangents Used for Tangent Mapping (Left) and the Results of Applying 
Them (Right) 
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In Figure 13-8 the original tangents assigned to the object on the right all faced in the same direction, 
but by using the map shown to the left, the tangents are perturbed on a per-pixel basis. 

13.7 Related Parameters 
The DMP fragment lighting settings related to bump mapping are shown below. 

Table 13-1: Reserved Uniforms Related to Bump Mapping 

Reserved Uniforms Default Value Description 

dmp_LightEnv.bumpSelector GL_TEXTURE0 Specifies the texture unit to 
reference for the perturbed 
normals. 

dmp_LightEnv.bumpMode GL_LIGHT_ENV_BUMP_NOT_USED_DMP Enables/disables bump mapping. 
When enabled, this uniform is 
used to specify whether the 
perturbation vectors referenced 
from the texture unit should be 
used as normals or tangents. 

dmp_LightEnv.bumpRenorm GL_FALSE Specifies whether to recalculate 
the z-component of the 
perturbation vectors referenced 
from the texture unit. 

If the reserved uniform dmp_LightEnv.bumpRenorm is set to GL_TRUE, the z-component of the 
perturbed normals referenced from the texture is not used; instead, the z-component is recalculated 
based on the x- and y-components. In most cases, recalculating the z-component will yield a better 
result than if the z-component stored in the texture were used as the perturbation vector without 
modifying it at all. This feature must be enabled if using textures in the GL_HILO8_DMP format. 
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14 DMP Shadows 
DMP shadows use a two-pass shadow algorithm. The first pass obtains scene depth information 
using the light source as the starting point, and the second pass uses that depth information to 
evaluate whether a given pixel is lit or in shadow. In addition to the depth information from the first 
pass, the DMP shadow feature also collects shadow intensity information. This extension makes it 
possible to have soft shadows. 

14.1 Shadow Generation Overview 
The basic concept for DMP shadow generation is the same as the OpenGL two-pass z-buffer shadow 
algorithm that uses depth textures. 

The scene is rendered as seen from the light source (called the first pass), and depth information is 
stored in a buffer. This way, the distance from the light source to the first object that the light 
encounters is calculated and recorded in the depth buffer. This is the distance that the light reaches 
from the light source. It indicates the range of the lit areas, and all regions beyond this distance are in 
shadow. Actual rendering (called the second pass) determines what areas are in shadow by 
calculating the distance from the light source to each pixel and comparing that to the distance that the 
light reaches, as recorded in the first pass. If the fragment is determined to be in shadow, it is 
rendered as such. 

In OpenGL, the depth information that is stored in the z-buffer in the first pass is applied as a texture 
in the second pass. Then, the texture unit's comparison feature determines whether each given 
fragment is affected by an object blocking its light. To support this method, the depth texture and 
depth texture comparison features were added to OpenGL starting from version 1.4. 
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Figure 14-1: Shadow Generation Example 

  

 

The top left image in Figure 14-1 is an example of shadow generation using the OpenGL depth 
texture and depth comparison features. The top right image is a scene as seen from the light source. 
The bottom image shows its depth information. 

For details on the thought process related to the above shadow technique, and implementation using 
OpenGL, see the available documentation of shadows that use depth textures. 

In the following we explain the differences between DMP shadows and shadows in OpenGL, 
including the features unique to DMP shadows, and give implementation examples. 

14.2 Shadow Textures 
DMP shadows use shadow textures. Shadow textures use the GL_SHADOW_DMP format and contain 
shadow intensities as well as depth values. 

To create a shadow texture, create a framebuffer object, and specify the shadow texture as the 
render target. Note that shadow textures are attached to color buffer attachment points; they are not 
attached to the depth buffer. Next, set the DMPGL reserved fragment shader's reserved uniform 
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dmp_FragOperation.mode to GL_FRAGOP_MODE_SHADOW_DMP to switch the pipeline mode and 
features to a mode that stores shadow information (depth values and shadow intensities) in shadow 
textures. 

The following code sample creates a 512x512 shadow texture. 

Code 14-1: Example of Shadow Texture Generation 
glGenTextures(1, &sdwtex_name); 

glGenFrameBufferOES(1, &fbo_name); 

glBindTexture(GL_TEXTURE_2D, sdwtex_name); 

glTexImage2D(GL_TEXTURE_2D, 0, GL_SHADOW_DMP, 512, 512,0,  

GL_SHADOW_DMP, GL_UNSIGNED_INT, 0); 

glBindFrameBuffer(GL_FRAMEBUFFER, fbo_name); 

glFrameBufferTexture2D(GL_FRAMEBUFFER, 

GL_COLOR_ATTACHMENT0_EXT,GL_TEXTURE_2D, sdwtex_name, 0); 

glUniform1i(LOC(“dmp_FragOperation.mode”), GL_FRAGOP_MODE_SHADOW_DMP); 

14.2.1 Shadow Texture Support 

Note that not all texture units support shadow textures. In DMPGL 2.0, only texture unit 0 can handle 
shadow textures. 

14.2.2 The dmp_FragOperation.mode Reserved Uniform 

DMPGL’s reserved fragment shader extends per-fragment operations (also called PFO) to include not 
only fog processing but subsequent steps as well. When the reserved uniform 
dmp_FragOperation.mode is set to GL_FRAGOP_MODE_GL_DMP, the per-fragment operations 
provide such OpenGL-specification operations as alpha tests, stencil tests, depth tests, and blending. 

Setting this reserved uniform to GL_FRAGOP_MODE_SHADOW_DMP results in an operation that writes 
the render objects' depth values and shadow intensities to the color buffer (to which there is a shadow 
texture attached). In this mode, the per-fragment operations do not include the standard processes 
such as alpha tests or stencil tests. For fragments, the shadow depth information stored in the 
shadow texture is accessed and the depth information is tested using a process similar to the 
GL_LESS function. For soft shadows, the shadow strength information is tested instead. (For details, 
see section 6.4 DMP Shadows of the DMPGL 2.0 Specifications.) 

14.3 Shadow Texture Depth 
As described above, a shadow texture contains depth values and shadow intensity information. 
However, note that the depth values of shadow textures are linearly related to eye-space Z-values 
(𝑧𝑒) in viewpoint space. This stands in sharp contrast to OpenGL depth textures, which in most cases 
(such as when perspective projection has been used for the projection transformation) store depth 
values that are not linearly related to the Z-values in eye space. The notations such as 𝑧𝑤 and 𝑧𝑒 
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below comply with section 2.15 Coordinate Systems in the DMPGL 2.0 Specifications. Note that 𝑧𝑐, 
the Z-values in clip coordinates, diverge from the OpenGL Specifications. 

Equation 14-1 below shows an example of the depth values (Z-values in window coordinates) stored 
in a shadow texture. 

Equation 14-1: Depth Values in a Shadow Texture 

𝑧𝑤 = −
1

𝑓 − 𝑛
𝑧𝑒 −

𝑛
𝑓 − 𝑛

 

Here, 𝑧𝑒 is the depth in the eye coordinate system, 𝑛 and 𝑓 indicate the values of the near and far 
clipping planes, and 𝑧𝑤 indicates the depth in window coordinates. The depth value 𝑧𝑒 is 0.0 at the 
near clipping plane and 1.0 at the far clipping plane. However, note that 𝑧𝑤 has a first-order 
correlation with 𝑧𝑒. In OpenGL, it is common (such as when perspective projection has been used for 
the projection transformation) for 𝑧𝑤 to be expressed using Equation 14-2 below, which yields a non-
linear relationship between 𝑧𝑤 and 𝑧𝑒. 

Equation 14-2: Depth Values in OpenGL 

𝑧𝑤 =
𝑓𝑛
𝑓 − 𝑛

 
1
𝑧𝑒

+
𝑓

𝑓 − 𝑛
 

Figure 14-2 below shows the relationship between depth values before (𝑧𝑒) and after (𝑧𝑤) projection 
transformation. The post-transformation depth values (𝑧𝑤) are stored in shadow textures in DMP, and 
in depth textures in OpenGL. 

Figure 14-2: Relationship Between Depth Values 𝒛𝒘 and 𝒛𝒆 in a DMP Shadow Texture (Left) 
and an OpenGL Depth Texture (Right) 

 

Note that in OpenGL, the 𝑧𝑤 depth values stored in depth textures do not have a linear correlation 
with the 𝑧𝑒. In OpenGL, the effective precision of 𝑧𝑤 decreases near the far clipping plane. (For both 
images in Figure 14-2, −𝑧𝑒 is shown on the X-axis, 𝑧𝑤 is shown on the Y-axis, and the values of the 
near and far clipping planes are set to 10.0 and 100.0, respectively.) 

The application of Equation 14-1 guarantees that the precision of the post-transformation depth 
values (𝑧𝑤) is always consistent over the entire range of the depth values (𝑧𝑒). In contrast, Figure 
14-3 below shows how the OpenGL Z-depth in Equation 14-2 varies with 𝑛. The smaller the value of 
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the near clipping plane, the lesser the effective precision of the depth values approaching the far 
clipping plane. 

Figure 14-3: Relationship Between 𝒛𝒘 and 𝒛𝒆 for Different Near Values in OpenGL 

 

In Figure 14-3 the blue line has a near value of 10.0, the red line has a near value of 5.0, and the 
yellow line has a near value of 1.0. The horizontal axis indicates – 𝑧𝑒, and the vertical axis indicates 
𝑧𝑤. The far value was set to 100.0 for all three lines. 

14.3.1 The dmp_FragOperation.wScale Reserved Uniform 

The shader's reserved uniform dmp_FragOperation.wScale is set to 0.0. The variables 𝑧𝑤, 𝑧𝑐, 
and 𝑤𝑐 have the relationship shown in Equation 14-3. (The variables 𝑧𝑐 and 𝑤𝑐 are in clip 
coordinates.) (The 𝑧𝑐 definition diverges from the OpenGL ES 1.1 Specification. See section 2.15 
Coordinate Systems in the DMPGL 2.0 Specifications.) 

Equation 14-3: Relationship Between 𝒛𝒘, 𝒛𝒄, and 𝒘𝒄 with dmp_FragOperation.wScale Set to 0.0 

𝑧𝑤𝑤𝑐 = −𝑧𝑐 

As a result, the following is true: 

Equation 14-4: Solving Equation 14-3 for 𝒛𝒘 

𝑧𝑤 = −
𝑧𝑐
𝑤𝑐

 

For perspective projection, this is no different Equation 14-2. In other words, this mode calculates the 
depth based on the OpenGL specifications and is also the default value. If the reserved uniform is set 
with an argument other than 0.0 (let us call this nonzero argument 𝑎), then 𝑧𝑤, and 𝑧𝑐, have the 
relationship shown in Equation 14-5. 
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Equation 14-5: Relationship Between 𝒛𝒘 and 𝒛𝒄 with dmp_FragOperation.wScale Set to a 
Nonzero Value 

𝑧𝑤 = −𝑎𝑧𝑐 

For perspective projection, if we take 𝑎 = 1.0 𝑓⁄ , Equation 14-5 is equivalent to Equation 14-1. In 
other words, this mode obtains depth values that have a linear correlation to 𝑧𝑒. Under most 
circumstances, set 𝑎 to 1.0/𝑓 if perspective projection was used for the projection transformation, 
and set 𝑎 to 1.0 if orthographic projection was used. These settings yield a linear correlation with 𝑧𝑒 
and also calculate 𝑧𝑤 such that 𝑧𝑤 = 0.0 at the near clipping plane and 𝑧𝑤 = 1.0 at the far clipping 
plane. Rendering is done in this mode during the first pass of shadow texture creation. 

14.3.2 Shadow Texture Comparison 

DMP shadow textures only have two possible interpretations: 

• 𝑅 > 𝐷 Fragment is in shadow 
• 𝑅 ≤ 𝐷 Fragment is not in shadow 

Here, 𝑅 indicates the R component of the texture coordinate when accessing the shadow texture, 
and 𝐷 indicates the depth value of the shadow texture. Note that there is only one comparison mode 
with DMPGL, unlike the multiple comparison modes that OpenGL has. 

14.3.3 Texture Coordinates and Texture Transformation Matrices During Shadow 
Texture Access 

During the second pass, the depth information that was created during the first pass is accessed as a 
texture. This is true of both OpenGL shadows and DMP shadows. The texture unit compares the 
content of the shadow texture with the value at the texture coordinates. If the wrong texture 
coordinates are specified here, the comparison is not performed correctly. 

Note that with DMP shadows, the texture coordinates (𝑠 𝑟⁄ , 𝑡 𝑟� , 𝑟 − 𝑏𝑖𝑎𝑠) must be used to access 
shadow textures. This is in contrast to OpenGL, which uses the texture coordinates (𝑠 𝑞� , 𝑡 𝑞� , 𝑟 𝑞�  ) to 
access depth textures. Here, (𝑠, 𝑡, 𝑟, 𝑞 ) indicate the texture coordinates after applying the texture 
transformation matrix, and 𝑏𝑖𝑎𝑠 indicates the floating-point value that is provided to the reserved 
uniform shown below. 
glUniformi(LOC(“dmp_Texture[0].shadowZBias“), bias); 

If the projection matrix is set to perform perspective projection in the first pass and this projection 
transformation is equivalent to calling glFrustum(-r, r, -t, t, n, f) in OpenGL ES 1.1, the 
window coordinates are as follows when shadow information is rendered to the shadow texture. 

Equation 14-6: X-Window Coordinate for Shadow Texture 

𝑥𝑤 = �
−𝑛
2𝑟

 
𝑥𝑒
𝑧𝑒

+
1
2
�𝑤𝑖𝑑𝑡ℎ 
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Equation 14-7: Y-Window Coordinate for Shadow Texture 

𝑦𝑤 = �
−𝑛
2𝑡

 
𝑦𝑒
𝑧𝑒

+
1
2
� ℎ𝑒𝑖𝑔ℎ𝑡 

Equation 14-8: Z-Window Coordinate for Shadow Texture 

𝑧𝑤 =  −  
1

𝑓 − 𝑛
𝑧𝑒 −  

𝑛
𝑓 − 𝑛

 

Here, 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 specify the size of the shadow texture. If we consider these window 
coordinates to be texture coordinates, that texture coordinate would be as follows. 

Equation 14-9: Texture Coordinates of Shadow Texture 

�
−𝑛
2𝑟

 
𝑥𝑒
𝑧𝑒

+
1
2

,
−𝑛
2𝑟

 
𝑦𝑒
𝑧𝑒

+
1
2

,−
1

𝑓 − 𝑛
𝑧𝑒 −

𝑛
𝑓 − 𝑛

� 

As a result, the texture transformation matrix and 𝑏𝑖𝑎𝑠 must be set during the second pass so that 
(𝑠 𝑟⁄ , 𝑡 𝑟� , 𝑟 − 𝑏𝑖𝑎𝑠) matches the texture coordinates in Equation 14-9. The following texture 
transformation matrix and bias accomplish that. 

Equation 14-10: Texture Transformation Matrix for Second Pass of Shadow Generation 

𝑡𝑒𝑥𝑡𝑢𝑟𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1
𝑓 − 𝑛

 
−𝑛
2𝑟

0
−1
𝑓 − 𝑛

 
1
2

0

0
−1
𝑓 − 𝑛

 
−𝑛
2𝑡

−1
𝑓 − 𝑛

 
1
2

0

0 0
−1
𝑓 − 𝑛

0

0 0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Equation 14-11: Bias for Second Pass of Shadow Generation 

𝑏𝑖𝑎𝑠 =
𝑛

𝑓 − 𝑛
 

To achieve the correct comparison, you must implement both of these. Implement the 𝑏𝑖𝑎𝑠 value by 
setting it in the reserved uniform dmp_Texture[0].shadowZBias, as mentioned earlier, and use a 
vertex shader to implement the texture transformation matrix in Equation 14-10. However, when the 
texture coordinate r is outside the range of [0.0, 1.0], when calculating the value for comparison with 
the depth information for the shadow buffer (r – bias), r is clamped in the [0.0, 1.0] range and 
subtraction is performed thereafter according to the bias, after which it is again clamped in the [0.0, 
1.0] range. To perform a correct comparison, specify 0 in bias for objects placed at the back of the far 
plane in the light source coordinate system for the first pass. 

The code below shows how to implement Equation 14-10's texture transformation matrix using the 
OpenGL ES 1.1 API. 

glMatrixMode(GL_TEXTURE); 
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glLoadIdenity(); 

glMultMatrixf(xxx); (Here, “xxx” is the texture transformation matrix shown above) 

Alternatively: 

glMatrixMode(GL_TEXTURE); 

glLoadIdentity(); 

glFrustumf(r/n, -3r / n, t/n, -3t / n, 1.f, 0.f); 

glScalef(-1.f/(f-n), -1.f/(f-n), -1.f/(f-n)); 

In the next sample implementation, an orthographic projection is used in the first pass. If this 
projection transformation is equivalent to calling glOrtho(-r, r, -t, t, n, f) in OpenGL ES 
1.1, a texture transformation matrix for shadow texture lookup is implemented using the OpenGL ES 
1.1 API as follows. 

glMatrixMode(GL_TEXTURE); 

glLoadIdentity(); 

glOrthof(-3r, r, -3t, t, 2n-f, f); 

14.4 Rendering Shadow Objects 
Recall that shadow textures are attached to color buffers. Clear values for shadow textures are set 
using glClearColor, and shadow textures are cleared by specifying GL_COLOR_BUFFER_BIT as 
an argument to the glClear function. 

Use (1.0, 1.0, 1.0, 1.0) as the clear value for shadow textures. Objects that generate soft shadows 
must be rendered after first rendering objects that generate hard shadows. Note that, if hard shadow 
regions and soft shadow regions are rendered alternately, the result is not guaranteed. Hard shadows 
are rendered as shadow objects with the color g-component set to 0.0. The typical technique involves 
implementing a vertex shader that outputs the vertex color g-component as 0.0, then disables 
textures. The use of any value other 0.0 for the color g-component is considered as rendering soft 
shadows. 

Rendering of soft shadows does not use the color r-, b-, or a-components. Only the g-component is 
used as the shadow intensity. However, the clear value for the r-, g-, b-, and a-components must be 
set to 1.0. This is required because both the depth information and the intensity information are 
cleared with 1.0. 

The example below illustrates clearing the shadow texture and the render state when rendering 
shadow objects. 

Code 14-2: Example for Rendering Shadow Objects 
//clear 

glClearColor(1.f, 1.f, 1.f, 1.f); 

glClear(GL_COLOR_BUFFER_BIT); 

… 

//render 
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glUniform1i(LOC(“dmp_Texture[0].samplerType”), GL_FALSE); 

glDrawArrays() or glDrawElements() 

Code 14-2 uses a program object to which a vertex shader that outputs a vertex color with a g-
component of 0.0 attached. Textures are disabled. 

14.4.1 Shadow Intensity 

As stated earlier, shadow textures include both depth values and shadow intensities. Soft shadows 
are possible by setting the shadow intensity to an appropriate value. The texture unit to which the 
shadow texture has been applied outputs black (0.0, 0.0, 0.0, 0.0) if it determines that the area in 
question is within a shadowed region. Otherwise, it outputs the shadow intensity (a value between 0.0 
and 1.0) that is stored in the shadow texture. 

The figure below shows how differences in the shadow intensities of a shadow texture will cause 
variation in the shadows generated during the second pass. 

Figure 14-4: Differences in Shadow Intensity 

   

14.4.2 Soft Shadows Using Silhouette Primitives 

As the shadow intensity example in Figure 14-4 shows, rendering the shadow's silhouette lines with 
the appropriate shadow intensity makes it possible to express the silhouette lines as a penumbra 
(partial shadow). Silhouette lines are rendered using silhouette primitives. The object itself must be 
rendered in black. For the silhouette portion, the g-component of the vertex color for two of the 
vertices of the silhouette quad (the two that don’t form the edge) must be 1.0. The vertex colors of the 
silhouette are interpolated within the silhouette quad, and the shadow intensity is also interpolated 
within the silhouette quad to match the vertex color. 

The example below shows soft shadows that use silhouette primitives. 
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Figure 14-5: Soft Shadow Sample Using Silhouette Primitives 

  

(The image on the left in Figure 14-5 has silhouettes disabled; the image on the right has silhouettes 
enabled.) 

14.5 Shadow-Related Artifacts 

14.5.1 Self-Shadow Aliasing 

One of the problems that can arise during shadow generation that uses this type of two-pass 
approach is known as self-shadow aliasing. This occurs when fragments mistakenly cast shadows on 
themselves. When the depth values created in the first pass are compared to the depths as seen 
from the light source in the second pass, if the depth values from the first pass are just marginally 
smaller, an incorrect determination is sometimes made that (𝑅 > 𝐷) and that the fragment is in 
shadow. This incorrect determination is the cause of self-shadow aliasing. Figure 14-6 below 
illustrates the problem. 

Figure 14-6: Example of Self-Shadow Aliasing 

 

In Figure 14-6 the fragments are mistakenly casting shadows on themselves, which causes a Moiré 
effect on the whole object. 
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One method for avoiding this problem is to suppress aliasing by applying a negative bias to the depth 
values in the second pass. The code below is an example of configuring this 𝑏𝑖𝑎𝑠 value to suppress 
aliasing. 

 
glUniform1f(LOC(“dmp_Texture[0].shadowZScale”), 1.f); 

glUniform1f(LOC(“dmp_Texture[0].shadowZBias”), 1.2f*n/(f-n)); 

With these settings for 𝑏𝑖𝑎𝑠, the third component of the texture coordinate becomes − 1
𝑓−𝑛

𝑧𝑒 −
1.2𝑛
𝑓−𝑛

 

when accessing the shadow texture. 

Figure 14-7: Self-Shadow Aliasing on the Floor and Walls (Left) and Suppressed by a Bias 
(Right) 

  

14.5.2 Silhouette Shadow Artifacts 

Artifacts generated by silhouette shadows cannot be mitigated by adding a bias as described in 
section 14.5.1. The DMP shadow feature outputs the shadow intensity if the shadow-determination 
process finds that a given fragment is not in a shadow region. Normally, non-shadowed areas have a 
shadow intensity of 1.0, so they are not affected by shadow attenuation. (That is, the brightness of 
these fragments does not change when it is multiplied by the shadow intensity.) Soft shadow regions 
generated by silhouettes, on the other hand, are affected by shadow attenuation, even though they 
are not deemed to be part of a shadow region in the shadow-determination process. (Since their 
shadow intensity is not 1.0, their brightness decreases when multiplied by the shadow intensity.) This 
phenomenon causes artifacts to occur with some objects. 

That said, it is possible to suppress this type of artifact by configuring the shadow-related settings in 
DMP fragment lighting, along with the texture combiner settings. This type of artifact normally 
becomes a problem when shadowing is applied to a surface that is parallel to the light source, so one 
suppression method is to define the shadow texture output value (the attenuation term) as shown in 
Equation 14-12. 



DMPGL 2.0 Programming Guide  

 2009-2011 Nintendo 157 CTR-06-0004-001-D 
CONFIDENTIAL  Released: May 13, 2011 

Equation 14-12: Modification of Shadow Attenuation Term to Prevent Silhouette Shadow 
Artifacts 

1.0 − 𝑓(1.0 − 𝑆𝑑𝑤) 

𝑆𝑑𝑤 is the original shadow attenuation term, and 𝑓 is an arbitrary function whereby 𝑓 ≈ 0.0 when 
the surface’s normal is perpendicular to the light source and 𝑓 ≈ 1.0 when the surface’s normal is 
parallel to the light source. With the shadow attenuation term defined in this way, the shadow 
attenuation is approximately 1.0 when the surface’s normal is perpendicular to the light source. In 
other words, there will be zero attenuation due to shadows (the shadows will have no effect). 
Conversely, if the surface’s normal is nearly parallel with the light source, the attenuation is 
approximately 𝑆𝑑𝑤. 

An example that implements the shadow attenuation term as 1.0 − 𝑓(1.0 − 𝑆𝑑𝑤) is shown below in 
Code 14-3. Note that the primary and secondary colors are not directly multiplied by the shadow 
(𝑆𝑑𝑤); instead the alpha components are multiplied by it. The actual multiplication is done in the 
texture combiner. Also note that the output from the FR table is output as the alpha component. As a 
result, the layer configuration must be set to a mode in which FR can be used. 

Code 14-3: Implementation of the Shadow Attenuation Term 𝟏.𝟎 − 𝒇(𝟏.𝟎 − 𝑺𝒅𝒘) Using DMP 
Fragment Lighting 

glUniform1i(LOC(“dmp_FragmentLighting.enabled”), GL_TRUE); 

 

..other code.. 

glUniform1i(LOC(“dmp_LightEnv.lutInputFR”), GL_LIGHT_ENV_LN_DMP); 

glUniform1i(LOC(“dmp_LightEnv.config”), GL_LIGHT_ENV_LAYER_CONFIG1_DMP); 

glUniform1i(LOC(“dmp_LightEnv.fresnelSelector”), 

GL_LIGHT_ENV_PRI_SEC_ALPHA_FRESNEL_DMP); 

glUniform1i(LOC(“dmp_LightEnv.shadowAlpha”), GL_TRUE); 

glUniform1i(LOC(“dmp_LightEnv.invertShadow”), GL_TRUE); 

 

GLuint luts[2];  

GLfloat lut[512]; 

int j; 

..other code.. 

memset(lut, 0, sizeof(lut)); 

for (j = 1; j < 128; j++) 

{ 

    lut[j] = powf((float)j/127.f, 2.0f); 

    lut[j+255] = lut[j] - lut[j-1]; 

} 

glTexImage1D(GL_LUT_TEXTURE0_DMP, 0, GL_LUMINANCEF_DMP, 512, 0, 

GL_LUMINANCEF_DMP, GL_FLOAT, lut); 

glUniform1i(LOC(“dmp_FragmentMaterial.samplerFR”), 0); 
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In Code 14-3, 𝑓(1.0 − 𝑆𝑑𝑤) is output as the alpha component of the fragment’s primary color and 
secondary color. The reserved uniform dmp_LightEnv.shadowAlpha is set to GL_TRUE and only 
the alpha component is multiplied by 𝑆𝑑𝑤. Also note that the reserved uniform 
dmp_LightEnv.invertShadow is set to GL_TRUE so that 𝑆𝑑𝑤 is being inverted (1.0 − 𝑆𝑑𝑤). The 
values in the table set for the reserved uniform dmp_FragmentMaterial.samplerFR are used for 
the alpha component to implement the function 𝑓(1.0 − 𝑆𝑑𝑤). The table 𝑓 is set to 𝑥2, and the 
lookup is done using the dot product of the light vector and the normal (LN). This means that this table 
will output 0.0 when 𝐿 and 𝑁 are perpendicular, and will output 1.0 when the two vectors are parallel. 

Code 14-4: Using the Texture Combiners to Multiply the Shadow Attenuation Term 𝟏.𝟎 −
𝒇(𝟏.𝟎 − 𝑺𝒅𝒘) by the Primary Color 

glUniform1i(LOC(“dmp_TexEnv[0].combineRgb”), GL_MODULATE); 

glUniform1i(LOC(“dmp_TexEnv[0].combineAlpha”), GL_REPLACE); 

glUniform3i(LOC(“dmp_TexEnv[0].operandRgb”),  

         GL_SRC_COLOR, GL_ONE_MINUS_SRC_ALPHA, GL_SRC_COLOR); 

glUniform3i(LOC(“dmp_TexEnv[0].operandAlpha”),  

         GL_SRC_ALPHA, GL_SRC_ALPHA, GL_SRC_ALPHA); 

glUniform3i(LOC(“dmp_TexEnv[0].srcRgb”), GL_FRAGMENT_PRIMARY_COLOR_DMP, 

         GL_FRAGMENT_PRIMARY_COLOR_DMP, GL_PRIMARY_COLOR); 

glUniform3i(LOC(“dmp_TexEnv[0].srcAlpha”),  

         GL_PRIMARY_COLOR, GL_PRIMARY_COLOR, GL_PRIMARY_COLOR); 

Since the settings in Code 14-3 set the alpha component of the primary color to 𝑓(1.0 − 𝑆𝑑𝑤), the 
function 1.0 − 𝑓(1.0 − 𝑆𝑑𝑤) can be implemented by setting the second element of the reserved 
uniform dmp_TexEnv[0].operandRgb to GL_ONE_MINUS_SRC_ALPHA, as shown above in Code 
14-4. The RGB components of the primary color are then multiplied by this function. 

Figure 14-8: Example of Silhouette Shadow Artifacts (Left) and Artifact Suppression (Right) 
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14.6 Other Related Parameters 
Parameters related to DMP shadows are listed below. 

Table 14-1: Shadow-Related Parameters 

Reserved Uniforms Default 
Value Description 

dmp_Texture[0].shadowZScale Undefined Scaling factor by which to multiply when evaluating the 
depth value function in screen space in the light 
source’s coordinate system 

dmp_Texture[0].shadowZBias 0.0 Bias value to subtract from the calculated distances 
between each fragment and the light source 

dmp_Texture[0].perspectiveShadow GL_TRUE Set to GL_TRUE to divide the texture coordinates s and 
t by the r coordinate when accessing the shadow 
texture 

dmp_FragOperation.penumbraScale 0.0 Scaling factor used when calculating penumbra 
hardness 

dmp_FragOperation.penumbraBias 1.0 Bias value when calculating penumbra hardness 

14.7 How to Check Shadow Texture Content 
To check the image rendered to a shadow texture, read texel data by calling glReadPixels with 
format set to GL_RGBA and type set to GL_UNSIGNED_BYTE while the shadow texture is attached 
to the current color buffer. 

A single texel is represented by 32 bits; the actual hardware and the PicaOnDesktop environments 
use different data components. In the actual hardware environment, the shadow intensity takes 8 bits 
and depth information takes 24 bits. The R component represents the shadow intensity; the G, B, and 
A components each represent 8 bits of depth information, holding the lower 8 bits, middle 8 bits, and 
upper 8 bits respectively. On the PicaOnDesktop environment, the shadow intensity takes 8 bits and 
depth information takes 16 bits. The R component indicates the shadow intensity; the B and A 
components each represent 8 bits of depth information, holding the lower 8 bits and upper 8 bits 
respectively. On the PicaOnDesktop environment the G component is undefined. 
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15 Fog 
This chapter describes how to use the fog feature. 

15.1 Overview 
The fog feature is used to represent environmental effects such as mist or steam. Objects melt away 
into the color of the fog as they move further away from the viewpoint. 

Figure 15-1: Image Showing Fog 

 

15.2 Fog in OpenGL ES 1.1 
OpenGL ES 1.1 defines the effect of fog using the equation below. 

Equation 15-1: OpenGL ES 1.1 Fog Equation 

𝐶′ = 𝑓 × 𝐶 + (1 − 𝑓) × 𝐶𝑓 

Here, 𝐶′ indicates the post-fog fragment color, and 𝐶 indicates the pre-fog fragment color. 𝐶𝑓 
indicates the fog color, which is set using GL_FOG_COLOR. 𝑓 indicates the fog coefficient, which is 
defined based on the mode, as shown by Table 15-1 below. 
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Table 15-1: Fog Coefficients in OpenGL ES 1.1 

Fog Mode Formula Used to Calculate the Fog Coefficient 

GL_LINEAR 𝑓 =
𝑒𝑛𝑑 − 𝑐

𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡 

GL_EXP 𝑓 = 𝑒−(𝑑𝑒𝑛𝑠𝑖𝑡𝑦×𝑐) 

GL_EXP2 𝑓 = 𝑒−(𝑑𝑒𝑛𝑠𝑖𝑡𝑦×𝑐)2 

𝑠𝑡𝑎𝑟𝑡 : Set using GL_FOG_START 
𝑒𝑛𝑑 : Set using GL_FOG_END 
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 : Set using GL_DENSITY 
𝑐  : Distance from the origin to the fragment in the eye coordinate system 

15.3 Fog in OpenGL ES 2.0 
Fog is not defined in OpenGL ES 2.0; it is implemented instead using pixel shaders. 

15.4 Fog in DMPGL 2.0 
Just as in OpenGL ES 1.1, the calculation of fog in DMPGL 2.0 is defined by Equation 15-1: OpenGL 
ES 1.1 Fog Equation. However, DMPGL 2.0 uses the output of the fog lookup table for the fog 
coefficient 𝑓. 

15.4.1 Enabling and Disabling Fog 

Set the reserved uniform dmp_Fog.mode to GL_FOG to enable fog. 
glUniform1i(LOC(dmp_Fog.mode), GL_FOG); 

To disable fog, set the same uniform to GL_FALSE. 
glUniform1i(LOC(dmp_Fog.mode), GL_FALSE); 

15.4.2 Setting the Fog Color 

The fog color is set using the reserved uniform dmp_Fog.color. 
GLfloat fog_color[3] = {0.3f, 0.3f, 0.5f}; 

glUniform3fv(LOC(dmp_Fog.color), 1, fog_color); 

15.4.3 Fog Coefficient 

The fog coefficient 𝑓 is the output from the fog lookup table. The fog lookup table is accessed using 
𝑧𝑤, the fragment's z-value in window coordinates. The fog lookup table has 256 entries. 
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Figure 15-2: Fog Lookup Table 

 

The first 128 entries of the fog lookup table store values in the range [0.0, 1.0]. The last 128 entries 
store values in the range [-1.0, 1.0]. The fog lookup table input value 𝑧𝑤 is in the range [0.0, 1.0]. Its 
minimum value corresponds to the near clipping plane, and its maximum value corresponds to the far 
clipping plane. The output values of the lookup table are defined using the following equations. 

Equation 15-2: Output Values of Fog Lookup Table 

𝑖 = (int)𝑓𝑙𝑜𝑜𝑟(𝑧𝑤 × 128)                        (Integer portion) 
𝑓𝑟 = 𝑓𝑟𝑎𝑐𝑡(𝑧𝑤 × 128)                              (Fractional portion) 
𝑓 = 𝑡𝑎𝑏𝑙𝑒[𝑖] + 𝑡𝑎𝑏𝑙𝑒[𝑖 + 128] × 𝑓𝑟      𝑡𝑎𝑏𝑙𝑒[]: Lookup table 

If the function 𝐹(𝑧𝑤) is set for the fog lookup table, the entries in the table will be determined as 
follows: 

Equation 15-3: Calculation of Fog Lookup Table Entries (𝟎 ≤ 𝒊 ≤ 𝟏𝟐𝟕) 

𝑡𝑎𝑏𝑙𝑒[𝑖] = 𝐹 �
𝑖

128
� 

𝑡𝑎𝑏𝑙𝑒[𝑖 + 128] = 𝐹 �
𝑖 + 1
128

� − 𝐹 �
𝑖

128
� 

To configure the fog lookup table, prepare an array of GLfloat values that will store its values. 
GLfloat fog_lut[256]; 

// Set up fog table contents 

for (int i=0; i<128; i++) 

{ 

    Fog_lut[i] = F(i/128.0f); 

    Fog_lut[i+128] = F((i+1)/128.0f) – F(i/128.0f); 

} 

Next, load the content of the array into the lookup table object. 
glBindTexture(GL_LUT_TEXTURE1_DMP, id_FogLut); 

glTexImage1D(GL_LUT_TEXTURE1_DMP, 0, GL_LUMINANCEF_DMP, 256, 0, 

                                GL_LUMINANCEF_DMP, GL_FLOAT, fog_lut); 

To use the lookup table with fog, set the reserved uniform dmp_Fog.sampler to the lookup table 
number to which the lookup table object is bound. 
glUniform1i(LOC(”dmp_Fog.sampler"), 1); 
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15.5 Implementing OpenGL ES 1.1 Fog with DMPGL 2.0 
To implement OpenGL ES 1.1 fog with DMPGL 2.0, use a fog lookup table to implement the fog 
coefficient used by OpenGL ES 1.1 (refer to Table 15-1). The fog coefficient is a function of 𝑐 (the 
distance from the origin to the fragment in eye coordinates), so we use the notation 𝑓(𝑐). 𝑐 
approximates −𝑧𝑒/𝑤𝑒, the distance between the fragment and the XY plane in eye coordinates. If we 
use the equation −𝑧𝑒/𝑤𝑒 = 𝑔(𝑧𝑤) to represent the relationship between −𝑧𝑒/𝑤𝑒 and 𝑧𝑤, we can 
express the fog coefficient 𝑓(𝑐) in terms of 𝑧𝑤, as shown below. 

Equation 15-4: Fog Coefficient in Terms of 𝒛𝒘Distance Between Fragment and XY Plane 

𝑓(𝑐) ≒ 𝑓(−𝑧𝑒/𝑊𝑒  ) = 𝑓(𝑔(𝑧𝑤 ) ) 

Configuring the lookup table using Equation 15-4 allows us to implement the fog functionality of 
OpenGL ES 1.1. The chart below summarizes the z-coordinates of the near and far clipping planes in 
each of the coordinate systems. 

Table 15-2: Z-Values of the Near and Far Clipping Planes in Each Coordinate System 

Coordinate System Near Far 

Eye Coordinates -near -far 

Normalized Device Coordinates 0.0 -far/far 

Window Coordinates 0.0 1.0 

This shows that the range [0.0, 1.0] for 𝑧𝑤 maps to [0.0, -1.0] in normalized device coordinates. This 
leads to the following equation. 

Equation 15-5: Z-Value Equivalencies 

𝑧𝑑 = −𝑧𝑤 

Here, 𝑧𝑑 indicates the z-value in normalized device coordinates. This lets us find the coordinate 
values for 𝑧𝑤 in eye coordinates using Equation 15-6 below: 

Equation 15-6: Transforming 𝒛𝒘 to Eye Coordinates 

(𝑋𝑒 𝑦𝑒 𝑧𝑒 𝑤𝑒) = (0 0 −𝑧𝑤 1.0)𝑀𝑝𝑟𝑜𝑗
−1 

𝑀𝑝𝑟𝑜𝑗: Projection matrix 

An example of how to configure the fog table is shown below. We use the fog table input value 𝑧𝑤 to 
find the distance 𝑐 from the origin to the fragment in eye coordinates. We then use the fog coefficient 
function 𝑓(𝑐) to configure the contents of the lookup table. 
GLfloat Fog_LUT[256];   // Fog lut contents 

GLfloat c[128+1];    // distance in eye coordinate 

GLfloat zw;    // depth value 

vec4_t p_clip(0.0, 0.0f, 0.0f, 1.0f); // position in clip coordinate 

vec4_t p_eye;    // position in eye coordinate 
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mat4_t invMproj = {…};   // inverted projection matrix 

 

// Get distance in eye coordinate from zw 

for (int i=0; i<=128; i++) 

{ 

    zw = ((GLfloat)i/128);  // zw : [0.0, 1.0] 

    p_clip.z = -zw;   // p_clip.z = {0.0, 0.0, -zw, 1.0}; 

    p_eye = invMproj * p_clip;  // c = -ze/we = g(zw); 

    c[i] = -p_eye.z/p_eye.w;  // 

} 

// Set fog table contents 

for (int i=0; i<128; i++) 

{ 

    Fog_LUT[i] = f(c[i]);   // Fog lut value 

    Fog_LUT[i+128] = f(c[i+1]) – f(c[i]); // Fog lut delta value 

} 

Note that in OpenGL ES 1.1, the distance 𝑐 from the origin in eye coordinates is used to calculate the 
fog coefficient. In DMPGL, however, the fog lookup table input value 𝑧𝑤 is the z-value of the fragment 
in window coordinates. Figure 15-3 below illustrates the relationship between −𝑧𝑒 and 𝑧𝑤 for a 
perspective projection in which the near clipping plane is at 10.0 and the far clipping plane is at 100.0. 

Figure 15-3: Relationship Between Z-Values in the Eye and Window Coordinate Systems 

 

With perspective projections, 𝑧𝑤 (the depth value) does not vary linearly with 𝑧𝑒 (the z-value in eye 
coordinates). The distribution of depth values is non-uniform. The closer an object gets to the near 
clipping plane, the greater its resolution will be; the closer an object gets to the far clipping plane, the 
lower its resolution will be. 



DMPGL 2.0 Programming Guide  

 2009-2011 Nintendo 165 CTR-06-0004-001-D 
CONFIDENTIAL  Released: May 13, 2011 

16 Gas 

16.1 Overview 
DMPGL 2.0 provides a gas feature for rendering gaseous objects. Gaseous objects are rendered 
using this feature by generating a gas texture that contains the density values that were accumulated 
during the density-rendering pass. In a subsequent shading pass, the gaseous objects are shaded by 
referencing this gas texture. Gas textures are generated during the density-rendering pass by 
determining the areas where the gas intersects with polygonal models, so gaseous objects are 
rendered by determining the foreground/background relationship of the gas versus the polygonal 
model; that is, determining at each pixel whether the gas or the polygonal model should appear in 
front. 

Figure 16-1: Rendering of a Gaseous Object Using the Gas Feature 

 

16.1.1 Rendering Procedure for Gaseous Objects 

Gaseous objects are rendered using the following procedure. 

• Perform a render pass on the polygonal objects (polygonal object rendering pass) 
• Perform a render pass on the density values (density-rendering pass) 
• Perform a shading pass 

When the gas feature of DMPGL 2.0 renders gaseous objects, it takes into consideration the areas 
where the gas intersects with polygonal objects in the scene. For this reason, the polygonal objects 
must be rendered using standard methods and the depth values for the polygonal objects must be 
stored in the depth buffer before the gaseous object can be rendered (in other words, before the 
density-rendering pass or the shading pass can be run). 
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Figure 16-2: Polygonal Object Rendering Pass 

 

During the density-rendering pass, the depth values of the polygonal objects that were rendered in 
the polygonal object rendering pass are referenced in order to render the density values of the 
gaseous object to the gas texture. 

Figure 16-3: Density-Rendering Pass 
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During the shading pass, the density values stored in the gas texture are referenced to shade the 
gaseous object. The shading results are rendered to the color buffer and then blended with the 
polygonal objects that were already rendered during the polygonal rendering pass. 

Figure 16-4: Shading Pass 

 

16.2 Gas Particles 
Gas particles comprise the smallest constituent parts of gaseous objects. Although gas particles can 
be of any geometric form, they are typically defined as either sprites (billboarded quads) or point 
sprites. The texture defined by the density pattern is applied to the gas particles. This texture is called 
the density pattern texture. 

Figure 16-5: Sample Density Pattern Texture 

 

16.3 Gas Textures 
Gaseous objects are defined as collections of gas particles. Gas textures store the cumulative density 
values for gaseous objects (these cumulative density values represent the net density of all the 
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individual gas particles). Each texel of the gas texture contains both the simple cumulative net density 
value of the individual gas particle fragments (called 𝐷1) and the cumulative value that takes into 
account the intersections with polygonal models (called 𝐷2). For more details, see section 16.4 
Density-Rendering Pass. The gas texture’s contents are rendered during the density-rendering pass, 
and referenced during the shading pass. The buffer used as the render target for the density-
rendering pass and the texture buffer used during the gas shading pass have the following size 
restrictions: 

• The buffer used as the render target during the density-rendering pass must be of the same size as 
the Z-buffer. 

• The size of the texture buffer referenced during the shading pass must be a power of two. 

Due to these two restrictions, if the size of the final render buffer (the size of the Z-buffer) is not a 
power of two, the result from the density-rendering pass will be copied to part of a texture whose size 
is a power of two. This copy will then be used during the shading pass. 

Figure 16-6: Use of Gas Textures 
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The OpenGL extension GL_OES_framebuffer_object is used to render gas textures. Create a 
framebuffer object, and specify a render buffer to which to render the density values. 

When calling glRenderbufferStorage to render the density values, specify GL_GAS_DMP as the 
internalformat argument. Then, create the texture into which the gas texture will be copied. At 
this time, specify GL_GAS_DMP as the internalformat and format arguments of the 
glTexImage2D function. The type argument must be GL_UNSIGNED_SHORT. Specify GL_NEAREST 
as the minification and magnification filters, since filters will not work on gas textures. Code 16-1 
below shows how to use the gas texture-related buffers when the final rendering size is 640×480. In 
this example, we render the gas texture to a 640x480 render buffer during the density-rendering pass, 
copy it to a 1024x512 texture, and use that copy. 
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Code 16-1: Implementation of Gas Texture-Related Buffers for Final Render Size of 640x480 
// generate framebuffer and renderbuffer 

glGenFramebuffers(1, (GLuint*)&gastexfb); 

glGenRenderbuffers(1, (GLuint*)&gas_acc); 

// initialize renderbuffer for density accumulation 

glBindRenderbuffer(GL_RENDERBUFFER, gas_acc); 

glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8_OES, 640, 480); 

// attach renderbuffer to framebuffer 

glBindFramebuffer(GL_FRAMEBUFFER, gastexfb); 

glFramebufferRenderbuffer(GL_FRAMEBUFFER, 

                       GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, gas_acc); 

 

// initialize texture for shading 

glGenTextures(1, (GLuint*)&gastex_shading); 

glBindTexture(GL_TEXTURE_2D, gastex_shading); 

glTexImage2D(GL_TEXTURE_2D, 0, GL_GAS_DMP, 1024, 512, 0, 

                                         GL_GAS_DMP, GL_UNSIGNED_SHORT, 0); 

glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST); 

glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST); 

 

// gas density accumulation pass 

   . . . . . . 

 

// copy generated gas texture 

glUniform1i(LOC("dmp_Texture[0].samplerType"), GL_TEXTURE_2D); 

glBindTexture(GL_TEXTURE_2D, gastex_shading); 

glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, 640, 480); 

16.4 Density-Rendering Pass 
During the density-rendering pass, the density values of a gaseous object are rendered by calculating 
the cumulative density value of all gas particles and rendering the result to a gas texture. To do this, 
specify the framebuffer that was created to render the gas texture as the render target for the density 
values. 
glBindFramebuffer(GL_FRAMEBUFFER, gastexfb); 

Per-fragment operations must be set to gas mode in order to render the density values. Once 
fragment operations enter gas mode, the portion of the pipeline starting with the alpha test is replaced 
by a pipeline specific to gas-related processing. 

Switching per-fragment operations to gas mode is done using the following code. 
glUniform1i(LOC(“dmp_FragOperation.mode”), GL_FRAGOP_MODE_GAS_ACC_DMP); 
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You can revert to the ordinary fragment pipeline mode using the following code. 
glUniform1i(LOC(“dmp_FragOperation.mode”), GL_FRAGOP_MODE_GL_DMP); 

When the fragment pipeline mode is set to gas mode, the simple cumulative density value of each 
gas particle fragment (called 𝐷1) and the cumulative value that takes into account the intersections 
with polygonal models (called 𝐷2) are both written to the color buffer. If the R component of the post-
fog fragment color (R, G, B, A) is taken to represent the fragment density 𝐷𝑓, 𝐷1 is updated to the 
cumulative value 𝐷1′ as shown in Equation 16-1 below. 

Equation 16-1: Simple Cumulative Density from Each Gas Particle Fragment 

𝐷1′ = 𝐷1 + 𝐷𝑓 

Likewise, 𝐷2 is updated to 𝐷2′ as shown below. 

Equation 16-2: Cumulative Density Taking Polygonal Intersections into Account 

𝐷𝑍 = (𝑍𝑏 − 𝑍𝑓 < 0.0)? 0.0: (𝑍𝑏 − 𝑍𝑓) × 𝐸𝑍 
𝐴𝑇𝑇 = (𝐷𝑍 > 1.0)? 1.0:𝐷𝑍 
𝐷2′ = 𝐷2 + 𝐷𝑓 × 𝐴𝑇𝑇 

𝑍𝑏 indicates the depth value stored in the depth buffer, and 𝑍𝑓 indicates the depth value of the 
fragment. (The depth values of the polygonal models must be written to the depth buffer ahead of 
time). 𝐸𝑍 is a floating-point value that is set using the reserved uniform dmp_Gas.deltaZ. It 
represents the ratio of the attenuation of the density values in the depth direction. 

Section 16.5 Shading Pass describes how the 𝐷1 and 𝐷2 values accumulated in the gas texture are 
used in more detail. 

Be sure to disable the depth test, depth mask, and blend settings during the density-rendering pass. 
glDisable(GL_DEPTH_TEST); 

glDepthMask(GL_FALSE); 

glDisable(GL_BLEND); 

16.5 Shading Pass 
During the shading pass, gaseous objects are shaded based on their cumulative density values 
stored in the gas texture. Shading is done by applying the gas texture to sprites of the same size as 
the gas texture, and then using the fog unit (set to gas mode) to perform shading. The result of this 
shading is then blended with the image of the rendered polygonal models that is stored in the 
framebuffer. 

16.5.1 Overview of Fog Operations in Gas Mode 

The fog unit performs special gas shading operations when is set to gas mode. Set the reserved 
uniform dmp_Fog.mode to GL_GAS_DMP to switch the fog unit to gas mode. To restore fog operations 
to fog mode or disable fog operations altogether, set dmp_Fog.mode to GL_FOG or GL_FALSE, 
respectively. 
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When the fog unit is set to gas mode, it takes three inputs: the output (𝑟,𝑔, 𝑏, 𝑎) of the next-to-last 
texture combiner (dmp_TexEnv[last-1]), the final texture combiner 
dmp_TexEnv[last].srcRgb, and the third argument to dmp_TexEnv[last].srcAlpha.. (If 
there are six texture combiners implemented in the pipeline, for example, last is texture combiner 
5.) Specify the gas texture that was generated during the density-rendering pass both as 
dmp_TexEnv[last].srcRgb and the third argument of dmp_TexEnv[last].srcAlpha. The 
texels of the gas texture sent as input to the fog unit are used as both 𝐷1 and 𝐷2. 

Figure 16-7: Input to the Fog Unit in Gas Mode 
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Internally, the fog unit uses shading lookup tables and a fog lookup table to calculate the RGB and 
alpha values that serve as the shaded result. 

Figure 16-8: Overview of Fog Operations in Gas Mode 
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16.5.2 RGB Values from Shading 

The density 𝑑1 is used to calculate the RGB values during shading. This density is calculated using 
either the 𝐷1 or 𝐷2 input to the fog unit. The formula used to calculate 𝑑1 is shown below. 
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Equation 16-3: Calculation of Density During Shading 

𝑑1 = 𝑑𝑘 × 𝑖𝑛𝑣𝑀𝑎𝑥 

Here, either 𝐷1 or 𝐷2 can be chosen for the 𝑑𝑘 term by setting the reserved uniform 
dmp_Gas.shadingDensitySrc to either GL_GAS_PLAIN_DENSITY_DMP or 
GL_GAS_DEPTH_DENSITY_DMP, respectively. The 𝑖𝑛𝑣𝑀𝑎𝑥 term is the scaling value used to restrict 
𝑑1 to the range [0.0, 1.0]. If the reserved uniform dmp_Gas.autoAcc has been set to GL_TRUE, the 
inverse of the maximum value of 𝐷1 from the density-rendering pass is used as 𝑖𝑛𝑣𝑀𝑎𝑥. When 
dmp_Gas.autoAcc has been set to GL_FALSE, the floating-point value set for the reserved uniform 
dmp_Gas.accMax is used as 𝑖𝑛𝑣𝑀𝑎𝑥. The resulting density 𝑑1 can be used both to calculate the 
shading intensity 𝐼𝐼 (described in more detail in section 16.5.2.4), and as the input value for the 
shading lookup tables. The output of the shading lookup tables is output from the fog unit as the RGB 
values (𝐺𝑟,𝐺𝑔,𝐺𝑏) of the shading result. 

16.5.2.1 Configuring the Shading Lookup Tables 

The shading lookup tables are 16-entry tables that store the R, G, or B components separately. The 
first eight entries in each table are used to store the values for the color component in question. The 
last eight entries are used to store the deltas between adjacent entries in the first half of the table. 
Figure 16-9 shows the contents of a sample shading lookup table. 

Figure 16-9: Sample Shading Lookup Tables 

 

To configure this type of shading lookup table, for each color component prepare an array with 16 
elements as shown in Code 16-2 below, using the names shading_table{R,G,B}. 

Code 16-2: Configuring Shading Lookup Tables 
// define shading color table contents: note that RGB8 is used 

// only for calculating deltas. 

const float color_define[3*9] = 

{ 

    0.00f,  0.00f,  0.00f,  /* RGB0 */ 

    0.20f,  0.15f,  0.05f,  /* RGB1 */ 

    0.60f,  0.25f,  0.15f,  /* RGB2 */ 

    0.90f,  0.35f,  0.20f,  /* RGB3 */ 

    0.92f,  0.60f,  0.15f,  /* RGB4 */ 

    0.95f,  0.85f,  0.05f,  /* RGB5 */ 

R 
G 
B 

0.00 
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0.95 
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1.00 
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0.05 

1.00 
1.00 
1.00 
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    1.00f,  0.95f,  0.00f,  /* RGB6 */ 

    1.00f,  1.00f,  1.00f,  /* RGB7 */ 

    1.00f,  1.00f,  1.00f   /* RGB8 */ 

}; 

// Arrays for shading color table 

float shading_tableR[16], shading_tableG[16], shading_tableB[16]; 

 

// set up shading color table contents 

for (int i=0; i<8; i++) 

{ 

    // setting shading color value entry 

    shading_tableR[i] = color_define[3*i+0]; 

    shading_tableG[i] = color_define[3*i+1]; 

    shading_tableB[i] = color_define[3*i+2]; 

 

    // setting deltas of shading color color value entries 

    shading_tableR[8+i] = color_define[3*(i+1)+0] - color_define[3*i+0]; 

    shading_tableG[8+i] = color_define[3*(i+1)+1] - color_define[3*i+1]; 

    shading_tableB[8+i] = color_define[3*(i+1)+2] - color_define[3*i+2]; 

}; 

The content of the arrays are loaded into lookup table objects. 
glBindTexture(GL_LUT_TEXTURE1_DMP, id_R); 

glTexImage1D(GL_LUT_TEXTURE1_DMP, 0, GL_LUMINANCEF_DMP, 16, 0, 

                                GL_LUMINANCEF_DMP, GL_FLOAT, shading_tableR); 

 

glBindTexture(GL_LUT_TEXTURE2_DMP, id_G); 

glTexImage1D(GL_LUT_TEXTURE2_DMP, 0, GL_LUMINANCEF_DMP, 16, 0, 

                                GL_LUMINANCEF_DMP, GL_FLOAT, shading_tableG); 

 

glBindTexture(GL_LUT_TEXTURE3_DMP, id_B); 

glTexImage1D(GL_LUT_TEXTURE3_DMP, 0, GL_LUMINANCEF_DMP, 16, 0, 

                                GL_LUMINANCEF_DMP, GL_FLOAT, shading_tableB); 

To use the lookup tables during the shading pass, the reserved uniforms 
dmp_Gas.samplerT{R,G,B} must be set to the lookup table numbers to which the lookup table 
objects are bound. 
glUniform1i(LOC(”dmp_Gas.samplerTR"), 1); 

glUniform1i(LOC("dmp_Gas.samplerTG"), 2); 

glUniform1i(LOC(”dmp_Gas.samplerTB"), 3); 
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16.5.2.2 Input Values to the Shading Lookup Tables 

You can choose whether to use the density 𝑑1 or the shading intensity as the input to the shading 
lookup tables. This input choice is set using the reserved uniform dmp_Gas.colorLutInput. To 
configure the lookup table to use the density as input, use the following code: 
glUniform1i(LOC(”dmp_Gas.colorLutInput"), GL_GAS_DENSITY_DMP); 

To configure the lookup table to use the shading intensity as input, use the following code: 
glUniform1i(LOC(”dmp_Gas.colorLutInput"), GL_GAS_LIGHT_FACTOR_DMP); 

16.5.2.3 Referencing the Shading Lookup Tables Using Density as Input 

If 𝑑1 is used as the input value to the shading lookup tables, the density distribution of the gaseous 
object is applied directly to the RGB values during shading. Let’s consider a scene like the one shown 
in Figure 16-10 below, in which a gas particle defined as a single sprite has been mapped with a 
density pattern texture, and in which this gas particle intersects with a polygon. 

Figure 16-10: Sample Scene (Left) and Sample Density Pattern Texture (Right) 

  

To make the boundaries of the sprite visible, the density pattern texture in Figure 16-10 deliberately 
has edges of nonzero density. The choice of 𝑑𝑘 values when calculating 𝑑1 will determine whether 
or not the shaded RGB values are affected by the areas where gas particles intersect with polygonal 
objects. 

Figure 16-11: Shaded RGB Values Resulting from Using Density as Input 

 

Figure 16-11 shows the results of GL_GAS_PLAIN_DENSITY_DMP (Left) and 
GL_GAS_DEPTH_DENSITY_DMP (Right). 
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If 𝑑𝑘 is set to 𝐷1 (GL_GAS_PLAIN_DENSITY_DMP), the intersections with polygonal objects will not 
affect the shaded RGB values. Conversely, if 𝐷2 is chosen (GL_GAS_DEPTH_DENSITY_DMP), the 
shading lookup tables are accessed using density values that take into account the intersections with 
polygonal objects. The alpha value of the shading pass is always calculated in a way that takes into 
account the intersections with polygonal objects (for details, see section 16.5.3 Alpha Values from 
Shading). Consequently, even if you use GL_GAS_PLAIN_DENSITY_DMP, it is still possible to use 
alpha blending to render gaseous objects in a way that takes into account the intersections with 
polygonal objects. 

16.5.2.4 Referencing the Shading Lookup Tables Using Shading Intensity as Input 

The shading lookup tables can be accessed using the shading intensity 𝐼𝐼 as input. 

Equation 16-4: Shading Intensity (𝑰𝑰) 

𝐼𝐼 = 𝐼𝐺 + 𝐼𝑆 

Here, 𝐼𝐺 indicates the planar shading intensity, and 𝐼𝑆 indicates the view shading intensity. The 
planar shading intensity is calculated using the following formulas. 

Equation 16-5: Planar Shading Intensity (𝑰𝑮) 

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = (1.0 − 𝑙𝑖𝑔ℎ𝑡𝐴𝑡𝑡 × 𝑑1) 
𝑖𝑔 = 𝑟 × 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 
𝐼𝐺 = (1.0 − 𝑖𝑔) × 𝑙𝑖𝑔ℎ𝑡𝑀𝑖𝑛 + 𝑖𝑔 × 𝑙𝑖𝑔ℎ𝑡𝑀𝑎𝑥 

Here, 𝑟 is the R component of the input color to the fog unit. 𝑙𝑖𝑔ℎ𝑡𝑀𝑖𝑛, 𝑙𝑖𝑔ℎ𝑡𝑀𝑎𝑥, and 𝑙𝑖𝑔ℎ𝑡𝐴𝑡𝑡 refer 
respectively to the minimum intensity, maximum intensity, and attenuation due to density, all of which 
control planar shading. These are all set using the reserved uniform dmp_Gas.lightXY. 
GLfloat lightXY[3] = {lightMin, lightMax, lightAtt}; 

glUniform3fv(LOC(“dmp_Gas.lightXY"), 1, lightXY); 

Figure 16-12 through Figure 16-14 below use graphs to show the relationships between 𝑑1, 𝑟, and 
𝐼𝐺. 
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Figure 16-12: Planar Shading Intensity (𝒍𝒊𝒈𝒉𝒕𝑨𝒕𝒕 = 𝟏.𝟎) 

 

Figure 16-13: Planar Shading Intensity (𝒍𝒊𝒈𝒉𝒕𝑨𝒕𝒕 = 𝟎.𝟔) 
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Figure 16-14: Planar Shading Intensity (𝒍𝒊𝒈𝒉𝒕𝑨𝒕𝒕 = 𝟎.𝟑) 

（lightAtt = 0.3）
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These figures show that the planar shading intensity 𝐼𝐺 is proportional to both 𝑟 and (1 − 𝑑1). Also, 
comparing the three graphs shows that the effect of 𝑑1 increases proportionally to the attenuation of 
𝑙𝑖𝑔ℎ𝑡𝐴𝑡𝑡. Figure 16-15 below is a visual representation of the effect of shading, given uniform values 
for 𝑑1 and a view shading intensity 𝐼𝑆 of zero. The shading lookup tables have been set to values 
that yield a transition between black and red. You can see that the color approaches red as 𝑟 
increases; it approaches black as 𝑟 decreases. 

Figure 16-15: Representation of the Effect of Planar Shading, Using Lookup Tables That 
Transition from Red to Black 

r =0.5 

 

r =1.0 

r =0.0 r =0.5 

 

The view shading intensity 𝐼𝑆 is calculated as follows. 

Equation 16-6: View Shading Intensity (𝑰𝑺) 

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = (1.0 − 𝑠𝑐𝑎𝑡𝑡𝐴𝑡𝑡 × 𝑑1) 
𝑖𝑠 = 𝐿𝑍 × 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 
𝐼𝑆 = (1.0 − 𝑖𝑠) × 𝑠𝑐𝑎𝑡𝑡𝑀𝑖𝑛 + 𝑖𝑠 × 𝑠𝑐𝑎𝑡𝑡𝑀𝑎𝑥 

lightMin 

lightMax 
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Here, the terms 𝑠𝑐𝑎𝑡𝑡𝑀𝑖𝑛, 𝑠𝑐𝑎𝑡𝑡𝑀𝑎𝑥, 𝑠𝑐𝑎𝑡𝑡𝐴𝑡𝑡, and 𝐿𝑍 refer respectively to the minimum intensity, 
maximum intensity, attenuation corresponding to cumulative density, and the effect in the direction of 
the line of sight (view direction). These are all set using the reserved uniform dmp_Gas.lightZ. 
GLfloat lightZ[4] = {scattMin, scattMax, scattAtt, LZ}; 

glUniform4fv(LOC(“dmp_Gas.lightZ"), 1, lightZ); 

Figure 16-16 below shows the relationship between the input 𝑑1), the view shading intensity 𝐼𝑆), and 
the effect in the direction of the line of sight 𝐿𝑍). 

Figure 16-16: View Shading Intensity 
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Figure 16-16 shows that the view shading intensity 𝐼𝑆 is proportional to both 𝐿𝑍 and (1 − 𝑑1). 
Furthermore, the effect of 𝑑1 increases proportionally to the attenuation 𝑠𝑐𝑎𝑡𝑡𝐴𝑡𝑡 for the view 
shading intensity, as was the case with the planar shading intensity. Figure 16-17 below is a visual 
representation of the effect of shading, given uniform values for 𝑑1 and a planar shading intensity 𝐼𝐺 
of zero. You can see that the resulting color approaches red (the input to the shading lookup tables 
approaches 1.0) as 𝐿𝑍 increases, and that the resulting color approaches black (the input to the 
shading lookup tables approaches 0.0) as 𝐿𝑍 decreases. 

Figure 16-17: Effect of 𝑰𝑺 

   
𝐿𝑍 =  0.0 𝐿𝑍 =  0.3 𝐿𝑍 =  0.7 
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16.5.3 Alpha Values from Shading 

The density 𝑑2 is used to calculate the alpha value 𝐺𝑎 during shading. This density is based on the 
𝐷2 input to the fog unit and is calculated using Equation 16-7 shown below: 

Equation 16-7: Calculation of 𝒅𝟐 Density 

𝑑2 = 𝐷2 × 𝑔𝑎𝑠_𝑎𝑡𝑡 

The 𝑔𝑎𝑠_𝑎𝑡𝑡 term is the density attenuation that was set using the reserved uniform 
dmp_Gas.attenuation. 𝑑2 is used as the input value to the fog lookup table. 𝐺𝑎 is the output of 
the fog table. 

Equation 16-8: Calculation of Alpha Component Using the Fog Lookup Table 

𝐺𝑎 = 𝐹𝑜𝑔_𝐿𝑈𝑇(𝑑2) 

The output alpha component 𝐺𝑎 of the fragments is affected by the density value 𝐷2 (which takes 
into account intersections with polygonal models). As a result, by using 𝐺𝑎 to blend the shaded 
output with the rendered results from the polygonal object rendering pass, we can render gaseous 
objects and polygonal objects so that they have the correct foreground/background relationships. 

Figure 16-18: Using the Alpha Value from Shading to Blend Gaseous Objects with Polygonal 
Objects 

 

In the Figure 16-18 example above, we were able to represent the proper foreground/background 
relationship. This was accomplished by using 𝐺𝑎 to blend the gas particle with the shaded RGB 
values shown to the right with a polygonal object. 

16.5.3.1 Light Definitions and Shading 

In this section, we introduce one example for how the shading intensity 𝐼𝐼 can be used, namely as a 
method for defining the light direction and allowing the light direction to affect shading. We will use the 
planar shading intensity 𝐼𝐺 as the effect in the light's XY directions, and use the view shading 
intensity 𝐼𝑆 as the effect in the light's Z direction. For more details about the shading intensity, see 
section 16.5.2.4 Referencing the Shading Lookup Tables Using Shading Intensity as Input. 
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We define the light direction (𝐿𝑥, 𝐿𝑦, 𝐿𝑧) in the eye coordinate system. We then apply the effects of 𝐿𝑥 
and 𝐿𝑦 to the planar shading, and apply the effects of 𝐿𝑧 to the view shading. 𝐿𝑥 and 𝐿𝑦 can be of 
any value, but 𝐿𝑧 must be a number in the range [0.0, 1.0]. 

First, we can control the planar shading using 𝑟 (the R component of the color that was input to the 
fog unit). 

Figure 16-19: Method for Controlling Light Direction and Planar Shading 
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y
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dmax = max (d0, d1, d2, d3)
dmin = min (d0, d1, d2, d3)

Lxy0  = 1.0 - (d0 - dmin) / (dmax - dmin)
 

Let’s assume that the four vertices v0, v1, v2, and v3 define a sprite to which a gas texture is applied 
during the shading pass. Here, (𝐿𝑥, 𝐿𝑦) indicates the light vector, and 𝑑𝑛 indicates the distance 
between vertex 𝑣𝑛 and a representative point (𝐿𝑥, 𝐿𝑦) in the direction of the light vector. The effect of 
light on each vertex, 𝐿𝑥𝑦𝑛, is defined by the following equation. 

Equation 16-9: Effect of Light on Gas Textures 

𝐿𝑥𝑦𝑛 = 1.0 − (𝑑𝑛 − 𝑑𝑚𝑖𝑛)/(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) 

Here, 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 indicate the minimum and maximum distances between that representative 
point in the direction of the light vector and the various vertices. Each 𝐿𝑥𝑦𝑛 value we find is specified 
as the R component of the color at the vertex in question. 
GLfloat color[4*4] = {0.f}; 

GLfloat d[4]; 

GLfloat lightXY = {LIGHT_X, LIGHT_Y}; 

GLfloat dmax = 0.f; 

GLfloat dmin = 100000.f; 

for (int i=0; i<4; i++) { 

    d[i] = distance(lightXY, position[i]); 
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} 

dmax = max(d); 

dmin = min(d); 

color[4*0+0] = 1.f - (d[0] - dmin)/(dmax - dmin); 

color[4*1+0] = 1.f - (d[1] - dmin)/(dmax - dmin); 

color[4*2+0] = 1.f - (d[2] - dmin)/(dmax - dmin); 

color[4*3+0] = 1.f - (d[3] - dmin)/(dmax - dmin); 

Be sure to configure the texture combiners appropriately and also make sure vertex color is sent 
directly as input to the fog unit. 

With view shading, we can use the effect in the direction of the line of sight (𝐿𝑍) to control shading. By 
using 𝐿𝑍 as the 𝐿𝑧 coordinate in the light definition, we can apply the effect of the light during 
shading. We have already explained that the view shading intensity 𝐼𝑆 increases as 𝐿𝑍 increases. 
This is consistent with the fact that the greater 𝐿𝑧 (the z-component of the light vector) becomes, the 
more closely the light direction approaches the Z-axis (which is the line of sight), which will in turn 
cause the effect of the light to become stronger. 

Figure 16-20 below shows visual representations of how shading is affected by the settings used to 
define lights. 

Figure 16-20: Effect of Light Definitions on Shading 

   
𝐿 = (0.3,−1.0, 0.2) 𝐿 = (1.73, 1.0, 0.2) 𝐿 = (1.73, 1.0, 0.7) 

In Figure 16-20, the shading tables used for all three cases were defined using a black-to-red 
gradation. The left and center images share the same value for 𝐿𝑧 but have different values for 𝐿𝑥 
and 𝐿𝑦. You can see that the effect of the red (the color with the maximum intensity) is most 
prominent in the direction of (𝐿𝑥, 𝐿𝑦). Moreover, if you compare the center and right images, you’ll see 
they share the same values for 𝐿𝑥 and 𝐿𝑦 but have different 𝐿𝑧 values. You can see that the image 
at the right, in which the direction of light is closer to the direction of the Z-axis, has more pronounced 
red tones due to the effect of the view shading intensity. 
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17 Clipping 
This chapter describes how to program clipping operations. 

17.1 Overview 
The clipping functionality provided by DMPGL 2.0 is quite similar to the clipping functionality defined 
by the OpenGL ES 1.1 specification. There are two main aspects of clipping under DMPGL 2.0 that 
differ from the OpenGL ES specification: the way in which viewing volumes are defined, and the 
methods for specifying clipping planes. 

17.2 Specifying Clipping Planes 
In DMPGL 2.0, the four coefficients of a clipping plane set using the reserved uniform 
dmp_FragOperation.clippingPlane must be defined in the clip coordinate system. Specify a 
standard OpenGL ES clipping plane to which modelview and perspective projection transformations 
have been applied. 

17.3 Defining the Viewing Volume 
The z-coordinates of viewing volumes in DMPGL 2.0 and OpenGL ES are not defined in the same 
way. With the OpenGL ES standard, the z-component is clipped to the range [−𝑤𝑐,𝑤𝑐], but with 
DMPGL 2.0, it is clipped to the range [0,−𝑤𝑐] (note that the sign is inverted). Clipping planes must 
be specified with this definition in mind. 
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Figure 17-1: Comparison of Viewing Volumes in DMPGL 2.0 and OpenGL ES (Example of a 
Perspective Projection Transform) 
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17.3.1 Defining the Projection Matrix 

As stated above, the range of the z-coordinates of the viewing volume differs between DMPGL 2.0 
and OpenGL ES. As a result, the definition of the projection matrix in DMPGL 2.0 is also different from 
OpenGL ES. The projection matrix used for perspective transformation is defined using Equation 17-1 
below. In this equation, the coordinates (𝑙 𝑏 −𝑛)𝑇 represent the lower-left corner of the near 
clipping plane, the coordinates (𝑟 𝑡 −𝑛)𝑇 represent the upper-right corner of the near clipping 
plane, and 𝑓 represents the distance from the camera to the far clipping plane. 

Equation 17-1: Perspective Projection Matrix 

𝑀𝑓𝑟𝑢𝑠𝑡𝑢𝑚 =
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The orthographic projection transformation is defined as follows. 

Equation 17-2: Orthographic Projection Matrix 

𝑀𝑜𝑟𝑡ℎ𝑜 =

⎝

⎜
⎜
⎜
⎛

2
𝑟 − 𝑙

0 0 −
𝑟 + 𝑙
𝑟 − 𝑙

0
2

𝑡 − 𝑏
0 −

𝑡 + 𝑏
𝑡 − 𝑏

0 0
1

𝑓 − 𝑛
𝑛

𝑓 − 𝑛
0 0 0 1 ⎠

⎟
⎟
⎟
⎞

 

 

17.3.2 Using OpenGL ES-Compatible Projection Matrices 

To use OpenGL ES-compatible projection matrices in the DMPGL 2.0 environment, you must convert 
the projection matrix either in your application or in a vertex shader. This conversion of the projection 
matrix is defined by Equation 17-3. 

Equation 17-3: Conversion of Projection Matrix for OpenGL ES Compatibility 

𝑀𝑝𝑟𝑜𝑗_𝑑𝑚𝑝𝑔𝑙20 = �

1 0 0 0
0 1 0 0
0 0 −0.5 −0.5
0 0 0 1

�𝑀𝑝𝑟𝑜𝑗_𝑜𝑒𝑠 

17.3.3 Clipping-Related Precautions 

Because PICA uses 24-bit floating-point numbers to convert coordinates for vertex processing, 
clipping is sometimes not possible to perform correctly close to the far clipping plane if the ratio of the 
near clipping plane to the far clipping plane is large. Either avoid using values that are larger than 
necessary for the near and far clipping planes or, if the ratio of the near clipping plane to the far 
clipping plane must be large, avoid placing polygons close to the far clipping plane. 
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18 Early Depth Tests 
This chapter describes how to program early depth tests. 

18.1 Overview 
This chapter describes how to program early depth tests. The early depth test functionality in DMPGL 
2.0 has the following characteristics. 

• Because this depth test is performed at an early stage in the pipeline, it allows a lot of wasteful 
calculations to be removed from certain scenes. 

• The precision of the calculation is lower than that of the standard depth test, so early depth tests 
must be done in conjunction with standard depth tests. 

• Because the order in which the fragments are generated will change with early depth tests, the 
render buffer must be set to block-32 mode. 

• Early depth tests cannot be run if textures are attached to the framebuffer. Moreover, even if 
glCopyTexImage2D or glCopyTexSubImage2D are called, rendered results will not be 
transferred to textures. 

18.2 Structure 
Early depth tests are run using a buffer called the early depth buffer. The early depth buffer has the 
following structure. 

The early depth buffer contains depth values that each represent a block covering 32×32 pixels. 
These representative values are stored with a precision of 12 bits. When depth values are written to 
the standard depth buffer, the early depth values of the corresponding blocks are updated in the early 
depth buffer. Figure 18-1 shows the flow for updating the early depth buffer. 

If early depth tests are enabled, then when values are written to the standard depth buffer, the 
corresponding values in the early depth buffer are updated to either the maximum or minimum depth 
value present within their block. The maxima are used when the early depth test comparison function 
is LESS or LEQUAL, and the minima are used when the comparison function is GREATER or GEQUAL. 

The early depth buffer and the registers are both within the rendering pipeline, and thus there is no 
need to allocate memory. The early depth buffer supports depth buffer widths and heights up to 
1024×1024 pixels. 

The contents of the early depth buffer cannot be directly obtained or set from outside. It is only 
possible to initialize the buffer by setting a single initial value, and to update it based on the results of 
writing to the standard depth buffer. Clearing the early depth buffer clears only its contents in 
accordance with the early depth buffer clear value. 
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Figure 18-1: Early Depth Buffer Updating 
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The early depth test is run at the same time as rasterization. The representative depth value for each 
polygon is calculated at the time of rasterization and compared against the corresponding depth value 
extracted from the early depth buffer. If the early depth test comparison function is LESS or LEQUAL, 
the minimum depth value among the vertices of the polygon being rendered is taken as that polygon's 
representative depth value; if the comparison function is GREATER or GEQUAL, the polygon's 
maximum depth value is taken as its representative value. If a block passes the early depth test, all 
the fragments in that block proceed to subsequent fragment processing. If a block fails the early 
depth test, all the fragments in that block fail and are discarded. Fragments that have passed the 
early depth test may either pass or fail the standard depth test. 

The early depth test comparison function and clear value are configured independently from the 
comparison function and clear value for the standard depth test. Consequently, make sure the 
configurations are not contradictory, or rendering may not produce the expected results. 

18.3 False Passes and False Failures 
The early depth test is run not on a per-fragment basis, but rather on a per-block basis. As a result, it 
may yield different results for the fragments in a block than the standard depth test. The term false 
pass refers to a fragment that passes the early depth test, even though it should have failed. The term 
false failure refers to a fragment that fails the early depth test, even though it should have passed. 

If the early depth test results in a false pass for a given fragment, there will be no effect on the 
rendered result, since the fragment will fail the standard depth test. If a lot of false passes occur, the 
rendering speed will drop to a level that makes the early depth test ineffective, but the rendered 
results will not be corrupted. 
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If a false failure occurs, however, the fragment (which is required for the correct rendered result) is 
discarded immediately. Be careful not to let false failures occur as a result of your settings. 

18.4 Configuring the Block Mode 
DMPGL 2.0 allows the render buffer to be set to one of two modes: block-8 mode and block-32 mode. 
You must use block-32 mode if using early depth tests. 

Block-8 mode is the default and is set whenever early depth tests are not used. 

Block-32 mode is set when early depth tests are used. In this mode, the relationship between the 
fragments being rendered and their addresses is different from 8-block mode. The width and height 
(in pixels) of the render buffer acting as the render target must be a multiple of 32. In addition, the 
functions glCopyTexImage2D and glCopyTexSubImage2D will not copy the rendered results 
properly when handling color buffers that were rendered in block-32 mode. 

The rendered results are not guaranteed if the render buffer's block mode is changed during 
rendering. Within each single scene, be sure to use the same settings for the functions 
glDrawElements, glDrawArray, and glReadPixels. 

When we say that the block mode cannot be changed during rendering, we mean that rendering even a 
single object with early depth testing enabled requires that all other all other objects in that scene also 
be rendered in block-32 mode. In that situation, glReadPixels must also be called in block-32 mode. 
glRenderBlockModeDMP(GL_RENDER_BLOCK8_MODE_DMP); // Set block-8 mode 

glRenderBlockModeDMP(GL_RENDER_BLOCK32_MODE_DMP); // Set block-32 mode 

You can switch between block-8 mode and block-32 mode by using the code snippets above. 

18.5 Enabling and Disabling Early Depth Tests 
If standard depth tests are disabled, disable early depth tests as well. If early depth tests are enabled 
while standard depth tests are left disabled, false failures may occur, which will cause incorrect 
rendered results. 
glEnable(GL_EARLY_DEPTH_TEST_DMP); // Enable early depth tests 

glDisable(GL_EARLY_DEPTH_TEST_DMP); // Disable early depth tests 

The code snippets above can be used to enable and disable early depth tests. 

18.6 Comparison Functions for Early Depth Tests 
There are four comparison functions that can be used with early depth tests: LESS, LEQUAL, 
GREATER, and GEQUAL. Although the API allows the early depth test comparison function to be set 
independently of the standard depth test comparison function, setting different comparison functions 
for the standard and early depth tests may cause false failures. 

The most typical use case that doesn't use only the LESS comparison mode involves inverting the 
depth direction once per frame and alternating between the use of the LESS and GREATER modes. 
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Avoiding clear operations on the depth buffer can increase the speed. Using depth tests in this way 
does not require changing the comparison function within a single frame, so compliance with the 
configuration restrictions listed below is not required. It is sufficient to enable or disable the early 
depth test, set its clear value, and clear its buffer in imitation of the standard depth test. 

However, if you want to render objects by changing the comparison function within a single frame, the 
following restrictions apply. 

• Restriction 1: The comparison function for the early depth test must be the same as the 
comparison function for the standard depth test. 

• Restriction 2: Once the comparison function for the early depth test is used, it cannot be changed 
until the early depth buffer is cleared. 

• Restriction 3: Once the depth test comparison function is changed for a given render buffer and 
rendering is performed, early depth tests cannot be enabled until the early depth buffer is cleared. 

If any of these three restrictions are violated, false fails may occur, which will cause the rendered 
results to be incorrect. An example of this is described below. 

Example: Let's assume that in a scene in which a (J+K+L) number of objects are being rendered, 
you want J objects rendered in LESS mode, K objects rendered in GREATER mode, and L objects 
rendered in LESS mode. 

Figure 18-2: Example of Early Depth Test Use 
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In the Figure 18-2 example above, the early depth buffer and the depth buffer are cleared 
simultaneously. Once early depth tests are enabled for the first J objects, early depth tests cannot be 
used for objects in GREATER mode. This is clear based on the first and second restrictions. Due to the 
third restriction, early depth tests cannot be enabled afterward either, even though the remaining L 
objects are rendered by returning to LESS mode. As a result, unless the early depth buffer is cleared, 
only the first J objects can be rendered with early depth tests enabled. 

If the early depth buffer and the standard depth buffer are cleared simultaneously, the early depth 
clear value can be set to the same value as the standard depth clear value. 

If the performance of the final L objects is especially important, and you absolutely need to use early 
depth tests on the final L objects, you might consider using one of the workarounds described below. 
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18.6.1 Workaround 1 

Figure 18-3: Workaround 1 
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When rendering the first J+K objects, disable early depth tests and then enable early depth tests for 
the first time when rendering the final L objects. This way the early depth buffer is cleared right before 
the final L objects are rendered. 

When using this approach (namely, clearing the early depth buffer and the standard depth buffer at 
different times), using either the maximum or minimum depth values as the clear values will ensure that 
no false failures will occur. In the case of workaround 1 as shown in Figure 18-3, an early depth clear 
value of 0xffffff is the most appropriate in the stage labeled "Clear the early depth buffer (2)." 

18.6.2 Workaround 2 

Figure 18-4: Workaround 2 
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Enable early depth tests, and render J objects. Then, clear the early depth buffer before rendering the 
next K objects, and also clear the early depth buffer before rendering the final L objects. This 
approach to rendering allows you to change the early depth comparison function. However, clearing 
the early depth buffer very often will increase the incidence of false passes. 
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For workaround 2 as shown in Figure 18-4, the most appropriate clear value for the stage labeled 
"Clear the early depth buffer (3)" is the value calculated based on the standard depth buffer clear 
value. In the same way, 0x000000 is an appropriate clear value for the stage labeled "Clear the early 
depth buffer (4)," and 0xffffff is an appropriate clear value for the stage labeled "Clear the early 
depth buffer (5)." 

If you use a comparison function for standard depth tests that is not available for early depth tests (for 
example, EQUAL or NOTEQUAL), you must disable early depth tests. 
 
glEarlyDepthFuncDMP(GL_LESS); // Set early depth tests to LESS mode 

The code snippet above sets early depth tests to LESS mode. 

18.7 Clearing the Early Depth Buffer 
The API allows the early depth buffer to be cleared independently from the standard depth buffer. 
However, if using the early depth buffer, be sure to clear the early depth buffer whenever you clear 
the standard depth buffer. 

You cannot easily change the comparison function for the early depth test. If you need to change the 
depth test comparison function while rendering a certain scene, then you cannot use early depth tests 
in that scene. However, in this situation you can avoid the early depth test restrictions by clearing only 
the early depth test buffer and not the standard depth test buffer. (For details, see section 18.6 
Comparison Functions for Early Depth Tests.) 

Use an early depth buffer clear value that is functionally the same as the clear value for the standard 
depth buffer, as explained below. 

The clear value for the standard depth test is set to a float-type value. The clear value for the early 
depth test, on the other hand, must be a non-negative integer. The equation below gives a rough 
guide for how to calculate the early depth test clear value (written as 𝐷𝑒𝑝𝑡ℎ𝐸𝑎𝑟𝑙𝑦). 

Equation 18-1: Calculating the Early Depth Buffer Clear Value 

𝐷𝑒𝑝𝑡ℎ𝐸𝑎𝑟𝑙𝑦 = 𝐷𝑒𝑝𝑡ℎ × 0xffffff + 𝑜𝑓𝑓𝑠𝑒𝑡 

In the equation above, the value chosen for 𝑜𝑓𝑓𝑠𝑒𝑡 must take into account the fact that the early 
depth test is calculated with lower precision than the standard depth test, and must be chosen to 
prevent the occurrence of false failures. For LESS, a positive number of 0x1000 or greater is 
recommended. For GREATER mode, a number of -0x1000 or less is recommended. If the result after 
adding 𝑜𝑓𝑓𝑠𝑒𝑡 is outside of the range 0x000000-0xffffff, take steps to force the value of 
𝐷𝑒𝑝𝑡ℎ𝐸𝑎𝑟𝑙𝑦 to be within that range. 
 
glClearEarlyDepthDMP(DepthEarly);  // Set the clear value 

glClear(GL_EARLY_DEPTH_BUFFER_BIT_DMP); // Run the clear operation 
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19 Performance-Enhancement Techniques 
This section describes techniques for improving the performance of your graphics code. 

19.1 Creating Vertex Indices 
With DMPGL 2.0, when the mode argument of the glDrawElements function is set to 
GL_TRIANGLES, vertex data will be processed most efficiently if you create your vertex indices such 
that adjacent triangles share the same vertex indices. Figure 19-1 below explains this visually. 

Figure 19-1: How to Create Efficient Vertex Indices 
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In the figure above, specifying the triangles in the order 1, 2, 3, 4 (or the reverse order) will result in 
the most efficient processing. With indices like these, vertex operations will be more efficient if you 
use GL_TRIANGLES than if you use GL_TRIANGLE_STRIP. 

19.2 Existence of Vertex Buffers 
The performance will drop considerably if glBindBuffer and/or glBufferData are not used to set 
up the vertex buffer. Using a vertex buffer causes data to be loaded into PICA’s geometry pipeline. 
Failing to use a vertex buffer, however, will cause the CPU to re-sort the vertex arrays to match the 
vertex index arrays, convert all vertex data to 24-bit floating-point values, and pack the data into the 
command buffer. This process not only significantly increases the load on the CPU, it also reduces 
PICA’s efficiency in loading data into the geometry pipeline and requires the command buffer to be 
larger. If packing vertex data into the command buffer, the required buffer size will be the number of 
vertices multiplied by the number of vertex attributes, multiplied by 12 bytes. (All four components 
(xyzw) of all vertex data is converted into 24-bit floating-point values, so each attribute will require 
4x24/8 = 12 bytes.) 

Placing the vertex buffer in VRAM will be faster than placing it in FCRAM. 
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If the vertex buffer is placed partially in VRAM and partially in FCRAM, its speed will be limited to that 
of FCRAM. 

19.3 Data Structure of Vertex Arrays 
There are two structures that can be used for vertex arrays: (1) interleaved arrays in which vertex 
data is stored as an array of structures, each of which includes multiple vertex attributes and (2) 
independent arrays that store vertex data as an array of single vertex attributes. 

If a vertex buffer is used, interleaved vertex arrays are more efficient than independent arrays at 
loading vertex data. The actual time spent loading vertex data is often obscured by operations like the 
vertex shader and rasterization that take place later in the pipeline. However, if the vertex data is 
stored in FCRAM, using the more efficient approach at loading data will reduce the burden of 
accessing FCRAM, and can therefore sometimes contribute to higher-speed CPU operations. 

19.4 Implementing Vertex Shaders 
This section describes a few methods related to implementing shader assembly code that can yield 
improved performance. 

19.4.1 Optimization Using Instruction Dependencies 

Dependencies between instructions that are issued in shader assembly language can sometimes 
cause stalls to occur. You can improve the throughput of your program by reordering instructions to 
avoid these stalls. Below is one specific example. 
add r0, r1, r2 

mul r4, r0, r3 

This code stores the sum of the add instruction in register r0, and immediately thereafter specifies r0 
as a source register of a mul instruction. As a result, when the mul instruction is issued, it must wait 
for the add instruction to finish, causing a stall. In such cases, insert the required number of 
independent instructions (that is, instructions that don’t use any registers with dependencies on the 
surrounding code) between the add and mul instructions. This will ensure that the value of r0 is 
already known when the mul instruction runs. Table 19-1 below shows for various instructions the 
required number of independent instructions to insert to avoid dependency stalls. The latency (in 
cycles) of each instruction is one greater than the number of independent instructions indicated. 

Table 19-1: Assembly Language Instructions and Number of Independent Instructions to Insert 

Instruction Number of Independent 
Instructions to Insert 

add 2+ 

dp3 4+ 

dp4 4+ 
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Instruction Number of Independent 
Instructions to Insert 

dph 4+ 

dst 2+ 

exp 3+ 

litp 1+ 

log 3+ 

mad 3+ 

max 1+ 

min 1+ 

mov 1+ 

mul 2+ 

rcp 3+ 

rsq 3+ 

sge 1+ 

slt 1+ 

flr 1+ 

cmp (Insert the independent 
instructions between the 
conditional branch instructions 
like ifc and callc) 

3+ 

In addition to considering the number of instructions to insert, you can increase the chances of 
avoiding stalls by taking into account the latencies of the independent instructions you insert. The 
latency of each inserted instruction should be greater than or equal to that of the dependent 
instruction it is inserted after. Here is an example: 
exp  r0.x,  r1.x // The latency is 4, so (at least) three 

      // instructions should be inserted 

mov  r2,  r3 

mov  r4,  r5 

mov  r6,  r7 

mul  r8,  r0, r0 

The fact that the exp instruction has a latency of four means that we should insert three or more 
instructions between the exp instruction and the mul instruction that uses the result of the exp 
instruction. However, rather than inserting three mov instructions (each of which has a latency of two), 
the design of the hardware makes it more efficient to change the instruction order by inserting three 
functions (like mad or dp3) that each have a latency of four or higher. 



  DMPGL 2.0 Programming Guide 

CTR-06-0004-001-D 194  2009-2011 Nintendo 
Released: May 13, 2011  CONFIDENTIAL 

19.4.2 Optimization by Avoiding Unconditional Stall Instructions 

Instructions that change the program counter in a non-sequential fashion will cause an unconditional 
stall of three clock cycles. Examples of such instructions include branch control (if-type and call-
type instructions), loop instructions, and jump instructions. Such stalls will not occur if no branching 
takes place and therefore the program counter changes sequentially. The mova instruction will also 
cause an unconditional stall of three clock cycles. The performance of your applications can be 
increased by reducing the number of times these instructions are used. 

19.5 Data Types of Vertex Attributes 
If using a vertex buffer, using two or more vertex attributes of types GL_UNSIGNED_BYTE, GL_BYTE, 
or GL_BYTE at the same time will reduce the efficiency of operations on vertex data. It is 
recommended that GL_FLOAT be used as the main data type for vertex attributes. 

19.6 Improving Vertex Cache Performance 
The vertex pipeline caches up to 32 data entries on which vertex operations were performed, using 
the vertex indices as keys. As new entries are cached, the least-recently accessed entries in the 
cached data are discarded. 

If the same vertex index is used repeatedly, and that vertex index is among these 32 entries, a cache 
hit will occur, thereby improving the vertex performance. The vertex will come to the front of the cache 
as soon as the cache hit occurs. Cache hits do not cause any entries to be discarded. 

19.7 Vertex Shader Output Attributes 
Output attributes defined by the vertex shaders (using #pragma output_map) are not actually 
defined if those vertex attributes are not used by the application. Because defined output attributes 
must be written to output registers, unnecessary output attributes entail unnecessary shader 
assembly instructions. Also, the existence of an output attribute definition causes clock control to be 
run in some hardware circuits, so unnecessary output attributes can lead to unnecessary power 
consumption. 

19.8 Configuring Textures 
Texture settings affect performance. Some performance-related trends are listed below. 

• ETC compressed textures are the fastest texture format. The next-fastest textures are the ones that 
use the fewest bytes per pixel. 

• The smaller the texture size, the faster the performance. 
• The greater the number of textures used simultaneously, the slower the performance. This is due to 

conflicts during memory access. 
• Given a texture with a single mip level, the minification filter mode does not affect performance. In 

other words, GL_NEAREST and GL_LINEAR have the same performance. Likewise, 
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NEAREST_MIPMAP_NEAREST and GL_LINEAR_MIPMAP_NEAREST have the same performance, as 
do GL_NEAREST_MIPMAP_LINEAR and GL_LINEAR_MIPMAP_LINEAR. However, 
GL_NEAREST(_XXX) and GL_LINEAR(_XXX) fetch a different number of texels around a single 
pixel: 1 and 4, respectively. It can therefore be said that GL_NEAREST(_XXX) uses less memory. 

• When mapping large textures to small areas, performance is faster if the texture is mipmapped. 
However, the processing load will change based on the filter mode, even if the textures are 
mipmapped. GL_XXX_MIPMAP_LINEAR will sometimes have roughly double the processing load of 
GL_XXX_MIPMAP_NEAREST. 

• Although the GL_NEAREST and GL_LINEAR magnification filter modes have nearly the same 
performance, GL_NEAREST is sometimes slightly faster. 

• Mipmapping cannot be used with gas textures and shadow textures, so these textures have slower 
performance than ordinary textures. 

• Variations in the configuration conditions of procedural textures do not cause any degradation in 
performance. They run faster than typical 2D textures. 

• When you use multiple textures, it is faster to place them all together in either VRAMA or VRAMB 
than to place them separately in VRAMA and VRAMB. 

19.9 Texture Caches 
The Level-1 (L1) texture cache size is 256 bytes, and the Level-2 (L2) cache is 8 KB. Within the  
caches, only ETC-format data is handled as is; all other data formats are converted to 32-bit formats. 
However, ETC-format textures that contain alpha data are not compressed within the cache, and are 
converted to 32-bit format. Each texture unit has one L1 cache; the L2 cache is shared between all 
texture units. 

For each texel, a miss in the L1 cache requiring that data be fetched from the L2 cache results in a 
processing penalty of approximately five cycles. An L2 cache miss resulting in a fetch from VRAM 
results in a penalty of another 30 cycles. However, the hardware is implemented to conceal this 
penalty by pre-fetching texel data. 

19.10 Configuring Fragment Lighting 
The processing speed will change depending on the layer configuration type of fragment lighting. The 
fastest processing will result if the reserved uniform dmp_LightEnv.config is set to one of 
GL_LIGHT_ENV_LAYER_CONFIG0_DMP - GL_LIGHT_ENV_LAYER_CONFIG3_DMP. The next-fastest 
configurations are GL_LIGHT_ENV_LAYER_CONFIG4_DMP - 
GL_LIGHT_ENV_LAYER_CONFIG6_DMP. The slowest configuration is 
GL_LIGHT_ENV_LAYER_CONFIG7_DMP. Also, the greater of number of lights, the lower the 
performance will be. Settings to access bump or shadow textures will also reduce the performance. 

The configurations GL_LIGHT_ENV_LAYER_CONFIG0_DMP – 
GL_LIGHT_ENV_LAYER_CONFIG3_DMP take one processing cycle per pixel, the configurations 
GL_LIGHT_ENV_LAYER_CONFIG4_DMP – GL_LIGHT_ENV_LAYER_CONFIG6_DMP take two 
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processing cycles per pixel, and GL_LIGHT_ENV_LAYER_CONFIG7_DMP takes four processing 
cycles per pixel. 

As a result of hardware properties, however, if the color buffer is configured to have write-only access 
it takes three cycles per pixel to write to the color buffer with the configurations 
GL_LIGHT_ENV_LAYER_CONFIG4_DMP – GL_LIGHT_ENV_LAYER_CONFIG6_DMP. This behavior is 
not exhibited for GL_LIGHT_ENV_LAYER_CONFIG0_DMP – GL_LIGHT_ENV_LAYER_CONFIG3_DMP 
or GL_LIGHT_ENV_LAYER_CONFIG7_DMP. Pixels that fail the depth test or stencil test do not require 
this processing time. 

See section 19.13 Configuring Access Control to the Framebuffer for more information on the 
conditions that cause write-only access to the color buffer. 

19.11 Configuring the Viewport 
If the offsets specified to glViewport are not multiples of four, the performance will degrade. If the 
specified offsets contain multiples of two that aren’t multiples of four, the performance will drop to 
about half of the ideal value. If the specified offsets contain odd numbers, the performance will drop to 
about one-third of the ideal value. If you need to specify viewport offsets that are not multiples of four, 
work around these restrictions by extending the actual viewport settings to a power of four, then 
adjusting the frustum during perspective projection transformation and using scissoring to remove the 
unnecessary portions. 

To give a concrete example, let’s consider the case shown in Figure 19-2 below, which was created 
by calling glViewport(103, 51, 80, 60). 

Figure 19-2: Viewport with Offsets That Are Not Multiples of Four 

Viewport

Offset (103,51)

(183,111)

 

To make the viewport's offsets multiples of four, we extend the viewport region. In this case, we use 
the code glViewport(100, 48, 83, 63). We then adjust the frustum so that the rendered result 
within the viewport will be the same size as the original viewport. 
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Figure 19-3: Extending the Offsets to Be Multiples of Four 

Viewport

Expand offset to (100,48)

(183,111)

 

We then use scissoring to prevent the extended area (the area indicated with a red fill) from being 
rendered. 

Figure 19-4: Using Scissoring to Prevent the Extended Area from Being Rendered 

Viewport

Remove the extended portion using scissoring 

(183,111)

 

19.12 Generating Shadows 
When using light sources that won’t move, you can reduce the processing load of the pass that 
generates the shadow texture by rendering only the stationary objects to the shadow texture in 
advance. It is also effective to simplify the geometry used during the shadow texture generation pass 
in order to reduce the polygon count. 
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19.13 Configuring Access Control to the Framebuffer 
When you aren’t using the color buffer, z-buffer, or stencil buffer, explicitly disabling this functionality 
will reduce unnecessary operations. That said, PICA uses the same physical buffer for both the z-
buffer and the stencil buffer. As a result, configurations that can access either the z-buffer or the 
stencil buffer (but not both) have the same performance as configurations that can access both. The 
conditions for accessing the various buffers are listed below. To prevent unnecessary access, make 
sure your code doesn’t bring about any of these conditions. 

19.13.1 Write Access to the Color Buffer 

Any of the components are set to GL_TRUE using glColorMask. 

19.13.2 Read Access to the Color Buffer 

When write access is granted and any of the following conditions are satisfied: 

• GL_BLEND is enabled using glEnable. 
• The glColorMask settings don’t use the same values for all components. 
• GL_COLOR_LOGIC_OP is enabled using glEnable. 

19.13.3 Write Access to the Z-Buffer 

GL_DEPTH_TEST is enabled using glEnable and glDepthMask is set to GL_TRUE. 

19.13.4 Read Access to the Z-Buffer 

GL_DEPTH_TEST is enabled using glEnable. 

19.13.5 Write Access to the Stencil Buffer 

GL_STENCIL_TEST is enabled using glEnable and glStencilMask is set to a non-zero value. 

19.13.6 Read Access to the Stencil Buffer 

GL_STENCIL_TEST is enabled using glEnable. 

19.14 Note About Silhouette Rendering 
DMPGL 2.0 provides two geometry shaders that can be used to render silhouettes, 
DMP_silhouetteTriangle.obj and DMP_silhouetteStrip.obj. They differ in terms of how 
vertex indices are specified. The performance of these shaders differs even when the exact same 
model is being rendered. With DMP_silhouetteTriangle.obj, each TWN is specified using six 
vertices. With DMP_silhouetteStrip.obj, after the initial TWN is specified, only two vertices are 
required to specify each additional TWN. You can expect DMP_silhouetteStrip.obj to have 
more than doubled the performance of DMP_silhouetteTriangle.obj. 
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19.15 CPU Performance 
When using the DMPGL 2.0 API, you may be able to improve the processing speed of the DMPGL 
2.0 driver by paying attention to the following points while you implement your application. 

• You can link multiple shader objects into a single shader binary. We recommend linking as many 
vertex shader objects together as possible. There is a higher processing cost associated with 
switching between shader objects that are in different shader binaries than with switching between 
shader objects that are linked in a single shader binary. 

• The locations of uniforms are fixed after glLinkProgram is called and do not change until 
glLinkProgram is called again. Applications should keep the location values obtained with 
glGetUniformLocation and use them repeatedly. 

• The nngxSplitDrawCmdlist function generates a split command each time it is called. Do not 
call this function unnecessarily. Because the nngxTransferRenderImage function also generates 
a split command, it does not need to be immediately followed by a call to nngxSplitDrawCmdlist. 

• Vertex data accumulates in the 3D command buffer when the vertex buffer is not used and thus 
entails a considerable increase in CPU processing over when the vertex buffer is used. 

• You can decrease the cost of function calls by using texture collections and vertex state collections 
to bind multiple textures or set multiple vertex arrays all at once. 

• All uniform values are saved for each program object. It is sometimes cheaper to switch between 
multiple program objects that have different uniform values set and the same shader object attached 
than to switch multiple uniform settings in a single program object. 

• Each time data is loaded with glTexImage1D for a lookup table object, the lookup table data is 
converted into an internal hardware format when it is used. We recommend that you do not delete or 
regenerate lookup table objects wastefully. 

19.16 Load Sizes for Each Data Type 
This section describes the amount of data loaded when PICA loads each data type. 

19.16.1 Vertex Buffers 

When loading a vertex buffer, the unit size depends on the vertex index array order. The vertex index 
is first loaded in groups of 16 elements, and the index is sorted. Vertex arrays are then loaded in the 
sorted index order. Vertex arrays with sequential indices are loaded sequentially. Arrays are loaded 
individually for non-sequential indices. 

Vertex attributes are loaded for vertex arrays that have attributes enabled by 
glEnableVertexAttribArray. If the DMPGL driver determines from information specified in a call 
to glVertexAttribPointer, such as the ptr and stride arguments, that multiple vertex 
attributes form an interleaved array, PICA settings are configured to load in units of interleaved arrays. 
In other words, multiple vertex attributes are loaded at once. (Loading in units of interleaved arrays 
means loading by load array. See the DMPGL 2.0 System API Specifications for details.) 



  DMPGL 2.0 Programming Guide 

CTR-06-0004-001-D 200  2009-2011 Nintendo 
Released: May 13, 2011  CONFIDENTIAL 

Sequential vertex array data with a maximum burst length greater than 256 bytes is split at 256 bytes, 
with the remaining data then loaded again. Vertex arrays are loaded in minimum units of 16 bytes 
even when non-sequential and loaded individually. 

When using glDrawArrays, the same loading process is used when using a sequential index array 
starting from 0. 

19.16.2 Textures 

The transfer size is different for each texture format. If the required texel data is not found in the L1 or 
L2 caches, the data size read from memory is as follows. 

Table 19-2: Texture Data Transfer Sizes 

Texture Format Texture Type Unit Size for 
Transfers (in bytes) 

GL_RGBA GL_UNSIGNED_BYTE 128 
GL_RGB GL_UNSIGNED_BYTE 96 
GL_RGBA GL_UNSIGNED_SHORT_5_5_5_1 64 
GL_RGB GL_UNSIGNED_SHORT_5_6_5 64 
GL_RGBA GL_UNSIGNED_SHORT_4_4_4_4 64 
GL_LUMINANCE_ALPHA GL_UNSIGNED_BYTE 64 
GL_HILO8_DMP GL_UNSIGNED_BYTE 64 
GL_LUMINANCE GL_UNSIGNED_BYTE 32 
GL_ALPHA GL_UNSIGNED_BYTE 32 
GL_LUMINANCE_ALPHA GL_UNSIGNED_BYTE_4_4_DMP 32 
GL_LUMINANCE GL_UNSIGNED_4BITS_DMP 16 
GL_ALPHA GL_UNSIGNED_4BITS_DMP 16 
GL_ETC1_RGB8_NATIVE_DMP - 128 
GL_ETC1_ALPHA_RGB8_A4_NATIVE_DMP - 32 

Note: If the texture format is PICA native format, the data size is the same as for the corresponding 
source format. 

19.16.3 Command Buffers 

Command buffers are command lists for setting PICA registers. (See the DMPGL 2.0 System API 
Specifications for details on command buffers.) Command buffers are loaded in units of 128 bytes. 
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20 Troubleshooting 
This chapter explains how to troubleshoot DMPGL applications. 

20.1 Lines Are Unexpectedly Rendered Onscreen 
When you render extremely small polygons whose right edges are close to x=0 in window 
coordinates, you may unintentionally cause other lines to be rendered as well. This phenomenon 
occurs when calculation errors cause a polygon’s pixels to be generated with negative x-coordinates, 
which “wrap around” to extremely large values. This results in extremely large x-coordinates and thus 
stretches the rendered polygons in the positive x-direction. 

This phenomenon only depends on a polygon’s window coordinates and will occur consistently for the 
same window coordinates. 

Because this problem manifests itself when geometry is clipped by the view volume or user clip 
volume and polygons are generated, it can even occur for polygons that were originally large but that 
protruded into the edge of the screen at window coordinates x=0, leaving only an extremely small 
area within the view volume. 

You can adjust x-coordinates in the vertex shader to work around this problem. The vertex shader 
calculates x clip coordinates that are clipped between -w and w; when x is close to -w, the vertex is 
close to the edge of the screen at window coordinates x=0. By taking vertices like this, which are 
close to the edge of the screen at x=0, and moving them onto the edge of the screen, you can 
prevent lines from being drawn unexpectedly. This shifts vertex coordinates by only one pixel or less 
and therefore has a negligible effect on the rendered results. 

The vertex shader processes the x-value after the projection transformation (written to the output 
register as the vertex’s x-coordinate) as follows. 
if ( -w < x && x < -w * (1–epsilon) ) 

    x = -w ; 

x and w are the vertex’s x- and w-coordinates after the projection transformation. epsilon is a 
variable used to make adjustments and is set to an appropriate value for the scene to be rendered. 

The following are sample vertex shader implementations. The first one is a normal implementation 
that does not handle the phenomenon discussed in this section. 
// v0    : position attribute 

// o0    : output for position 

// c0-c3 : modelview matrix 

// c4-c7 : projection matrix 

m4x4   r0, v0, c0   // modelview transformation 

m4x4   o0, r0, c4   // projection transformation and output 

The next implementation, on the other hand, handles this problem. 
// v0    : position attribute 
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// o0    : output for position 

// c0-c3 : modelview matrix 

// c4-c7 : projection matrix 

// c8    : (1 - epsilon, 1, any, any) 

m4x4   r0, v0, c0   // modelview transformation 

m4x4   r1, r0, c4   // projection transformation 

mul    r2.xy, -r1.w, c8.xy    // r2.x = -w * (1-epsilon), r2.y = -w 

cmp    2, 4, r1.xx, r2.xy     //  

ifc  1, 1, 1                  // if ((x < -w * (1-epsilon)) &&  (x > -w)) 

    mov r1.x, -r1.w           //     x = -w ; 

endif 

mov    o0, r1 

20.2 Rendered Textures Are Distorted 
Texture images are sometimes rendered unevenly when the texture filter mode is GL_NEAREST. For 
more details, see section 7.3 Precautions When the Filter Mode Is GL_NEAREST. 

20.3 Boundaries Between Texture Mipmap Levels Appear Conspicuous 
The boundary lines between texture mipmap levels are sometimes pronounced when the texture filter 
mode is GL_XXX_MIPMAP_LINEAR. For more details, see section 7.4 Precautions When the Filter 
Mode Is GL_XXX_MIPMAP_LINEAR. 

20.4 Polygons Are Not Clipped Properly 
Polygons are sometimes not clipped properly when they are rendered close to the far plane of the 
view volume. For details, see section 17.3.3 Clipping-Related Precautions. 

20.5 Rendering Results for Polygons with the Same Vertex Coordinate 
Do Not Perfectly Match 

Even when polygons with the exact same vertex coordinates are rendered, there are cases when 
interpolated attribute values for each fragment, such as depth values or texture coordinates, do not 
match perfectly. This phenomenon occurs due to differences in the interpolation calculation for 
fragment values when the order of vertices input into the PICA rasterization module is different. In 
other words, the fragment attribute values for polygons rendered with a vertex index order of 0, 1, and 
2 and polygons rendered with an order of 1, 2, and 0 may not match perfectly. 

When the vertex input order is exactly the same, this phenomenon does not occur. However, in the 
GL_TRIANGLES mode of glDrawElements, depending on the relationship with the vertex indices of 
the immediately prior polygon, the vertex input order may be changed internally. In this case, to 
render polygons that have perfectly matched fragment values multiple times, be sure to use the same 
vertex indices including the relationship with the prior and subsequent polygons when rendering. 



DMPGL 2.0 Programming Guide  

 2009-2011 Nintendo 203 CTR-06-0004-001-D 
CONFIDENTIAL  Released: May 13, 2011 

This phenomenon is likely to happen for all fragment attributes. In other words, when the vertex input 
order is different, the depth value, texture mapping result, primary color, lighting result, and other 
values may not match exactly for polygon fragments that have the same vertex attribute values, such 
as vertex coordinates. 

20.6 Block-Shaped Noise Is Rendered on Certain Pixels 
4x4 pixels of block-shaped noise sometimes appear in specific positions of the rendered results. This 
phenomenon is caused by pixels in specific positions that are mistakenly determined to hit the 
framebuffer cache even though they actually did not. This section describes the problem in detail. 

20.6.1 Overview 

Pixel data in the framebuffer is processed in 4x4 pixel blocks, and the address of a 4x4 pixel block is 
called a block address. The framebuffer cache manages pixel data in blocks; when the cache’s tag 
information is cleared, tags are initialized to the default value of 0x3fff (the cache’s tag information 
is cleared by a command that writes 1 (one) to register 0x110). If pixels with a block address of 
0x3fff are rendered immediately after the cache tags have been cleared, the pixels are mistakenly 
determined to have hit the cache because they have the same block address as the default tag value. 
As a result, the wrong color is applied to the pixels. 

Block addresses are assigned consecutively, beginning at 0, in 16-pixel units from the starting 
address of the framebuffer (the color buffer, depth buffer, and stencil buffer). Because addresses are 
assigned to data in a PICA rendering format, the relationship between block addresses and pixel 
locations in a rendered image differs between the 8x8 block format and the 32x32 block format. 

Because this phenomenon only occurs for pixels that have a block address of 0x3fff, it does not 
occur when the total number of blocks in the framebuffer is less than or equal to 0x3fff—in other 
words, when there are no more than 0x3fff×16 (262,128) pixels in the framebuffer. 

This phenomenon also does not occur when there are no read accesses to the color buffer, depth 
buffer, or stencil buffer. To determine which conditions result in a read access to each buffer, see 
section 19.13 Configuring Access Control to the Framebuffer. 

20.6.2 Relationship Between Pixels and Block Addresses 

Block addresses begin at 0 and are assigned in ascending order, 16 pixels at a time, from the starting 
address of the color buffer and depth/stencil buffer when they are in a rendering format. 

In the PICA rendering format, the pixel data for the upper-left corner of a rendered image is placed at 
the first buffer address. Note that this differs from the origin for glViewport and that the horizontal 
direction on the rendered image corresponds to the shorter side of the LCDs on the CTR system. 

Because the 8x8 block format and the 32x32 block format use different addressing schemes, when 
an image is rendered in different block formats its pixels will correspond to different block addresses 
in the cache. 
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20.6.2.1 8x8 Block Format 

The following figure shows how block addresses correspond to pixels in an image rendered with the 
8x8 block format. Addresses are assigned from the upper-left corner of the image. 

Figure 20-1 Block Addresses for Each Pixel in the 8x8 Block Format 
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Given that the framebuffer is W pixels wide, the number N in the figure is equal to W÷4×2. The 4x4 
pixel block at the upper-left corner of the rendered image corresponds to block address 0, the next 
4x4 pixel block immediately to the right corresponds to block address 1, the 4x4 pixel block 
immediately below block address 0 corresponds to block address 3, and the 4x4 pixel block 
immediately below block address 1 corresponds to block address 4. Block addresses continue to 
increase to the right 8x8 pixels at a time until they reach the edge of the image, at which point they 
continue on the next row at the left edge of the image. 

20.6.2.2 32x32 Block Format 

The following figure shows how block addresses correspond to pixels in an image rendered with the 
32x32 block format. Addresses are assigned from the upper-left corner of the image. 

Figure 20-2 Block Addresses for Each Pixel in the 32x32 Block Format 
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The figure shows 32x32 pixel regions called metablocks. The block addresses of the pixels in a 
metablock are shown on the left (in hexadecimal). The metablock addresses for the entire image are 
shown on the right. 

The 32x32 pixel region at the upper-left corner of the rendered image is located at metablock address 
0. The next 32x32 pixel region immediately to the right is located at metablock address 1. Metablock 
addresses continue to increase to the right until they reach the edge of the image, at which point they 
continue with the 32x32 pixel region on the next line at the left edge of the image. 

As shown in the figure on the left, the block addresses of pixels in each metablock follow a zigzag 
pattern starting with the 4x4 pixels at the upper-left corner. The block address of a pixel as seen from 
the entire rendered image is 0x40 times that pixel’s metablock address plus its block address within 
the metablock. 

20.6.3 Workaround #1 

The first workaround is to not use a framebuffer that is larger than necessary. This problem does not 
occur when the product of the framebuffer’s width and height is less than or equal to 262,128 pixels. 

If your framebuffer is the same size as the LCDs on the CTR system, this problem does not occur 
because each screen has fewer than 262,128 pixels: the 240x400 LCD has a total of 96,000 pixels 
and the 240x320 LCD has a total of 76,800 pixels. 

The glRenderbufferStorage function determines the framebuffer size. If you allocate a 
framebuffer that is unnecessarily large but actually use only 240x400 pixels of it, you can restrict the 
allocated framebuffer region to the minimum required size to work around this problem. (Bits [10:0] 
and [21:12] of the 0x6e and 0x11e registers determine the framebuffer size.) 

20.6.4 Workaround #2 

The second workaround is to adjust the size of the framebuffer so that pixels at the problematic block 
address 0x3fff are outside of the rendering region. 

For example, if you set the framebuffer size equal to 480x800 when you want to render to a 480x800 
region, the pixel coordinates (124, 548) correspond to the upper-left corner of the 4x4 pixel square at 
block address 0x3fff, assuming that the rendered image is in the 8x8 block format and its upper-left 
corner has coordinates (0, 0). If you were to widen the framebuffer by 32 pixels to be 512x800 pixels 
in size, pixel coordinates (508, 508) would correspond to the upper-left corner of the 4x4 pixel square 
at block address 0x3fff. You can then avoid the problematic pixels by configuring the viewport to 
only use the leftmost 480x800 pixels of the 512x800 pixels in the framebuffer. 

This workaround has the drawback of wasting VRAM by requiring you to allocate a framebuffer that is 
larger than necessary, but it is a simple method that only involves adjusting the framebuffer size. 

For more information on which pixels correspond to block address 0x3fff, see section 20.6.2 
Relationship Between Pixels and Block Addresses. 
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20.6.5 Workaround #3 

The third workaround is to avoid rendering to the pixels at block address 0x3fff immediately after 
cache tags have been cleared. By rendering several pixels whose block address is not 0x3fff, you 
change the content of the cache tags and prevent cache hits from being mistakenly registered. 

20.6.5.1 Details 

To work around this problem, you must render four pixels at a particular block address. If settings 
cause both the color buffer and the depth/stencil buffer to be read, these four pixels must each have a 
different block address for which the lower three bits are all 1 (0x7). If settings cause only the color 
buffer or the depth/stencil buffer to be read, these four pixels must each have a different block 
address for which the lower four bits are all 1 (0xf). 

Consider the case in which pixels at the following block addresses are rendered immediately after 
tags are cleared: 0, 1, 0x0f, 2, 0x1f, 3, 0x0f, 0x2f, 0x3f, and so on. Pixels at block addresses 
like 0 and 1 are not counted because the lower four bits of the block address are not 0xf. Pixels at 
block address 0x0f show up twice, but they are only counted once because they have the same 
block address. The problem is resolved once pixels at block addresses 0x0f, 0x1f, 0x2f, and 0x3f 
have been input. If a pixel at block address 0x3fff is rendered before the pixel at block address 
0x3f, the problem occurs. 

To work around this problem, render a dummy polygon of pixels that meet these conditions 
immediately after cache tags are cleared. 

Commands to clear the cache are accumulated in the following instances: 

• glFlush, glFinish, and glClear are invoked 
• The current framebuffer has changed 
• The framebuffer’s access control settings have changed (see section 19.13 Configuring Access 

Control to the Framebuffer) 
• A function that flushes 3D commands, such as nngxFlush3DCommand, has been called 

For more details, see section 5.8.41 Clearing the Framebuffer Cache in the DMPGL 2.0 System API 
Specifications. 

20.6.5.2 Block Addresses of Rendered Dummy Pixels 

This workaround requires you to render dummy pixels at block addresses whose lower three or four 
bits are all 1. If you look at only the lower four bits of the block address in the 8x8 block format, you 
will see the same 32x8 pixel pattern repeated horizontally. However, depending on the framebuffer 
width, this pattern may be shifted horizontally by 8 pixels for every 8 pixels vertically. 
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Figure 20-3 Lower 4 Bits of the Block Address for Pixels in the 8x8 Block Format 
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The hexadecimal numbers in Figure 20-3 represent the lower four bits of the block address. 

If you look at only the lower three bits of the block address in the 8x8 block format, you will see the 
same 16x8 pixel pattern repeated horizontally. However, depending on the framebuffer width, this 
pattern may be shifted horizontally by 8 pixels for every 8 pixels vertically. 

Figure 20-4 Lower 3 Bits of the Block Address for Pixels in the 8x8 Block Format 
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The hexadecimal numbers in Figure 20-4 represent the lower three bits of the block address. 

If you look at only the lower four bits of the block address in the 32x32 block format, you will see the 
same 16x16 pixel pattern repeated horizontally and vertically. 

Figure 20-5 Lower Four Bits of the Block Address for Pixels in the 32x32 Block Format 
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The hexadecimal numbers in Figure 20-5 represent the lower four bits of the block address. 

If you look at only the lower three bits of the block address in the 32x32 block format, you will see the 
same 16x8 pixel pattern repeated horizontally and vertically. 
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Figure 20-6 Lower Three Bits of the Block Address for Pixels in the 32x32 Block Format 
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The hexadecimal numbers in Figure 20-6 represent the lower three bits of the block address. 

20.6.5.3 Concrete Dummy Rendering Example (Lower 4 Bits Must Be 0xf in the 8x8 Block Format) 

Here we will show concrete examples of dummy polygons that can be used as valid workarounds 
when the 8x8 block format is used and the lower four bits of the block address must be 0xf. These 
examples render a single rectangle as a dummy polygon. The figures show the lower four bits of the 
block address. 

Figure 20-7 Rendering 4 Pixels at Block Addresses Whose Lower 4 Bits Are 0xf in the 8x8 
Block Format: First Example 

D 0
F 2

1 4
3 6

5
7

8
A

9
B

1
3

4 5
6 7

8
A

9
B

C
E

D
F

94 pixels

1 pixel

1 block

 

Figure 20-7 shows a rectangular dummy polygon of 94x1 pixels. This example minimizes the area to 
be rendered. The polygon must be placed so that the pixels at both ends have block addresses 
whose lower four bits are 0xf. For example, assuming that the upper-left corner of the rendered 
image has the pixel coordinates (0, 0), you could use a polygon that covers pixel coordinates (31, 5)–
(124, 5). 

Figure 20-8 Rendering 4 Pixels at Block Addresses Whose Lower 4 Bits Are 0xf in the 8x8 
Block Format: Second Example 
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Figure 20-8 shows a rectangular dummy polygon of 125x5 pixels. A polygon of this size can be 
placed anywhere and will always include four pixels at block addresses whose lower four bits are 0xf. 
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Figure 20-9 Rendering 4 Pixels at Block Addresses Whose Lower 4 Bits Are 0xf in the 8x8 
Block Format: Third Example 
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Figure 20-9 shows a rectangular dummy polygon of 29x29 pixels. A polygon of this size can be 
placed anywhere and will always include four pixels at block addresses whose lower four bits are 0xf. 

20.6.5.4 Concrete Dummy Rendering Example (Lower 3 Bits Must Be 0x7 in the 8x8 Block Format) 

Here we will show concrete examples of dummy polygons that can be used as valid workarounds 
when the 8x8 block format is used and the lower three bits of the block address must be 0x7. These 
examples render a single rectangle as a dummy polygon. The figures show the lower three bits of the 
block address. 

Figure 20-10 Rendering 4 Pixels at Block Addresses Whose Lower 3 Bits Are 0x7 in the 8x8 
Block Format: First Example 
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Figure 20-10 shows a rectangular dummy polygon of 46x1 pixels. This example minimizes the area to 
be rendered. The polygon must be placed so that the pixels at both ends have block addresses 
whose lower three bits are 0x7. For example, assuming that the upper-left corner of the rendered 
image has the pixel coordinates (0, 0), you could use a polygon that covers pixel coordinates (15, 5)–
(60, 5). 
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Figure 20-11 Rendering 4 Pixels at Block Addresses Whose Lower 3 Bits Are 0x7 in the 8x8 
Block Format: Second Example 
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Figure 20-11 shows a rectangular dummy polygon of 61x5 pixels. A polygon of this size can be placed 
anywhere and will always include four pixels at block addresses whose lower three bits are 0x7. 

Figure 20-12 Rendering 4 Pixels at Block Addresses Whose Lower 3 Bits Are 0x7 in the 8x8 
Block Format: Third Example 
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Figure 20-12 shows a rectangular dummy polygon of 13x29 pixels. A polygon of this size can be 
placed anywhere and will always include four pixels at block addresses whose lower three bits are 
0x7. 

20.6.5.5 Concrete Dummy Rendering Example (Lower 4 Bits Must Be 0xf in the 32x32 Block Format) 

Here we will show concrete examples of dummy polygons that can be used as valid workarounds 
when the 32x32 block format is used and the lower four bits of the block address must be 0xf. These 
examples render a single rectangle as a dummy polygon. The figures show the lower four bits of the 
block address. 
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Figure 20-13 Rendering 4 Pixels at Block Addresses Whose Lower 4 Bits Are 0xf in the 32x32 
Block Format: First Example 
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Figure 20-13 shows a rectangular dummy polygon of 46x1 pixels. This example minimizes the area to 
be rendered. The polygon must be placed so that the pixels at both ends have block addresses 
whose lower four bits are 0xf. For example, assuming that the upper-left corner of the rendered 
image has the pixel coordinates (0, 0), you could use a polygon that covers pixel coordinates  
(15, 13)–(60, 13). 

Figure 20-14 Rendering 4 Pixels at Block Addresses Whose Lower 4 Bits Are 0xf in the 32x32 
Block Format: Second Example 
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Figure 20-14 shows a rectangular dummy polygon of 14x14 pixels. The rectangle must be placed so 
that the pixels in each of the four corners have block addresses whose lower four bits are 0xf. For 
example, assuming that the upper-left corner of the rendered image has the pixel coordinates (0, 0), 
you could use a polygon that covers pixel coordinates (15, 15), (28, 15), (15, 28), and (28, 28). 

Figure 20-15 Rendering 4 Pixels at Block Addresses Whose Lower 4 Bits Are 0xf in the 32x32 
Block Format: Third Example 
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Figure 20-15 shows a rectangular dummy polygon of 61x13 pixels. A polygon of this size can be 
placed anywhere and will always include four pixels at block addresses whose lower four bits are 0xf. 

Figure 20-16 Rendering 4 Pixels at Block Addresses Whose Lower 4 Bits Are 0xf in the 32x32 
Block Format: Fourth Example 
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Figure 20-16 shows a rectangular dummy polygon of 29x29 pixels. A polygon with these dimensions 
can be placed anywhere and will always include four pixels at block addresses whose lower four bits 
are 0xf. 

20.6.5.6 Concrete Dummy Rendering Example (Lower 3 Bits Must Be 0x7 in the 32x32 Block Format) 

Here we will show concrete examples of dummy polygons that can be used as valid workarounds 
when the 32x32 block format is used and the lower three bits of the block address must be 0x7. 
These examples render a single rectangle as a dummy polygon. The figures show the lower three bits 
of the block address. 

Figure 20-17 Rendering 4 Pixels at Block Addresses Whose Lower 3 Bits Are 0x7 in the 32x32 
Block Format: First Example 

7 2 3 6 7 2 3 6 7
46 pixels

2 3 6 71 pixel
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1 block

 

Figure 20-17 shows a rectangular dummy polygon of 46x1 pixels. This example minimizes the area to 
be rendered. The polygon must be placed so that the pixels at both ends have block addresses 
whose lower three bits are 0x7. For example, assuming that the upper-left corner of the rendered 
image has the pixel coordinates (0, 0), you could use a polygon that covers pixel coordinates (15, 5)–
(60, 5). 
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Figure 20-18 Rendering 4 Pixels at Block Addresses Whose Lower 3 Bits Are 0x7 in the 32x32 
Block Format: Second Example 
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Figure 20-18 shows a rectangular dummy polygon of 14x6 pixels. The rectangle must be placed so 
that the pixels in each of the four corners have block addresses whose lower three bits are 0x7. For 
example, assuming that the upper-left corner of the rendered image has the pixel coordinates (0, 0), 
you could use a polygon that covers pixel coordinates (15, 7), (28, 7), (15, 12), and (28, 12). 

Figure 20-19 Rendering 4 Pixels at Block Addresses Whose Lower 3 Bits Are 0x7 in the 32x32 
Block Format: Third Example 
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Figure 20-19 shows a rectangular dummy polygon of 61x5 pixels. A polygon of this size can be 
placed anywhere and will always include four pixels at block addresses whose lower three bits are 
0x7. 

Figure 20-20 Rendering 4 Pixels at Block Addresses Whose Lower 3 Bits Are 0x7 in the 32x32 
Block Format: Fourth Example 
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Figure 20-20 shows a rectangular dummy polygon of 29x13 pixels. A polygon of this size can be 
placed anywhere and will always include four pixels at block addresses whose lower three bits are 
0x7. 
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20.6.5.7 Notes for Dummy Rendering 

There are a number of issues to be aware of when you render dummy polygons as a workaround. 

For example, the following are valid dummy pixels. 

• Pixels that fail the depth test, stencil test, or alpha test 

Note: If you use settings that cause dummy pixels to always fail these tests—for example, by 
specifying GL_NEVER for the depth test function—be sure to restore the original depth test 
function when you resume normal rendering. Note that the cache flush command (a command 
that writes to register 0x111) would be required at this time. For more details, see section 
5.8.41 Clearing the Framebuffer Cache in the DMPGL 2.0 System API Specifications. 

• Pixels that do not affect the color buffer when they are rendered because of alpha blend settings 

The following are not valid dummy pixels. 

• Pixels that are clipped by the view volume or user-defined clipping planes 
• Pixels that are dropped by the scissor test 
• Pixels that are dropped by the early depth test 

20.7 Cannot Render Correctly When Viewport Size Exceeds 1023 x 
1016 

Note the following restrictions for the glViewport width and height settings (x and y respectively).  

• If a polygon pixel's x-coordinate is located at a point such that the required display width 
would be greater than 1023, then the entire polygon is not rendered. 

• If a polygon pixel's y-coordinate is located at a point such that the required display height 
would be greater than 1016, then the GPU hangs. 

These restrictions, which are a result of the hardware design, are shown in the following figure. 
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Figure 20-21 Regions Where Problems Occur with Polygon Rendering 
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The example in Figure 20-21 uses a frame buffer size of 1024 x 1024. The region shown in red is 
where the problem occurs when the viewport offset is set to (0, 0). If a polygon crosses into the 1-
pixel region on the right of the rendering screen, then that polygon is not rendered. If the polygon 
crosses into the top 8-pixel region of the rendering screen, then the GPU hangs. To render in the 
region shown in red, the viewport offset must be adjusted. For example, if the viewport offset is set to 
(1, 8) (x is set to 1 and y is set to 8 with glViewport), then the polygon not extending beyond the 
red region can be rendered with no problem. 

By setting the viewport width to 1023 or less and the height to 1016 or less, the pixels associated with 
coordinates that would cause problems are not rendered. When rendering a 1024 x 1024 image that 
will be used as a texture, therefore, adjust the coordinates so that the effective texture region is 1023 
x 1016. 

If you need to render the entire 1024 x 1024 area, divide the image into regions that do not exceed 
the restrictions and change the viewport offset accordingly to render each portion. For example, use 
the following glViewport coordinates for problem-free rendering of 4 equal areas: (0, 0, 512, 512), 
(512, 0, 512, 512), (0, 512, 512, 512), and (512, 512, 512, 512). 

Note also that scissoring cannot be used to prevent the pixels in a problem area from being drawn. 
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20.8 Early Depth Tests Are Not Performed Correctly When Using 
Viewport Offsets 

When early depth testing is enabled, it is not performed correctly if the viewport offset — 
glViewport (x, y) — is not (0, 0). 

A hardware malfunction fails to apply the viewport offset to the coordinates read from the early depth 
buffer. Updates to the early depth buffer incorrectly compare the depth value for pixels that have the 
viewport offset applied with pixels that do not have the offset applied. Pixels that should pass the 
early depth test fail and are therefore not rendered. For a false fail, an 8x8 pixel area is erroneously 
discarded. 

The following two methods circumvent this problem. 

• When setting the viewport offset (x, y) to something other than (0, 0), disable early depth 
testing. If early depth testing is toggled from enabled to disabled when rendering a single 
scene, the rendering result is correct because normal depth testing results in the 
appropriate pixels being dropped. 

• Set the viewport offset (x, y) to (0, 0), use a modelview transformation to shift the 
rendering region, and cut the unnecessary region with scissoring. 
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DMP and PICA are registered trademarks of Digital Media Professionals, Inc. 

All other company and product names in this document are the trademarks or registered trademarks of their respective companies. 
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